The role of a pulse-based diet on infertility measures and metabolic syndrome risk: protocol of a randomized clinical trial in women with polycystic ovary syndrome

Laura E McBreairty, Philip D Chilibeck, Donna R Chizen, Roger A Pierson, Lindsay Tumback, Lauren B Sherar, Gordon A Zello, Laura E McBreairty, Philip D Chilibeck, Donna R Chizen, Roger A Pierson, Lindsay Tumback, Lauren B Sherar, Gordon A Zello

Abstract

Background: Polycystic Ovary Syndrome (PCOS) is an endocrine disorder in women of reproductive age with an estimated prevalence of 5-20% of premenopausal women. The clinical symptoms common to PCOS include menstrual dysfunction, hyperandrogenemia, hirsutism, polycystic ovaries, insulin resistance, and hyperinsulinemia. Women with PCOS are at an increased risk of infertility, obesity and type 2 diabetes mellitus. Insulin resistance and hyperinsulinemia are believed to be key contributing factors to the pathogenesis of PCOS; excessive amounts of insulin are directly associated with the increased ovarian production of androgens and metabolic features of PCOS. Pulse-based diets (e.g., beans, chickpeas) are associated with improved glycemic control and have insulin lowering effects. The purpose of this study is to determine whether a pulse-based diet is more effective than the diet recommended by the National Cholesterol Education Program. The primary outcomes of this study are disease measures related to PCOS, with secondary outcomes including measures related to metabolic syndrome.

Methods: Women with symptoms of PCOS will be recruited for the study and a diagnosis of PCOS will be determined by an obstetrician-gynecologist. Women with PCOS will be randomly assigned to receive either a pulse-based diet or the National Cholesterol Education Program therapeutic lifestyle changes (TLC) diet for 16 weeks while participating in an aerobic exercise program. One hundred participants will be required (drop-out rate of 32%) for recruitment to provide 80% power for detecting a significant difference in fasting glucose (p < 0.05). Measures related to infertility, metabolic syndrome, quality of life, dietary intake and physical activity will be assessed pre- and post-intervention with follow up assessment at 6- and 12-months post-intervention.

Discussion: Polycystic ovary syndrome is the most common endocrine disorder in women of reproductive age and there is currently no recommended diet for this population of women. The multidisciplinary nature of this study, including determination of measures related to metabolic syndrome, infertility and physical activity provide a comprehensive assessment of any benefits associated with a pulse-based diet in women with PCOS. The results of this study will help in providing evidence-based recommendations for the optimum diet to reduce symptoms associated with PCOS.

Trial registration: NCT01288638. Trial registered January 13, 2011.

Keywords: Metabolic syndrome; Polycystic ovary syndrome; Pulses; Randomized controlled trial.

Conflict of interest statement

The authors declare that they have no competing interests.

© The Author(s). 2017.

Figures

Fig. 1
Fig. 1
CONSORT flow diagram of study timeline for pulse-based diet intervention in women with polycystic ovary syndrome

