A Comparison of a Pulse-Based Diet and the Therapeutic Lifestyle Changes Diet in Combination with Exercise and Health Counselling on the Cardio-Metabolic Risk Profile in Women with Polycystic Ovary Syndrome: A Randomized Controlled Trial

Maryam Kazemi, Laura E McBreairty, Donna R Chizen, Roger A Pierson, Philip D Chilibeck, Gordon A Zello, Maryam Kazemi, Laura E McBreairty, Donna R Chizen, Roger A Pierson, Philip D Chilibeck, Gordon A Zello

Abstract

We compared the effects of a low-glycemic index pulse-based diet, containing lentils, beans, split peas, and chickpeas, to the Therapeutic Lifestyle Changes (TLC) diet on cardio-metabolic measures in women with polycystic ovary syndrome (PCOS). Ninety-five women (18⁻35 years) enrolled in a 16-week intervention; 30 women in the pulse-based and 31 in the TLC groups completed the study. Women participated in aerobic exercise training (minimum 5 days/week for 45 min/day) and were counselled (monthly) about PCOS and lifestyle modification. Women underwent longitudinal follow-up post-intervention. The pulse-based group had a greater reduction in total area under the curve for insulin response to a 75-g oral glucose tolerance test (mean change ± SD: -121.0 ± 229.9 vs. -27.4 ± 110.2 µIU/mL × min; p = 0.05); diastolic blood pressure (-3.6 ± 6.7 vs. -0.2 ± 6.7 mmHg, p = 0.05); triglyceride (-0.2 ± 0.6 vs. 0.0 ± 0.5 mmol/L, p = 0.04); low-density lipoprotein cholesterol (-0.2 ± 0.4 vs. -0.1 ± 0.4 mmol/L, p = 0.05); total cholesterol/high-density lipoprotein cholesterol (TC/HDL-C; -0.4 ± 0.4 vs. 0.1 ± 0.4, p < 0.001); and a greater increase in HDL-C (0.1 ± 0.2 vs. -0.1 ± 0.2 mmol/L, p < 0.01) than the TLC group. Decreased TC/HDL-C (p = 0.02) at six-month and increased HDL-C and decreased TC/HDL-C (p ≤ 0.02) at 12-month post-intervention were maintained in the pulse-based group. A pulse-based diet may be more effective than the TLC diet at improving cardio-metabolic disease risk factors in women with PCOS.

Trial registration: CinicalTrials.gov identifier, NCT01288638.

Keywords: dietary intake; glucose; insulin; lifestyle; lipid; metabolic syndrome; physical activity; pulse foods.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study, collection, analyses, interpretation of data, writing of the manuscript, and decision to publish.

Figures

Figure 1
Figure 1
CONSORT flow diagram of the randomized controlled trial. In the “follow-up (16-week post-intervention)” section—“completed the intervention”—represented women who completed the 16-week lifestyle intervention;—“discontinued the intervention”—represented women who dropped out of the study before completing the 16-week lifestyle intervention. In the “analysis (16-week post-intervention)” section, the number of subjects that were analyzed in the pulse-based and TLC diet groups included women who completed the 16-week lifestyle intervention and women who dropped out of the study before completing the 16-week intervention period, but their last observation data which were collected at nine-weeks post-intervention were carried forward to 16-week time point according to the intention-to-treat principle.
Figure 2
Figure 2
Plasma insulin and glucose responses to a standard 75-g OGTT before and after 16-week of intervention in the pulse-based diet and TLC diet groups. Solid dark lines represent women in the pulse-diet group at baseline (n = 30). Solid light lines represent women in the TLC diet group at baseline (n = 29). Dotted dark lines represent women in the pulse-diet group after the intervention (n = 30). Dotted light lines represent women in the TLC diet group after the intervention (n = 29). Insulin time course in response to OGTT (A); glucose time course in response to OGTT (B); ratio of plasma insulin to glucose time course in response to OGTT (C). Groups were comparable at baseline. Data are expressed as mean ± SEM. Abbreviations: OGTT, oral glucose tolerance test.

References

    1. March W.A., Moore V.M., Willson K.J., Phillips D.I.W., Norman R.J., Davies M.J. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum. Reprod. 2010;25:544–551. doi: 10.1093/humrep/dep399.
