Gut microbiota link dietary fiber intake and short-chain fatty acid metabolism with eating behavior

Evelyn Medawar, Sven-Bastiaan Haange, Ulrike Rolle-Kampczyk, Beatrice Engelmann, Arne Dietrich, Ronja Thieleking, Charlotte Wiegank, Charlotte Fries, Annette Horstmann, Arno Villringer, Martin von Bergen, Wiebke Fenske, A Veronica Witte, Evelyn Medawar, Sven-Bastiaan Haange, Ulrike Rolle-Kampczyk, Beatrice Engelmann, Arne Dietrich, Ronja Thieleking, Charlotte Wiegank, Charlotte Fries, Annette Horstmann, Arno Villringer, Martin von Bergen, Wiebke Fenske, A Veronica Witte

Abstract

The gut microbiome has been speculated to modulate feeding behavior through multiple factors, including short-chain fatty acids (SCFA). Evidence on this relationship in humans is however lacking. We aimed to explore if specific bacterial genera relate to eating behavior, diet, and SCFA in adults. Moreover, we tested whether eating-related microbiota relate to treatment success in patients after Roux-en-Y gastric bypass (RYGB). Anthropometrics, dietary fiber intake, eating behavior, 16S-rRNA-derived microbiota, and fecal and serum SCFA were correlated in young overweight adults (n = 27 (9 F), 21-36 years, BMI 25-31 kg/m2). Correlated genera were compared in RYGB (n = 23 (16 F), 41-70 years, BMI 25-62 kg/m2) and control patients (n = 17 (11 F), 26-69 years, BMI 25-48 kg/m2). In young adults, 7 bacteria genera, i.e., Alistipes, Blautia, Clostridiales cluster XVIII, Gemmiger, Roseburia, Ruminococcus, and Streptococcus, correlated with healthier eating behavior, while 5 genera, i.e., Clostridiales cluster IV and XIVb, Collinsella, Fusicatenibacter, and Parabacteroides, correlated with unhealthier eating (all | r | > 0.4, FDR-corrected p < 0.05). Some of these genera including Parabacteroides related to fiber intake and SCFA, and to weight status and treatment response in overweight/obese patients. In this exploratory analysis, specific bacterial genera, particularly Parabacteroides, were associated with weight status and eating behavior in two small, independent and well-characterized cross-sectional samples. These preliminary findings suggest two groups of presumably beneficial and unfavorable genera that relate to eating behavior and weight status, and indicate that dietary fiber and SCFA metabolism may modify these relationships. Larger interventional studies are needed to distinguish correlation from causation.

