Impact of a Mobile App on Paramedics' Perceived and Physiologic Stress Response During Simulated Prehospital Pediatric Cardiopulmonary Resuscitation: Study Nested Within a Multicenter Randomized Controlled Trial

Matthieu Lacour, Laurie Bloudeau, Christophe Combescure, Kevin Haddad, Florence Hugon, Laurent Suppan, Frédérique Rodieux, Christian Lovis, Alain Gervaix, Frédéric Ehrler, Sergio Manzano, Johan N Siebert, PedAMINES Prehospital Group, Marec Saillant, Renaud Grandjean, Annick Leuenberger, Pascal Donnet, Philippe Hauck, Sébastien Pappalardo, Philippe Nidegger, David Neel, Stephan Steinhauser, Michel Ceschi, Bruno Belli, Sébastien Ottet, Wenceslao Garcia, Yoan Mollier, Pierre Voumard, Karine Corbat, Philippe Robadey, Joël Bauer, Cyril Berger, Matthieu Lacour, Laurie Bloudeau, Christophe Combescure, Kevin Haddad, Florence Hugon, Laurent Suppan, Frédérique Rodieux, Christian Lovis, Alain Gervaix, Frédéric Ehrler, Sergio Manzano, Johan N Siebert, PedAMINES Prehospital Group, Marec Saillant, Renaud Grandjean, Annick Leuenberger, Pascal Donnet, Philippe Hauck, Sébastien Pappalardo, Philippe Nidegger, David Neel, Stephan Steinhauser, Michel Ceschi, Bruno Belli, Sébastien Ottet, Wenceslao Garcia, Yoan Mollier, Pierre Voumard, Karine Corbat, Philippe Robadey, Joël Bauer, Cyril Berger

Abstract

Background: Out-of-hospital cardiac arrests (OHCAs) are stressful, high-stake events that are associated with low survival rates. Acute stress experienced in this situation is associated with lower cardiopulmonary resuscitation performance in calculating drug dosages by emergency medical services. Children are particularly vulnerable to such errors. To date, no app has been validated to specifically support emergency drug preparation by paramedics through reducing the stress level of this procedure and medication errors.

Objective: This study aims to determine the effectiveness of an evidence-based mobile app compared with that of the conventional preparation methods in reducing acute stress in paramedics at the psychological and physiological levels while safely preparing emergency drugs during simulated pediatric OHCA scenarios.

Methods: In a parent, multicenter, randomized controlled trial of 14 emergency medical services, perceived and physiologic stress of advanced paramedics with drug preparation autonomy was assessed during a 20-minute, standardized, fully video-recorded, and highly realistic pediatric OHCA scenario in an 18-month-old child. The primary outcome was participants' self-reported psychological stress perceived during sequential preparations of 4 intravenous emergency drugs (epinephrine, midazolam, 10% dextrose, and sodium bicarbonate) with the support of the PedAMINES (Pediatric Accurate Medication in Emergency Situations) app designed to help pediatric drug preparation (intervention) or conventional methods (control). The State-Trait Anxiety Inventory and Visual Analog Scale questionnaires were used to measure perceived stress. The secondary outcome was physiologic stress, measured by a single continuous measurement of the participants' heart rate with optical photoplethysmography.

Results: From September 3, 2019, to January 21, 2020, 150 advanced paramedics underwent randomization. A total of 74 participants were assigned to the mobile app (intervention group), and 76 did not use the app (control group). A total of 600 drug doses were prepared. Higher State-Trait Anxiety Inventory-perceived stress increase from baseline was observed during the scenario using the conventional methods (mean 35.4, SD 8.2 to mean 49.8, SD 13.2; a 41.3%, 35.0 increase) than when using the app (mean 36.1, SD 8.1 to mean 39.0, SD 8.4; a 12.3%, 29.0 increase). This revealed a 30.1% (95% CI 20.5%-39.8%; P<.001) lower relative change in stress response in participants who used the app. On the Visual Analog Scale questionnaire, participants in the control group reported a higher increase in stress at the peak of the scenario (mean 7.1, SD 1.8 vs mean 6.4, SD 1.9; difference: -0.8, 95% CI -1.3 to -0.2; P=.005). Increase in heart rate during the scenario and over the 4 drugs was not different between the 2 groups.

Conclusions: Compared with the conventional method, dedicated mobile apps can reduce acute perceived stress during the preparation of emergency drugs in the prehospital setting during critical situations. These findings can help advance the development and evaluation of mobile apps for OHCA management and should be encouraged.

Trial registration: ClinicalTrials.gov NCT03921346; https://ichgcp.net/clinical-trials-registry/NCT03921346.

International registered report identifier (irrid): RR2-10.1186/s13063-019-3726-4.