    1. Carmina E., Lobo R.A. Polycystic ovary syndrome (PCOS): Arguably the most common endocrinopathy is associated with significant morbidity in women. J. Clin. Endocrinol. Metab. 1999;84:1897–1899. doi: 10.1210/jcem.84.6.5803.
    1. Diamanti-Kandarakis E., Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev. 2012;33:981–1030. doi: 10.1210/er.2011-1034.
    1. Wild R.A., Carmina E., Diamanti-Kandarakis E., Dokras A., Escobar-Morreale H.F., Futterweit W., Lobo R., Norman R.J., Talbott E., Dumesic D.A. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: A consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab. 2010;95:2038–2049. doi: 10.1210/jc.2009-2724.
    1. Alberti K.G.M.M., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.C., James W.P.T., Loria C.M., Smith S.C. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645. doi: 10.1161/circulationaha.109.192644.
    1. Marsh K., Brand-Miller J. The optimal diet for women with polycystic ovary syndrome? Br. J. Nutr. 2005;94:154–165. doi: 10.1079/BJN20051475.
    1. Cooney L.G., Milman L.W., Hantsoo L., Kornfield S., Sammel M.D., Allison K.C., Epperson C.N., Dokras A. Cognitive-behavioral therapy improves weight loss and quality of life in women with polycystic ovary syndrome: A pilot randomized clinical trial. Fertil. Steril. 2018;110:161.e1–171.e1. doi: 10.1016/j.fertnstert.2018.03.028.
    1. Dokras A., Stener-Victorin E., Yildiz B.O., Li R., Ottey S., Shah D., Epperson N., Teede H. Androgen Excess-Polycystic Ovary Syndrome Society: Position statement on depression, anxiety, quality of life, and eating disorders in polycystic ovary syndrome. Fertil. Steril. 2018;109:888–899. doi: 10.1016/j.fertnstert.2018.01.038.
    1. Moran L.J., Hutchison S.K., Norman R.J., Teede H.J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2011;7:Cd007506. doi: 10.001002/14651858.CD14007506.pub14651853.
    1. Teede H.J., Misso M.L., Costello M.F., Dokras A., Laven J., Moran L., Piltonen T., Norman R.J., International P.N. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018;33:1602–1618. doi: 10.1093/humrep/dey256.
    1. Moran L.J., Ko H., Misso M., Marsh K., Noakes M., Talbot M., Frearson M., Thondan M., Stepto N., Teede H.J. Dietary composition in the treatment of polycystic ovary syndrome: A systematic review to inform evidence-based guidelines. J. Acad. Nutr. Diet. 2013;113:520–545. doi: 10.1016/j.jand.2012.11.018.
    1. Asemi Z., Samimi M., Tabassi Z., Shakeri H., Sabihi S.S., Esmaillzadeh A. Effects of DASH diet on lipid profiles and biomarkers of oxidative stress in overweight and obese women with polycystic ovary syndrome: A randomized clinical trial. Nutrition. 2014;30:1287–1293. doi: 10.1016/j.nut.2014.03.008.
    1. Asemi Z., Esmaillzadeh A. DASH diet, insulin resistance, and serum hs-CRP in polycystic ovary syndrome: A randomized controlled clinical trial. Horm. Metab. Res. 2015;47:232–238. doi: 10.1055/s-0034-1376990.
    1. Toscani M.K., Mario F.M., Radavelli-Bagatini S., Wiltgen D., Matos M.C., Spritzer P.M. Effect of high-protein or normal-protein diet on weight loss, body composition, hormone, and metabolic profile in southern Brazilian women with polycystic ovary syndrome: A randomized study. Gynecol. Endocrinol. 2011;27:925–930. doi: 10.3109/09513590.2011.564686.
    1. Stamets K., Taylor D.S., Kunselman A., Demers L.M., Pelkman C.L., Legro R.S. A randomized trial of the effects of two types of short-term hypocaloric diets on weight loss in women with polycystic ovary syndrome. Fertil. Steril. 2004;81:630–637. doi: 10.1016/j.fertnstert.2003.08.023.
    1. Thomson R.L., Buckley J.D., Noakes M., Clifton P.M., Norman R.J., Brinkworth G.D. The effect of a hypocaloric diet with and without exercise training on body composition, cardiometabolic risk profile, and reproductive function in overweight and obese women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2008;93:3373–3380. doi: 10.1210/jc.2008-0751.