Trial registration: ClinicalTrials.gov NCT03829189.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1. Microbiota profiling of two cross-sectional…
Fig. 1. Microbiota profiling of two cross-sectional cohorts.
A Relative abundances of phyla per subject across sample of young, overweight adults (sample 1). Sorted by Firmicutes abundance. B Relative abundances of family per subject across sample of young, overweight adults (sample 1). C Relative abundances of phyla per group for overweight and obese adults and good and bad responders after RYGB (sample 2). Colors are as in panel A. D Relative abundances of family per group for overweight and obese adults and good and bad responders after RYGB (sample 2). Colors are as in panel B.
Fig. 2. Pearson’s correlations between eating behavior…
Fig. 2. Pearson’s correlations between eating behavior traits (TFEQ and hunger ratings) or health indicators and bacterial genera in overweight adults (all | r | > 0.42, all p-FDR < 0.05; sample 1).
A inversely health-related genera (blue), B health-related genera (yellow), C Collinsella and body fat mass (black), and D Streptococcus and mean systolic blood pressure (black).
Fig. 3. Habitual dietary fiber intake is…
Fig. 3. Habitual dietary fiber intake is associated with bacterial genera, body fat mass and eating traits.
Pearson’s correlations shown for inversely health-related genera (blue) (A, B), health-related genera (yellow) (C), body fat mass (black) (D), and eating trait disinhibition (TFEQ) (black) (E) (Pearson’s correlation all 0.75 < |r | > 0.58, all p-FDR < 0.05; sample 1 n = 27).
Fig. 4. SCFA levels in feces and…
Fig. 4. SCFA levels in feces and serum are associated with eating traits and body fat mass in overweight adults (sample 1).
Pearson’s correlations shown for fecal SCFA levels and eating trait cognitive restraint (TFEQ) (r = 0.50, p-FDR = 0.014) (A) and serum SCFA levels with body fat mass for acetate (B) and butyrate (C) (all r > −0.43, all p-FDR < 0.04).
Fig. 5. Sumscore of inversely health-related genera…
Fig. 5. Sumscore of inversely health-related genera is positively associated with eating traits (TFEQ).
Pearson’s correlations shown for microbial genera abundance sumscore for inversely health-related genera with respect to eating behavior outcomes from TFEQ and hunger ratings shown for A) cognitive restraint (r = 0.59, p-uncorr = 0.001) B) disinhibition (r = 0.65, p-uncorr < 0.001) C) hunger score D) 10 min-postprandial hunger E) 40 min-postprandial hunger and F) 65 min-postprandial hunger. Data from sample 1, all p-uncorrected.
Fig. 6. Differences in relative bacterial genera…
Fig. 6. Differences in relative bacterial genera abundance across groups of overweight, obese and post-RYGB adults in sample 2.
For A inversely health-related (blue), B positively related genera (yellow), C negative (blue), and D positive sumscores of all related genera (yellow) detected in sample 1. E Correlation of negative genera sumscore and/or Parabacteroides abundance with eating behavior and/or weight loss after RYGB surgery (green: good responders; red: bad responders). RYGB, Roux-en-Y gastric bypass. Mean + SD.