References

    1. Yildiz BO, Bozdag G, Yapici Z, Esinler I, Yarali H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod. 2012;27:3067–3073. doi: 10.1093/humrep/des232.
    1. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25:544–551. doi: 10.1093/humrep/dep399.
    1. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91:456–488. doi: 10.1016/j.fertnstert.2008.06.035.
    1. Liepa GU, Sengupta A, Karsies D. Polycystic Ovary Syndrome (PCOS) and Other Androgen Excess-Related Conditions: Can Changes in Dietary Intake Make a Difference? Nutr Clin Pract. 2008;23:63–71. doi: 10.1177/011542650802300163.
    1. Lujan ME, Chizen DR, Pierson RA. Diagnostic criteria for polycystic ovary syndrome: pitfalls and controversies. J Obstet Gynaecol Can. 2008;30:671–679. doi: 10.1016/S1701-2163(16)32915-2.
    1. Ehrmann DA. Polycystic Ovary Syndrome. N Engl J Med. 2005;352:1223–1236. doi: 10.1056/NEJMra041536.
    1. Douglas CC. Role of diet in the treatment of polycystic ovary syndrome. Fertil Steril. 2006;85:679–688. doi: 10.1016/j.fertnstert.2005.08.045.
    1. Moran L, Norman RJ. Understanding and managing disturbances in insulin metabolism and body weight in women with polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004;18:719–736. doi: 10.1016/j.bpobgyn.2004.05.003.
    1. Blank SK, McCartney CR, Marshall JC. The origins and sequelae of abnormal neuroendocrine function in polycystic ovary syndrome. Hum Reprod Update. 2006;12:351–361. doi: 10.1093/humupd/dml017.
    1. Teede HJ, Misso ML, Deeks AA, Moran LJ, Stuckey BG, Wong JL, et al. Guideline Development Groups. Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med J Aust. 2011;195:S65–S112. doi: 10.5694/mja11.10915.
    1. Sievenpiper JL, Kendall CW, Esfahani A, Wong JM, Carleton AJ, Jiang HY, et al. Effect of non-oil-seed pulses on glycaemic control: A systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia. 2009;52:1479–1495. doi: 10.1007/s00125-009-1395-7.
    1. Jayalath VH, de Souza RJ, Sievenpiper JL, Ha V, Chiavaroli L, Mirrahimi A, et al. Effect of dietary pulses on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Am J Hypertens. 2014;27:56–64. doi: 10.1093/ajh/hpt155.
    1. Abeysekara S, Chilibeck PD, Vatanparast H, Zello GA. A Pulse-based Diet is Effective for Reducing Total and Low Density Lipoprotein-cholesterol in Older Adults. Br J Nutr. 2012;108:S103–S110. doi: 10.1017/S0007114512000748.
    1. Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes. 1989;38:1165–1174. doi: 10.2337/diab.38.9.1165.
    1. Orio F, Muscogiuri G, Nese C, Palomba S, Savastano S, Tafuri D, et al. Obesity, type 2 diabetes mellitus and cardiovascular disease risk: an uptodate in the management of polycystic ovary syndrome. Eur J Obstet Gynecol. 2016;207:214–219. doi: 10.1016/j.ejogrb.2016.08.026.
    1. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33:981–1030. doi: 10.1210/er.2011-1034.
    1. Stepto NK, Cassar S, Joham AE, Hutchison SK, Harrison CL, Goldstein RF, et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum Reprod. 2013;28:777–784. doi: 10.1093/humrep/des463.
    1. Cassar S, Misso ML, Hopkins WG, Shaw CS, Teede HJ, Stepto NK. Insulin resistance in polycystic ovary syndrome: a systematic review and meta-analysis of euglycaemic-hyperinsulinaemic clamp studies. Hum Reprod. 2016;31:2619–2631. doi: 10.1093/humrep/dew243.
    1. Moran LJ, Norman RJ, Teede HJ. Metabolic risk in PCOS: phenotype and adiposity impact. Trends Endocrinol Metab. 2015;26:136–143. doi: 10.1016/j.tem.2014.12.003.
    1. Lujan ME, Jarrett BY, Brooks ED, Reines JK, Peppin AK, Muhn N, et al. Updated ultrasound criteria for polycystic ovary syndrome: reliable thresholds for elevated follicle population and ovarian volume. Hum Reprod. 2013;28:1361–1368. doi: 10.1093/humrep/det062.