    1. Mehrabani H.H., Salehpour S., Amiri Z., Farahani S.J., Meyer B.J., Tahbaz F. Beneficial effects of a high-protein, low-glycemic-load hypocaloric diet in overweight and obese women with polycystic ovary syndrome: A randomized controlled intervention study. J. Am. Coll. Nutr. 2012;31:117–125. doi: 10.1080/07315724.2012.10720017.
    1. Turner-McGrievy G.M., Davidson C.R., Wingard E.E., Billings D.L. Low glycemic index vegan or low-calorie weight loss diets for women with polycystic ovary syndrome: A randomized controlled feasibility study. Nutr. Res. 2014;34:552–558. doi: 10.1016/j.nutres.2014.04.011.
    1. Mudryj A.N., Yu N., Aukema H.M. Nutritional and health benefits of pulses. Appl. Physiol. Nutr. Metab. 2014;39:1197–1204. doi: 10.1139/apnm-2013-0557.
    1. Ha V., Sievenpiper J.L., de Souza R.J., Jayalath V.H., Mirrahimi A., Agarwal A., Chiavaroli L., Mejia S.B., Sacks F.M., Di Buono M., et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: A systematic review and meta-analysis of randomized controlled trials. Can. Med. Assoc. J. CMAJ. 2014;186:E252–E262. doi: 10.1503/cmaj.131727.
    1. McCrory M.A., Hamaker B.R., Lovejoy J.C., Eichelsdoerfer P.E. Pulse consumption, satiety, and weight management. Adv. Nutr. 2010;1:17–30. doi: 10.3945/an.110.1006.
    1. Sievenpiper J.L., Kendall C.W.C., Esfahani A., Wong J.M.W., Carleton A.J., Jiang H.Y., Bazinet R.P., Vidgen E., Jenkins D.J.A. Effect of non-oil-seed pulses on glycaemic control: A systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia. 2009;52:1479–1495. doi: 10.1007/s00125-009-1395-7.
    1. Abeysekara S., Chilibeck P.D., Vatanparast H., Zello G.A. A pulse-based diet is effective for reducing total and LDL-cholesterol in older adults. Br. J. Nutr. 2012;108:S103–S110. doi: 10.1017/S0007114512000748.
    1. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–3421. doi: 10.1161/circ.106.25.3143.
    1. McBreairty L.E., Chilibeck P.D., Chizen D.R., Pierson R.A., Tumback L., Sherar L.B., Zello G.A. The role of a pulse-based diet on infertility measures and metabolic syndrome risk: Protocol of a randomized clinical trial in women with polycystic ovary syndrome. BMC Nutr. 2017;3:23. doi: 10.1186/s40795-017-0142-6.
    1. Canadian Institutes of Health Research, Natural Science and Engineering Research Council, Social Sciences and Humanities Research Council of Canada Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans. [(accessed on 5 January 2016)]; Available online: .
    1. Schäfer G., Schenk U., Ritzel U., Ramadori G., Leonhardt U. Comparison of the effects of dried peas with those of potatoes in mixed meals on postprandial glucose and insulin concentrations in patients with type 2 diabetes. Am. J. Clin. Nutr. 2003;78:99–103. doi: 10.1093/ajcn/78.1.99.
    1. Shutler S.M., Bircher G.M., Tredger J.A., Morgan L.M., Walker A.F., Low A.G. The effect of daily baked bean (Phaseolus vulgaris) consumption on the plasma lipid levels of young, normo-cholesterolaemic men. Br. J. Nutr. 1989;61:257–265. doi: 10.1079/BJN19890114.
    1. Sacks F.M., Svetkey L.P., Vollmer W.M., Appel L.J., Bray G.A., Harsha D., Obarzanek E., Conlin P.R., Miller E.R., Simons-Morton D.G., et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 2001;344:3–10. doi: 10.1056/NEJM200101043440101.
    1. Willett W.C., Sacks F., Trichopoulou A., Drescher G., Ferro-Luzzi A., Helsing E., Trichopoulos D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995;61:1402S–1406S. doi: 10.1093/ajcn/61.6.1402S.