References

    1. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461–478. 10.1038/s41575-019-0157-3.
    1. Seitz J, Trinh S, Herpertz-Dahlmann B. The microbiome and eating disorders. Psychiatr Clin. 2019;42:93–103.
    1. Muscogiuri G, Cantone E, Cassarano S, Tuccinardi D, Barrea L, Savastano S, et al. Gut microbiota: a new path to treat obesity. Int J Obes Suppl. 2019;9:10–19. doi: 10.1038/s41367-019-0011-7.
    1. Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra41. 10.1126/scitranslmed.3005687.
    1. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049–57. doi: 10.2337/db10-0253.
    1. Tremaroli V, Karlsson F, Werling M, Ståhlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–38. doi: 10.1016/j.cmet.2015.07.009.
    1. Hjorth MF, Blædel T, Bendtsen LQ, Lorenzen JK, Holm JB, Kiilerich P, et al. Prevotella-to-bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int J Obes. 2019;43:149–57. doi: 10.1038/s41366-018-0093-2.
    1. Korem T, Zeevi D, Zmora N, Weissbrod O, Bar N, Lotan-Pompan M, et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab. 2017;25:1243–53.e5. doi: 10.1016/j.cmet.2017.05.002.
    1. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. 10.1126/science.1241214.
    1. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–6. 10.1053/j.gastro.2012.06.031.
    1. Rinott E, Youngster I, Yaskolka Meir A, Tsaban G, Zelicha H, Kaplan A, et al. Effects of diet-modulated autologous fecal microbiota transplantation on weight regain. Gastroenterology. 2020;160:158–73.e10. doi: 10.1053/j.gastro.2020.08.041.
    1. Kolodziejczyk AA, Zheng D, Elinav E. Diet–microbiota interactions and personalized nutrition. Nat Rev Microbiol. 2019;17:742–53. doi: 10.1038/s41579-019-0256-8.
    1. Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? In: Proceedings of the Nutrition Society. Cambridge University Press, 2015, pp 328–36.
    1. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25:1096–103. doi: 10.1038/s41591-019-0495-2.
    1. Arnoldussen IAC, Wiesmann M, Pelgrim CE, Wielemaker EM, van Duyvenvoorde W, Amaral-Santos PL, et al. Butyrate restores HFD-induced adaptations in brain function and metabolism in mid-adult obese mice. Int J Obes. 2017;41:935–44. doi: 10.1038/ijo.2017.52.
    1. Lin HV, Frassetto A, Kowalik EJ, Jr, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE. 2012;7:e35240. doi: 10.1371/journal.pone.0035240.
    1. Marques FZ, Mackay CR, Kaye DM. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol. 2017;15:20–32. 10.1038/nrcardio.2017.120.
    1. Zanchi D, Depoorter A, Egloff L, Haller S, Mählmann L, Lang UE, et al. The impact of gut hormones on the neural circuit of appetite and satiety: a systematic review. Neurosci Biobehav Rev. 2017;80:457–75. doi: 10.1016/j.neubiorev.2017.06.013.
    1. Alcock J, Maley CC, Aktipis CA. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays. 2014;36:940–9. doi: 10.1002/bies.201400071.
    1. Goswami C, Iwasaki Y, Yada T. Short-chain fatty acids suppress food intake by activating vagal afferent neurons. J Nutr Biochem. 2018;57:130–5. doi: 10.1016/j.jnutbio.2018.03.009.
    1. Gupta A, Osadchiy V, Mayer EA. Brain–gut–microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol. 2020;17:655–72. doi: 10.1038/s41575-020-0341-5.
    1. Spellerberg IF, Fedor PJ. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Glob Ecol Biogeogr. 2003;12:177–9. doi: 10.1046/j.1466-822X.2003.00015.x.
    1. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633-42. 10.1093/nar/gkt1244.
    1. Haange SB, Jehmlich N, Krügel U, Hintschich C, Wehrmann D, Hankir M, et al. Gastric bypass surgery in a rat model alters the community structure and functional composition of the intestinal microbiota independently of weight loss. Microbiome. 2020;8:13. doi: 10.1186/s40168-020-0788-1.
    1. Pudel V, Westenhöfer J Fragebogen zum Eßverhalten (FEV)-Handanweisung. Göttingen; Verlag für Psychologie Dr. CJ Hogrefe, 1989.
    1. Hilbert A, Tuschen-Caffier B, Karwautz A, Niederhofer H, Munsch S. Eating disorder examination-questionnaire. Diagnostica. 2007;53:144–54. doi: 10.1026/0012-1924.53.3.144.
    1. Han J, Lin K, Sequeira C, Borchers CH. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2015;854:86–94. doi: 10.1016/j.aca.2014.11.015.
    1. Mann JP, Jakes AD, Hayden JD, Barth JH. Systematic review of definitions of failure in revisional bariatric surgery. Obes Surg. 2015;25:571–4. doi: 10.1007/s11695-014-1541-2.
    1. Vieira-Silva S, Falony G, Belda E, Nielsen T, Aron-Wisnewsky J, Chakaroun R, et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature. 2020;581:310–5. doi: 10.1038/s41586-020-2269-x.
    1. Simmons JP, Nelson LD, Simonsohn U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol Sci. 2011;22:1359–66. doi: 10.1177/0956797611417632.