    1. Dewailly D, Lujan ME, Carmina E, Cedars MI, Laven J, Norman RJ, et al. Definition and significance of polycystic ovarian morphology: a task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum Reprod Update. 2014;20:334–352. doi: 10.1093/humupd/dmt061.
    1. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Circulation. 2002;106:3143–3421.
    1. Jenkins DJ, Kendall CW, Faulkner D, Vidgen E, Trautwein EA, Parker TL, et al. A dietary portfolio approach to cholesterol reduction: combined effects of plant sterols, vegetable proteins, and viscous fibers in hypercholesterolemia. Metab Clin Exp. 2002;51:1596–1604. doi: 10.1053/meta.2002.35578.
    1. Jenkins DJ, Kendall CW, Marchie A, Faulkner D, Vidgen E, Lapsley KG, et al. The effect of combining plant sterols, soy protein, viscous fibers, and almonds in treating hypercholesterolemia. Metab Clin Exp. 2003;52:1478–1483. doi: 10.1016/S0026-0495(03)00260-9.
    1. Godin G, Shephard RJ. A simple method to assess exercise behaviour in the community. Can J Appl Sport Sci. 1985;10:141–146.
    1. Durstine JL, Grandjean PW, Cox CA, Thompson PD. Lipids, lipoproteins, and exercise. J Cardiopulm Rehabil. 2002;22:385–398. doi: 10.1097/00008483-200211000-00002.
    1. Schäfer G, Schenk U, Ritzel U, Ramadori G, Leonhardt U. Comparison of the effects of dried peas with those of potatoes in mixed meals on postprandial glucose and insulin concentrations in patients with type 2 diabetes. Am J Clin Nutr. 2003;78:99–103.
    1. Shutler SM, Bircher GM, Tredger JA, Morgan LM, Walker AF, Low AG. The effect of daily baked bean (Phaseolus vulgaris) consumption on the plasma lipid levels of young, normo-cholesterolaemic men. Br J Nutr. 1989;61:257–265. doi: 10.1079/BJN19890114.
    1. Phillips T, Zello GA, Chilibeck PD, Vandenberg A. Perceived Benefits and Barriers Surrounding Lentil Consumption in Families with Young Children. Can J Diet Pract Res. 2015;76:3–8. doi: 10.3148/cjdpr-2014-025.
    1. Ching HL, Burke V, Stuckey BGA. Quality of Life and Psychological Morbidity in Women with Polycystic Ovary Syndrome: Body Mass Index, Age and the Provision of Patient Information Are Significant Modifiers. Clin Endocrinol. 2007;66:373–379. doi: 10.1111/j.1365-2265.2007.02742.x.
    1. Colwell K, Lujan ME, Lawson KL, Pierson RA, Chizen DR. Women's perceptions of polycystic ovary syndrome following participation in a clinical research study: implications for knowledge, feelings, and daily health practices. J Obstet Gynaecol Can. 2010;32:453–459. doi: 10.1016/S1701-2163(16)34499-1.
    1. Heil DP. Predicting activity energy expenditure using the Actical activity monitor. Res Q Exerc Sport. 2006;77:64–80. doi: 10.1080/02701367.2006.10599333.
    1. Colley RC, Tremblay MS. Moderate and vigorous physical activity intensity cut-points for the Actical accelerometer. J Sports Sci. 2011;29:783–789. doi: 10.1080/02640414.2011.557744.
    1. Wong SL, Colley R, Connor Gorber S, Tremblay M. Actical accelerometer sedentary activity thresholds for adults. J Phys Act Health. 2011;8:587–591. doi: 10.1123/jpah.8.4.587.
    1. Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22:7–14.
    1. Cornish SM, Chilibeck PD, Paus-Jennsen L, Biem HJ, Khozani T, Senanayake V, et al. A randomized controlled trial of the effects of flaxseed lignan complex on metabolic syndrome composite score and bone mineral in older adults. Appl Physiol Nutr Metab. 2009;34:89–98. doi: 10.1139/H08-142.
    1. Little JP, Chilibeck PD, Ciona D, Vandenberg A, Zello GA. The effects of low and high glycemic index foods on high intensity intermittent exercise. Int J Sports Physiol Perform. 2009;4:367–380. doi: 10.1123/ijspp.4.3.367.
    1. Vatanparast H, Chilibeck PD, Cornish SM, Little JP, Paus-Jenssen LS, Case AM, et al. DXA-derived abdominal fat mass, waist circumference, and blood lipids in postmenopausal women. Obesity (Silver Spring) 2009;17:1635–1640. doi: 10.1038/oby.2009.80.