    1. Health Canada Eating Well with Canada’s Food Guide. [(accessed on 14 May 2017)]; Available online: .
    1. Azziz R., Carmina E., Dewailly D., Diamanti-Kandarakis E., Escobar-Morreale H.F., Futterweit W., Janssen O.E., Legro R.S., Norman R.J., Taylor A.E., et al. Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. J. Clin. Endocrinol. Metab. 2006;91:4237–4245. doi: 10.1210/jc.2006-0178.
    1. Dewailly D., Lujan M.E., Carmina E., Cedars M.I., Laven J., Norman R.J., Escobar-Morreale H.F. Definition and significance of polycystic ovarian morphology: A task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum. Reprod. Update. 2014;20:334–352. doi: 10.1093/humupd/dmt061.
    1. Clark N.M., Podolski A.J., Brooks E.D., Chizen D.R., Pierson R.A., Lehotay D.C., Lujan M.E. Prevalence of polycystic ovary syndrome phenotypes using updated criteria for polycystic ovarian morphology: An assessment of over 100 consecutive women self-reporting features of polycystic ovary syndrome. Reprod. Sci. 2014;21:1034–1043. doi: 10.1177/1933719114522525.
    1. World Health Organization . Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. Geneva, Switzerland, 8–11 December 2008. World Health Organization; Geneva, Switzerland: 2011. pp. 1–47.
    1. Goldenberg R., Punthakee Z. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can. J. Diabetes. 2013;37:S8–S11. doi: 10.1016/j.jcjd.2013.01.011.
    1. Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. World Health Organization . Preventing and Managing the Global Epidemic. World Health Organization; Geneva, Switzerland: 2000. pp. 1–252. (WHO Technical Report Series 894).
    1. Graff S.K., Mário F.M., Alves B.C., Spritzer P.M. Dietary glycemic index is associated with less favorable anthropometric and metabolic profiles in polycystic ovary syndrome women with different phenotypes. Fertil. Steril. 2013;100:1081–1088. doi: 10.1016/j.fertnstert.2013.06.005.
    1. Atkinson F.S., Foster-Powell K., Brand-Miller J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care. 2008;31:2281–2283. doi: 10.2337/dc08-1239.
    1. Egan N., Read A., Riley P., Atiomo W. Evaluating compliance to a low glycaemic index (GI) diet in women with polycystic ovary syndrome (PCOS) BMC Res. Notes. 2011;4:53. doi: 10.1186/1756-0500-4-53.
    1. Jenkins D.J., Kendall C.W., Augustin L.S., Franceschi S., Hamidi M., Marchie A., Jenkins A.L., Axelsen M. Glycemic index: Overview of implications in health and disease. Am. J. Clin. Nutr. 2002;76:266S–273S. doi: 10.1093/ajcn/76.1.266S.
    1. Beulens J.W., de Bruijne L.M., Stolk R.P., Peeters P.H., Bots M.L., Grobbee D.E., van der Schouw Y.T. High dietary glycemic load and glycemic index increase risk of cardiovascular disease among middle-aged women: A population-based follow-up study. J. Am. Coll. Cardiol. 2007;50:14–21. doi: 10.1016/j.jacc.2007.02.068.
    1. Salmerón J., Manson J.E., Stampfer M.J., Colditz G.A., Wing A.L., Willett W.C. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA. 1997;277:472–477. doi: 10.1001/jama.1997.03540300040031.
    1. Nutrient Recommendations: Dietary Reference Intakes (DRI) [(accessed on 2 May 2017)]; Available online: .
    1. Godin G., Shephard R. A simple method to assess exercise behaviour in the community. Can. J. Appl. Sport Sci. 1985;10:141–146.
    1. Tai M.M. A mathematical model for the determination of total area under glucose tolerance and other metabolic curves. Diabetes Care. 1994;17:152–154. doi: 10.2337/diacare.17.2.152.
    1. Yildiz B.O., Bolour S., Woods K., Moore A., Azziz R. Visually scoring hirsutism. Hum. Reprod. Update. 2010;16:51–64. doi: 10.1093/humupd/dmp024.
    1. Jayalath V.H., De Souza R.J., Sievenpiper J.L., Ha V., Chiavaroli L., Mirrahimi A., Di Buono M., Bernstein A.M., Leiter L.A., Kris-Etherton P.M., et al. Effect of dietary pulses on blood pressure: A systematic review and meta-analysis of controlled feeding trials. Am. J. Hypertens. 2014;27:56–64. doi: 10.1093/ajh/hpt155.