    1. Liang X, FitzGerald GA. Timing the microbes: the circadian rhythm of the gut microbiome. J Biol Rhythms. 2017;32:505–15. doi: 10.1177/0748730417729066.
    1. Koliada A, Moseiko V, Romanenko M, Piven L, Lushchak O, Kryzhanovska N, et al. Seasonal variation in gut microbiota composition: cross-sectional evidence from Ukrainian population. BMC Microbiol. 2020;20:100. doi: 10.1186/s12866-020-01786-8.
    1. González S, Salazar N, Ruiz-Saavedra S, Gómez-Martín M, de Los Reyes-Gavilán CG, Gueimonde M. Long-term coffee consumption is associated with fecal microbial composition in humans. Nutrients. 2020;12:1287. doi: 10.3390/nu12051287.
    1. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:906. doi: 10.3389/fimmu.2020.00906.
    1. Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS ONE. 2012;7:7.. doi: 10.1371/journal.pone.0042529..
    1. Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 2013;5:627–40. doi: 10.3390/d5030627.
    1. Ozato N, Saito S, Yamaguchi T, Katashima M, Tokuda I, Sawada K, et al. Blautia genus associated with visceral fat accumulation in adults 20–76 years of age. npj Biofilms Microbiomes. 2019;5:1–9. doi: 10.1038/s41522-019-0101-x.
    1. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509:183–8. doi: 10.1038/nature13135.
    1. Woting A, Pfeiffer N, Loh G, Klaus S, Blaut M. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models. MBio. 2014;5:1530–44. doi: 10.1128/mBio.01530-14.
    1. Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 2013;5:23. doi: 10.1186/1757-4749-5-23.
    1. Yutin N, Galperin MY. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol. 2013;15:2631–41.
    1. Medawar E, Huhn S, Villringer A, Veronica Witte A. The effects of plant-based diets on the body and the brain: a systematic review. Transl Psychiatry. 2019;9:226. doi: 10.1038/s41398-019-0552-0.
    1. Streppel MT, Arends LR, Van’t Veer P, Grobbee DE, Geleijnse JM. Dietary fiber and blood pressure: a meta-analysis of randomized placebo-controlled trials. Arch Intern Med. 2005;165:150–6. doi: 10.1001/archinte.165.2.150.
    1. Boente RF, Ferreira LQ, Falcão LS, Miranda KR, Guimarães PL, Santos-Filho J, et al. Detection of resistance genes and susceptibility patterns in Bacteroides and Parabacteroides strains. Anaerobe. 2010;16:190–4. doi: 10.1016/j.anaerobe.2010.02.003.
    1. Wang K, Liao M, Zhou N, Bao L, Ma K, Zheng Z, et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 2019;26:222–35.e5. doi: 10.1016/j.celrep.2018.12.028.
    1. Wolf AR, Wesener DA, Cheng J, Houston-Ludlam AN, Beller ZW, Hibberd MC, et al. Bioremediation of a common product of food processing by a human gut bacterium. Cell Host Microbe. 2019;26:463–77.e8. doi: 10.1016/j.chom.2019.09.001.
    1. Gomez-Arango LF, Barrett HL, Wilkinson SA, Callaway LK, McIntyre HD, Morrison M, et al. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes. 2018;9:189–201. doi: 10.1080/19490976.2017.1406584.
    1. Frost F, Storck LJ, Kacprowski T, Gärtner S, Rühlemann M, Bang C, et al. A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: a pilot study. PLoS ONE. 2019;14:e0219489. doi: 10.1371/journal.pone.0219489.
    1. Takada T, Kurakawa T, Tsuji H, Nomoto K. Fusicatenibacter saccharivorans gen. nov., sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2013;63:3691–6. doi: 10.1099/ijs.0.045823-0.
    1. Guo P, Zhang K, Ma X, He P. Clostridium species as probiotics: potentials and challenges. J Anim Sci Biotechnol. 2020;11:24. doi: 10.1186/s40104-019-0402-1.
    1. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277.
    1. Kaczmarek JL, Musaad SMA, Holscher HD. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am J Clin Nutr. 2017;106:1220–31.
    1. Calderón-Pérez L, Gosalbes MJ, Yuste S, Valls RM, Pedret A, Llauradó E, et al. Gut metagenomic and short chain fatty acids signature in hypertension: a cross-sectional study. Sci Rep. 2020;10:1–16. doi: 10.1038/s41598-020-63475-w.
    1. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:1–11. doi: 10.1038/ncomms4611.
    1. Le Roy CI, Bowyer R, Castillo-Fernandez JE, Pallister T, Menni C, Steves CJ, et al. Dissecting the role of the gut microbiota and diet on visceral fat mass accumulation. Sci Rep 2019;9. 10.1038/s41598-019-46193-w.
    1. Singh P, Rawat A, Alwakeel M, Sharif E, Al Khodor S. The potential role of vitamin D supplementation as a gut microbiota modifier in healthy individuals. Sci Rep. 2020;10:1–14. doi: 10.1038/s41598-019-56847-4.
    1. Rowley CA, Kendall MM. To B12 or not to B12: five questions on the role of cobalamin in host-microbial interactions. PLOS Pathog. 2019;15:e1007479. doi: 10.1371/journal.ppat.1007479.

Source: PubMed

Подписаться