Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study

Yael P Mossé, Megan S Lim, Stephan D Voss, Keith Wilner, Katherine Ruffner, Julie Laliberte, Delphine Rolland, Frank M Balis, John M Maris, Brenda J Weigel, Ashish M Ingle, Charlotte Ahern, Peter C Adamson, Susan M Blaney, Yael P Mossé, Megan S Lim, Stephan D Voss, Keith Wilner, Katherine Ruffner, Julie Laliberte, Delphine Rolland, Frank M Balis, John M Maris, Brenda J Weigel, Ashish M Ingle, Charlotte Ahern, Peter C Adamson, Susan M Blaney

Abstract

Background: Various human cancers have ALK gene translocations, amplifications, or oncogenic mutations, such as anaplastic large-cell lymphoma, inflammatory myofibroblastic tumours, non-small-cell lung cancer (NSCLC), and neuroblastoma. Therefore, ALK inhibition could be a useful therapeutic strategy in children. We aimed to determine the safety, recommended phase 2 dose, and antitumour activity of crizotinib in children with refractory solid tumours and anaplastic large-cell lymphoma.

Methods: In this open-label, phase 1 dose-escalation trial, patients older than 12 months and younger than 22 years with measurable or evaluable solid or CNS tumours, or anaplastic large-cell lymphoma, refractory to therapy and for whom there was no known curative treatment were eligible. Crizotinib was given twice daily without interruption. Six dose levels (100, 130, 165, 215, 280, 365 mg/m(2) per dose) were assessed in the dose-finding phase of the study (part A1), which is now completed. The primary endpoint was to estimate the maximum tolerated dose, to define the toxic effects of crizotinib, and to characterise the pharmacokinetics of crizotinib in children with refractory cancer. Additionally, patients with confirmed ALK translocations, mutations, or amplification (part A2 of the study) or neuroblastoma (part A3) could enrol at one dose level lower than was currently given in part A1. We assessed ALK genomic status in tumour tissue and used quantitative RT-PCR to measure NPM-ALK fusion transcript in bone marrow and blood samples of patients with anaplastic large-cell lymphoma. All patients who received at least one dose of crizotinib were evaluable for response; patients completing at least one cycle of therapy or experiencing dose limiting toxicity before that were considered fully evaluable for toxicity. This study is registered with ClinicalTrials.gov, NCT00939770.

Findings: 79 patients were enrolled in the study from Oct 2, 2009, to May 31, 2012. The median age was 10.1 years (range 1.1-21.4); 43 patients were included in the dose escalation phase (A1), 25 patients in part A2, and 11 patients in part A3. Crizotinib was well tolerated with a recommended phase 2 dose of 280 mg/m(2) twice daily. Grade 4 adverse events in cycle 1 were neutropenia (two) and liver enzyme elevation (one). Grade 3 adverse events that occurred in more than one patient in cycle 1 were lymphopenia (two), and neutropenia (eight). The mean steady state peak concentration of crizotinib was 630 ng/mL and the time to reach this peak was 4 h (range 1-6). Objective tumour responses were documented in 14 of 79 patients (nine complete responses, five partial responses); and the anti-tumour activity was enriched in patients with known activating ALK aberrations (eight of nine with anaplastic large-cell lymphoma, one of 11 with neuroblastoma, three of seven with inflammatory myofibroblastic tumour, and one of two with NSCLC).

Interpretation: The findings suggest that a targeted inhibitor of ALK has antitumour activity in childhood malignancies harbouring ALK translocations, particularly anaplastic large-cell lymphoma and inflammatory myofibroblastic tumours, and that further investigation in the subset of neuroblastoma harbouring known ALK oncogenic mutations is warranted.

Funding: Pfizer and National Cancer Institute grant to the Children's Oncology Group.

Conflict of interest statement

Conflicts of interest

KW and KR are both employees of Pfizer and stockholders at the company. The other authors declare that they have no conflicts of interest.

Copyright © 2013 Elsevier Ltd. All rights reserved.