    1. Anderson J.W., Major A.W. Pulses and lipaemia, short- and long-term effect: Potential in the prevention of cardiovascular disease. Br. J. Nutr. 2002;88(Suppl. 3):S263–S271. doi: 10.1079/BJN2002716.
    1. Manson J.E., Tosteson H., Ridker P.M., Satterfield S., Hebert P., O’Connor G.T., Buring J.E., Hennekens C.H. The primary prevention of myocardial infarction. N. Engl. J. Med. 1992;326:1406–1416. doi: 10.1056/NEJM199205213262107.
    1. Cholesterol Treatment Trialists’ (CTT) Collaborators. Mihaylova B., Emberson J., Blackwell L., Keech A., Simes J., Barnes E.H., Voysey M., Gray A., Collins R. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: Meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380:581–590. doi: 10.1016/S0140-6736(12)60367-5.
    1. Bazzano L.A., Thompson A.M., Tees M.T., Nguyen C.H., Winham D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011;21:94–103. doi: 10.1016/j.numecd.2009.08.012.
    1. Galisteo M., Duarte J., Zarzuelo A. Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J. Nutr. Biochem. 2008;19:71–84. doi: 10.1016/j.jnutbio.2007.02.009.
    1. Brown L., Rosner B., Willett W.W., Sacks F.M. Cholesterol-lowering effects of dietary fiber: A meta-analysis. Am. J. Clin. Nutr. 1999;69:30–42. doi: 10.1093/ajcn/69.1.30.
    1. Kishimoto Y., Wakabayashi S., Takeda H. Hypocholesterolemic effect of dietary fiber: Relation to intestinal fermentation and bile acid excretion. J. Nutr. Sci. Vitaminol. (Tokyo) 1995;41:151–161. doi: 10.3177/jnsv.41.151.
    1. Pilch S.M., Center for Food Safety and Applied Nutrition. Federation of American Societies for Experimental Biology. Life Sciences Research Office (Contributors) Physiological Effects and Health Consequences of Dietary Fiber. Life Sciences Research Office, Federation of American Societies for Experimental Biology; Bethesda, MD, USA: 1987. pp. 1–236.
    1. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–1345. doi: 10.1016/j.cell.2016.05.041.
    1. Van Bennekum A.M., Nguyen D.V., Schulthess G., Hauser H., Phillips M.C. Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: Relationships with intestinal and hepatic cholesterol parameters. Br. J. Nutr. 2005;94:331–337. doi: 10.1079/BJN20051498.
    1. Chibbar R.N., Ambigaipalan P., Hoover R. Review: Molecular diversity in pulse seed starch and complex carbohydrates and its role in human nutrition and health. Cereal Chem. 2010;87:342–352. doi: 10.1094/CCHEM-87-4-0342.
    1. Schneeman B.O. Dietary fiber and gastrointestinal function. Nutr. Rev. 1987;45:129–132. doi: 10.1111/j.1753-4887.1987.tb06343.x.
    1. Ludwig D.S. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA. 2002;287:2414–2423. doi: 10.1001/jama.287.18.2414.
    1. Mozaffarian D., Pischon T., Hankinson S.E., Rifai N., Joshipura K., Willett W.C., Rimm E.B. Dietary intake of trans fatty acids and systemic inflammation in women. Am. J. Clin. Nutr. 2004;79:606–612. doi: 10.1093/ajcn/79.4.606.
    1. Lefevre M., Lovejoy J.C., Smith S.R., DeLany J.P., Champagne C., Most M.M., Denkins Y., de Jonge L., Rood J., Bray G.A. Comparison of the acute response to meals enriched with cis-or trans-fatty acids on glucose and lipids in overweight individuals with differing FABP2 genotypes. Metabolism. 2005;54:1652–1658. doi: 10.1016/j.metabol.2005.06.015.
    1. Diamanti-Kandarakis E., Alexandraki K., Piperi C., Protogerou A., Katsikis I., Paterakis T., Lekakis J., Panidis D. Inflammatory and endothelial markers in women with polycystic ovary syndrome. Eur. J. Clin. Investig. 2006;36:691–697. doi: 10.1111/j.1365-2362.2006.01712.x.
    1. Velazquez E., Bellabarba G.A., Mendoza S., Sánchez L. Postprandial triglyceride response in patients with polycystic ovary syndrome: Relationship with waist-to-hip ratio and insulin. Fertil. Steril. 2000;74:1159–1163. doi: 10.1016/S0015-0282(00)01601-0.