    1. Chilibeck PD, Vatanparast H, Pierson R, Case A, Olatunbosun O, Whiting SJ, et al. Effect of exercise training combined with isoflavone supplementation on bone and lipids in postmenopausal women: A randomized clinical trial. J Bone Miner Res. 2013;28:780–793. doi: 10.1002/jbmr.1815.
    1. Beck TJ, Kohlmeier LA, Petit MA, Wu G, Leboff MS, Cauley JA, et al. Confounders in the association between exercise and femur bone in postmenopausal women. Med Sci Sports Exer. 2011;43:80–89. doi: 10.1249/MSS.0b013e3181e57bab.
    1. Moradi M, Abolmaesumi P, Mousavi P. Tissue typing using ultrasound RF time series: experiments with animal tissue samples. Med Phys. 2010;37:4401–4413. doi: 10.1118/1.3457710.
    1. Asemi Z, Samimi M, Tabassi Z, Shakeri H, Sabihi SS, Esmaillzadeh A. Effects of DASH diet on lipid profiles and biomarkers of oxidative stress in overweight and obese women with polycystic ovary syndrome: a randomized clinical trial. Nutrition. 2014;30:1287–1293. doi: 10.1016/j.nut.2014.03.008.
    1. Barr S, Reeves S, Sharp K, Jeanes YM. An isocaloric low glycemic index diet improves insulin sensitivity in women with polycystic ovary syndrome. J Acad Nutr Diet. 2013;113:1523–1531. doi: 10.1016/j.jand.2013.06.347.
    1. Turner-McGrievy GM, Davidson CR, Wingard EE, Billings DL. Low glycemic index vegan or low-calorie weight loss diets for women with polycystic ovary syndrome: a randomized controlled feasibility study. Nutr Res. 2014;34:552–558. doi: 10.1016/j.nutres.2014.04.011.
    1. Dewailly D, Gronier H, Poncelet E, Robin G, Leroy M, Pigny P, et al. Diagnosis of polycystic ovary syndrome (PCOS): revisiting the threshold values of follicle count on ultrasound and of the serum AMH level for the definition of polycystic ovaries. Hum Reprod. 2011;26:3123–3129. doi: 10.1093/humrep/der297.
    1. Wright CE, Zborowski JV, Talbott EO, McHugh-Pemu K, Youk A. Dietary intake, physical activity, and obesity in women with polycystic ovary syndrome. Int J Obes Relat Metab Disord. 2004;28:1026–1032. doi: 10.1038/sj.ijo.0802661.
    1. Ahmadi A, Akbarzadeh M, Mohammadi F, Akbari M, Jafari B, Tolide-Ie HR. Anthropometric characteristics and dietary pattern of women with polycystic ovary syndrome. Indian J Endocrinol Metab. 2013;17:672–676. doi: 10.4103/2230-8210.113759.
    1. Barr S, Hart K, Reeves S, Sharp K, Jeanes YM. Habitual dietary intake, eating pattern and physical activity of women with polycystic ovary syndrome. Eur J Clin Nutr. 2011;65:1126–1132. doi: 10.1038/ejcn.2011.81.
    1. Moran LJ, Ranasinha S, Zoungas S, McNaughton SA, Brown WJ, Teede HJ. The contribution of diet, physical activity and sedentary behavior to body mass index in women with and without polycystic ovary syndrome. Hum Reprod. 2013;28:2276–2283. doi: 10.1093/humrep/det256.
    1. Álvarez-Blasco F, Luque-Ramirez M, Escobar-Morreale HF. Diet composition and physical activity in overweight and obese premenopausal women with or without polycystic ovary syndrome. Gynecol Endocrinol. 2011;27:978–981. doi: 10.3109/09513590.2011.579658.
    1. Graff SK, Mario FM, Alves BC, Spritzer PM. Dietary glycemic index is associated with less favorable anthropometric and metabolic profiles in polycystic ovary syndrome women with different phenotypes. Fertil Steril. 2013;100:1081–1088. doi: 10.1016/j.fertnstert.2013.06.005.
    1. Lin AW, Lujan ME. Comparison of dietary intake and physical activity between women with and without polycystic ovary syndrome: a review. Adv Nutr. 2014;5:486–496. doi: 10.3945/an.113.005561.
    1. Moran LJ, Ko H, Misso M, Marsh K, Noakes M, Talbot M, et al. Dietary composition in the treatment of polycystic ovary syndrome: a systematic review to inform evidence-based guidelines. J Acad Nutr Diet. 2013;113:520–545. doi: 10.1016/j.jand.2012.11.018.

Source: PubMed

Подписаться