References

    1. Carpenter EL, Haglund EA, Mace EM, et al. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene. 2012;31:4859–67.
    1. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263:1281–84.
    1. Katayama R, Khan TM, Benes C, et al. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci USA. 2011;108:7535–40.
    1. Griffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T, Perlman EJ. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 1999;59:2776–80.
    1. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–66.
    1. Sugawara E, Togashi Y, Kuroda N, et al. Identification of anaplastic lymphoma kinase fusions in renal cancer: large-scale immunohistochemical screening by the intercalated antibody-enhanced polymer method. Cancer. 2012;118:4427–36.
    1. Chen Y, Takita J, Choi YL, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 2008;455:971–74.
    1. George RE, Sanda T, Hanna M, et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature. 2008;455:975–78.
    1. Janoueix-Lerosey I, Lequin D, Brugières L, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455:967–70.
    1. Mossé YP, Laudenslager M, Longo L, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–35.
    1. Wang YW, Tu PH, Lin KT, Lin SC, Ko JY, Jou YS. Identification of oncogenic point mutations and hyperphosphorylation of anaplastic lymphoma kinase in lung cancer. Neoplasia. 2011;13:704–15.
    1. Murugan AK, Xing M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res. 2011;71:4403–11.
    1. Grzelinski M, Steinberg F, Martens T, Czubayko F, Lamszus K, Aigner A. Enhanced antitumorigenic effects in glioblastoma on double targeting of pleiotrophin and its receptor ALK. Neoplasia. 2009;11:145–56.
    1. van Gaal JC, Flucke UE, Roeffen MH, et al. Anaplastic lymphoma kinase aberrations in rhabdomyosarcoma: clinical and prognostic implications. J Clin Oncol. 2012;30:308–15.
    1. Shaw AT, Yeap BY, Solomon BJ, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12:1004–12.
    1. Camidge DR, Bang YJ, Kwak EL, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012;13:1011–19.
    1. Bresler SC, Wood AC, Haglund EA, et al. Differential inhibitor sensitivity of anaplastic lymphoma kinase variants found in neuroblastoma. Sci Transl Med. 2011;3:108ra14.
    1. Christensen JG, Zou HY, Arango ME, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther. 2007;6:3314–22.
    1. Skolnik JM, Barrett JS, Jayaraman B, Patel D, Adamson PC. Shortening the timeline of pediatric phase I trials: the rolling six design. J Clin Oncol. 2008;26:190–95.
    1. Damm-Welk C, Busch K, Burkhardt B, et al. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2007;110:670–77.
    1. Ady N, Zucker JM, Asselain B, et al. A new 123I-MIBG whole body scan scoring method—application to the prediction of the response of metastases to induction chemotherapy in stage IV neuroblastoma. Eur J Cancer. 1995;31A:256–61.
    1. Seidemann K, Tiemann M, Schrappe M, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Münster Group Trial NHL-BFM 90. Blood. 2001;97:3699–706.
    1. Brugières L, Pacquement H, Le Deley MC, et al. Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J Clin Oncol. 2009;27:5056–61.
    1. Lowe EJ, Sposto R, Perkins SL, et al. the Children’s Cancer Group Study 5941. Intensive chemotherapy for systemic anaplastic large cell lymphoma in children and adolescents: final results of Children’s Cancer Group Study 5941. Pediatr Blood Cancer. 2009;52:335–39.
    1. Le Deley MC, Rosolen A, Williams DM, et al. Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99-vinblastine trial. J Clin Oncol. 2010;28:3987–93.
    1. Shaw AT, Forcione DG, Digumarthy SR, Iafrate AJ. Case records of the Massachusetts General Hospital. Case 21-2011. A 31-year-old man with ALK-positive adenocarcinoma of the lung. N Engl J Med. 2011;365:158–67.
    1. Butrynski JE, D’Adamo DR, Hornick JL, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010;363:1727–33.
    1. Sasaki T, Okuda K, Zheng W, et al. The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res. 2010;70:10038–43.
    1. Passoni L, Longo L, Collini P, et al. Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. Cancer Res. 2009;69:7338–46.
    1. Bollag G, Hirth P, Tsai J, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–99.
    1. Anderson BD, Adamson PC, Weiner SL, McCabe MS, Smith MA. Tissue collection for correlative studies in childhood cancer clinical trials: ethical considerations and special imperatives. J Clin Oncol. 2004;22:4846–50.

Source: PubMed

Подписаться