    1. Bahcecı M., Aydemır M., Tuzcu A. Effects of oral fat and glucose tolerance test on serum lipid profile, apolipoprotein, and CRP concentration, and insulin resistance in patients with polycystic ovary syndrome. Fertil. Steril. 2007;87:1363–1368. doi: 10.1016/j.fertnstert.2006.11.031.
    1. Kirchengast S., Huber J. Body composition characteristics and body fat distribution in lean women with polycystic ovary syndrome. Hum. Reprod. 2001;16:1255–1260. doi: 10.1093/humrep/16.6.1255.
    1. Kasim-Karakas S.E., Almario R.U., Gregory L., Wong R., Todd H., Lasley B.L. Metabolic and endocrine effects of a polyunsaturated fatty acid-rich diet in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2004;89:615–620. doi: 10.1210/jc.2003-030666.
    1. Barclay A.W., Petocz P., McMillan-Price J., Flood V.M., Prvan T., Mitchell P., Brand-Miller J.C. Glycemic index, glycemic load, and chronic disease risk—A meta-analysis of observational studies. Am. J. Clin. Nutr. 2008;87:627–637. doi: 10.1093/ajcn/87.3.627.
    1. Thorne M.J., Thompson L., Jenkins D. Factors affecting starch digestibility and the glycemic response with special reference to legumes. Am. J. Clin. Nutr. 1983;38:481–488. doi: 10.1093/ajcn/38.3.481.
    1. Shishehgar F., Tehrani F.R., Mirmiran P., Hajian S., Baghestani A.R., Moslehi N. Comparison of dietary intake between polycystic ovary syndrome women and controls. Glob. J. Health Sci. 2016;8:302–311. doi: 10.5539/gjhs.v8n9p302.
    1. Douglas C.C., Norris L.E., Oster R.A., Darnell B.E., Azziz R., Gower B.A. Difference in dietary intake between women with polycystic ovary syndrome and healthy controls. Fertil. Steril. 2006;86:411–417. doi: 10.1016/j.fertnstert.2005.12.054.
    1. Altieri P., Cavazza C., Pasqui F., Morselli A.M., Gambineri A., Pasquali R. Dietary habits and their relationship with hormones and metabolism in overweight and obese women with polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 2013;78:52–59. doi: 10.1111/j.1365-2265.2012.04355.x.
    1. Toscani M.K., Mario F.M., Radavelli-Bagatini S., Spritzer P.M. Insulin resistance is not strictly associated with energy intake or dietary macronutrient composition in women with polycystic ovary syndrome. Nutr. Res. 2011;31:97–103. doi: 10.1016/j.nutres.2011.01.009.
    1. Frost G., Dornhorst A. Glycemic Index. In: Caballero B., Allen L., Prentice A., editors. Encyclopedia of Human Nutrition. 3rd ed. Academic Press; Waltham, MD, USA: 2012. pp. 393–398.
    1. Barr S., Hart K., Reeves S., Sharp K., Jeanes Y.M. Habitual dietary intake, eating pattern and physical activity of women with polycystic ovary syndrome. Eur. J. Clin. Nutr. 2011;65:1126. doi: 10.1038/ejcn.2011.81.
    1. Moran L.J., Ranasinha S., Zoungas S., McNaughton S.A., Brown W.J., Teede H.J. The contribution of diet, physical activity and sedentary behavior to body mass index in women with and without polycystic ovary syndrome. Hum. Reprod. 2013;28:2276–2283. doi: 10.1093/humrep/det256.
    1. Jang Y., Lee J.H., Kim O.Y., Park H.Y., Lee S.Y. Consumption of whole grain and legume powder reduces insulin demand, lipid peroxidation, and plasma homocysteine concentrations in patients with coronary artery disease randomized controlled clinical trial. Arterioscler. Thromb. Vasc. Biol. 2001;21:2065–2071. doi: 10.1161/hq1201.100258.
    1. Jacobs D., Meyer K.A., Kushi L.H., Folsom A.R. Whole-grain intake may reduce the risk of ischemic heart disease death in postmenopausal women: The Iowa Women’s Health Study. Am. J. Clin. Nutr. 1998;68:248–257. doi: 10.1093/ajcn/68.2.248.
    1. Swennen K., Courtin C.M., Delcour J.A. Non-digestible oligosaccharides with prebiotic properties. Crit. Rev. Food Sci. Nutr. 2006;46:459–471. doi: 10.1080/10408390500215746.
    1. Baudrand R., Campino C., Carvajal C., Olivieri O., Guidi G., Faccini G., Vöhringer P., Cerda J., Owen G., Kalergis A., et al. High sodium intake is associated with increased glucocorticoid production, insulin resistance and metabolic syndrome. Clin. Endocrinol. (Oxf.) 2014;80:677–684. doi: 10.1111/cen.12225.
    1. Vedovato M., Lepore G., Coracina A., Dodesini A., Jori E., Tiengo A., Del Prato S., Trevisan R. Effect of sodium intake on blood pressure and albuminuria in Type 2 diabetic patients: The role of insulin resistance. Diabetologia. 2004;47:300–303. doi: 10.1007/s00125-003-1303-5.
    1. Aburto N.J., Hanson S., Gutierrez H., Hooper L., Elliott P., Cappuccio F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ. 2013;346:f1378. doi: 10.1136/bmj.f1378.
    1. Jee S.H., Miller E.R., Guallar E., Singh V.K., Appel L.J., Klag M.J. The effect of magnesium supplementation on blood pressure: A meta-analysis of randomized clinical trials. Am. J. Hypertens. 2002;15:691–696. doi: 10.1016/S0895-7061(02)02964-3.
    1. Altorf-van der Kuil W., Engberink M.F., Brink E.J., van Baak M.A., Bakker S.J., Navis G., van’t Veer P., Geleijnse J.M. Dietary protein and blood pressure: A systematic review. PLoS ONE. 2010;5:e12102. doi: 10.1371/journal.pone.0012102.
    1. Tielemans S.M., Altorf-van Der Kuil W., Engberink M.F., Brink E.J., Van Baak M.A., Bakker S.J., Geleijnse J.M. Intake of total protein, plant protein and animal protein in relation to blood pressure: A meta-analysis of observational and intervention studies. J. Hum. Hypertens. 2013;27:564–571. doi: 10.1038/jhh.2013.16.
    1. Forman J.P., Rimm E.B., Stampfer M.J., Curhan G.C. Folate intake and the risk of incident hypertension among US women. JAMA. 2005;293:320–329. doi: 10.1001/jama.293.3.320.
    1. Xun P., Liu K., Loria C.M., Bujnowski D., Shikany J.M., Schreiner P.J., Sidney S., He K. Folate intake and incidence of hypertension among American young adults: A 20-y follow-up study. Am. J. Clin. Nutr. 2012;95:1023–1030. doi: 10.3945/ajcn.111.027250.
    1. McCann S.E., Freudenheim J.L., Marshall J.R., Brasure J.R., Swanson M.K., Graham S. Diet in the epidemiology of endometrial cancer in western New York (United States) Cancer Causes Control. 2000;11:965–974. doi: 10.1023/A:1026551309873.
    1. Xu W.H., Shrubsole M.J., Xiang Y.B., Cai Q., Zhao G.M., Ruan Z.X., Cheng J.R., Zheng W., Shu X.O. Dietary folate intake, MTHFR genetic polymorphisms, and the risk of endometrial cancer among Chinese women. Cancer Epidemiol. Biomark. Prev. 2007;16:281–287. doi: 10.1158/1055-9965.EPI-06-0798.
    1. Charalampakis V., Tahrani A.A., Helmy A., Gupta J.K., Singhal R. Polycystic ovary syndrome and endometrial hyperplasia: An overview of the role of bariatric surgery in female fertility. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016;207:220–226. doi: 10.1016/j.ejogrb.2016.10.001.
    1. Otten J.J., Hellwig J.P., Meyers L.D. DRI, Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. National Academies Press; Washington, DC, USA: 2006. pp. 1–1344.
    1. Moran L.J., Noakes M., Clifton P.M., Tomlinson L., Norman R.J. Dietary composition in restoring reproductive and metabolic physiology in overweight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2003;88:812–819. doi: 10.1210/jc.2002-020815.
    1. Legro R.S. Effects of obesity treatment on female reproduction: Results do not match expectations. Fertil. Steril. 2017;107:860–867. doi: 10.1016/j.fertnstert.2017.02.109.
    1. Marsh K.A., Steinbeck K.S., Atkinson F.S., Petocz P., Brand-Miller J.C. Effect of a low glycemic index compared with a conventional healthy diet on polycystic ovary syndrome. Am. J. Clin. Nutr. 2010;92:83–92. doi: 10.3945/ajcn.2010.29261.
    1. Barr S., Reeves S., Sharp K., Jeanes Y.M. An isocaloric low glycemic index diet improves insulin sensitivity in women with polycystic ovary syndrome. J. Acad. Nutr. Diet. 2013;113:1523–1531. doi: 10.1016/j.jand.2013.06.347.
    1. Knowler W.C., Barrett-Connor E., Fowler S.E., Hamman R.F., Lachin J.M., Walker E.A., Nathan D.M. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002;346:393–403. doi: 10.1056/NEJMoa012512.
    1. Orchard T.J., Temprosa M., Goldberg R., Haffner S., Ratner R., Marcovina S., Fowler S. The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: The Diabetes Prevention Program randomized trial. Ann. Int. Med. 2005;142:611–619. doi: 10.7326/0003-4819-142-8-200504190-00009.
    1. Hawley J.A. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab. Res. Rev. 2004;20:383–393. doi: 10.1002/dmrr.505.
    1. Vigorito C., Giallauria F., Palomba S., Cascella T., Manguso F., Lucci R., De Lorenzo A., Tafuri D., Lombardi G., Colao A., et al. Beneficial effects of a three-month structured exercise training program on cardiopulmonary functional capacity in young women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2007;92:1379–1384. doi: 10.1210/jc.2006-2794.
    1. Brown A.J., Setji T.L., Sanders L.L., Lowry K.P., Otvos J.D., Kraus W.E., Svetkey P.L. Effects of exercise on lipoprotein particles in women with polycystic ovary syndrome. Med. Sci. Sports Exerc. 2009;41:497–504. doi: 10.1249/MSS.0b013e31818c6c0c.
    1. Greaves C.J., Sheppard K.E., Abraham C., Hardeman W., Roden M., Evans P.H., Schwarz P., The IMAGE Study Group Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public Health. 2011;11:119. doi: 10.1186/1471-2458-11-119.
    1. Douglas C.C., Gower B.A., Darnell B.E., Ovalle F., Oster R.A., Azziz R. Role of diet in the treatment of polycystic ovary syndrome. Fertil. Steril. 2006;85:679–688. doi: 10.1016/j.fertnstert.2005.08.045.
    1. Hoeger K.M., Kochman L., Wixom N., Craig K., Miller R.K., Guzick D.S. A randomized, 48-week, placebo-controlled trial of intensive lifestyle modification and/or metformin therapy in overweight women with polycystic ovary syndrome: A pilot study. Fertil. Steril. 2004;82:421–429. doi: 10.1016/j.fertnstert.2004.02.104.
    1. Wu T., Gao X., Chen M., Van Dam R.M. Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: A meta-analysis. Obes. Rev. 2009;10:313–323. doi: 10.1111/j.1467-789X.2008.00547.x.
    1. Teede H.J., Joham A.E., Paul E., Moran L.J., Loxton D., Jolley D., Lombard C. Longitudinal weight gain in women identified with polycystic ovary syndrome: Results of an observational study in young women. Obesity. 2013;21:1526–1532. doi: 10.1002/oby.20213.
    1. Domecq J.P., Prutsky G., Mullan R.J., Hazem A., Sundaresh V., Elamin M.B., Phung O.J., Wang A., Hoeger K., Pasquali R., et al. Lifestyle modification programs in polycystic ovary syndrome: Systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2013;98:4655–4663. doi: 10.1210/jc.2013-2385.
    1. Thompson F.E., Kirkpatrick S.I., Subar A.F., Reedy J., Schap T.E., Wilson M.M., Krebs-Smith S.M. The national cancer institute’s dietary assessment primer: A resource for diet research. J. Acad. Nutr. Diet. 2015;115:1986–1995. doi: 10.1016/j.jand.2015.08.016.
    1. McCarney R., Warner J., Iliffe S., van Haselen R., Griffin M., Fisher P. The Hawthorne Effect: A randomised, controlled trial. BMC Med. Res. Methodol. 2007;7:30. doi: 10.1186/1471-2288-7-30.

Source: PubMed

Подписаться