Keywords: State-Trait Anxiety Inventory; cardiopulmonary resuscitation; drugs; emergency medical services; medication errors; mobile apps; mobile health; out-of-hospital cardiac arrest; paramedics; pediatrics; stress.

Conflict of interest statement

Conflicts of Interest: Geneva University Hospitals are owners of the PedAMINES app. The app is currently commercially available on Google Play Store and App Store (Apple) for research and educational purposes. JNS, CL, AG, FE, and SM declare individual intellectual property rights on this app and, as employees of Geneva University Hospitals, indirect institutional rewarding through its commercialization (ie, without personal enrichment). The authors declare no other relationships or activities that could appear to have influenced the submitted work. All authors have completed the International Committee of Medical Journal Editors uniform disclosure form and declare no support from commercial entities for the submitted work, and no financial relationships with any commercial entities that might have an interest in the submitted work in the previous 3 years.

©Matthieu Lacour, Laurie Bloudeau, Christophe Combescure, Kevin Haddad, Florence Hugon, Laurent Suppan, Frédérique Rodieux, Christian Lovis, Alain Gervaix, Frédéric Ehrler, Sergio Manzano, Johan N Siebert, PedAMINES Prehospital Group. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org), 07.10.2021.

Figures

Figure 1
Figure 1
PedAMINES (Pediatric Accurate Medication in Emergency Situations) app screenshot.
Figure 2
Figure 2
Course of the intervention. CPR: cardiopulmonary resuscitation; HR: heart rate; pOHCA: pediatric out-of-hospital cardiac arrest; STAI: State-Trait Anxiety Inventory; VAS: visual analogue scale.
Figure 3
Figure 3
Screening, randomization, and analysis.
Figure 4
Figure 4
State-Trait Anxiety Inventory Form Y-1 and Visual Analogic Score box plots per study arm. PedAMINES: Pediatric Accurate Medication in Emergency Situations; STAI: State Trait Anxiety Inventory; VAS: visual analogue scale.
Figure 5
Figure 5
Mean heart rate (error bars=SD) in the baseline, the 4 consecutive heart rate peaks numbered according to the sequential prescription of each drug, and recovery time points over the course of the scenario. HR: heart rate.

References

    1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MS, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UK, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee Heart Disease and Stroke Statistics-2020 Update: A report from the American Heart Association. Circulation. 2020 Mar 03;141(9):139–596. doi: 10.1161/CIR.0000000000000757.
    1. Yan S, Gan Y, Jiang N, Wang R, Chen Y, Luo Z, Zong Q, Chen S, Lv C. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit Care. 2020 Feb 22;24(1):61. doi: 10.1186/s13054-020-2773-2. 10.1186/s13054-020-2773-2
    1. Genbrugge C, Eertmans W, Salcido DD. Monitor the quality of cardiopulmonary resuscitation in 2020. Curr Opin Crit Care. 2020 Jun;26(3):219–227. doi: 10.1097/MCC.0000000000000726.00075198-202006000-00002
    1. Krage R, Zwaan L, Len LT, Kolenbrander MW, van Groeningen D, Loer SA, Wagner C, Schober P. Relationship between non-technical skills and technical performance during cardiopulmonary resuscitation: does stress have an influence? Emerg Med J. 2017 Nov;34(11):728–33. doi: 10.1136/emermed-2016-205754. emermed-2016-205754
    1. Groombridge CJ, Kim Y, Maini A, Smit DV, Fitzgerald MC. Stress and decision-making in resuscitation: A systematic review. Resuscitation. 2019 Nov;144:115–22. doi: 10.1016/j.resuscitation.2019.09.023. S0300-9572(19)30634-3
    1. Hunziker S, Semmer NK, Tschan F, Schuetz P, Mueller B, Marsch S. Dynamics and association of different acute stress markers with performance during a simulated resuscitation. Resuscitation. 2012 May;83(5):572–8. doi: 10.1016/j.resuscitation.2011.11.013.S0300-9572(11)00645-9
    1. Hunziker S, Laschinger L, Portmann-Schwarz S, Semmer NK, Tschan F, Marsch S. Perceived stress and team performance during a simulated resuscitation. Intensive Care Med. 2011 Sep;37(9):1473–9. doi: 10.1007/s00134-011-2277-2.
    1. Keitel A, Ringleb M, Schwartges I, Weik U, Picker O, Stockhorst U, Deinzer R. Endocrine and psychological stress responses in a simulated emergency situation. Psychoneuroendocrinology. 2011 Jan;36(1):98–108. doi: 10.1016/j.psyneuen.2010.06.011.S0306-4530(10)00153-8
    1. Cumming S, Harris L. The impact of anxiety on the accuracy of diagnostic decision-making. Stress Health. 2001 Oct 27;17(5):281–6. doi: 10.1002/smi.90. doi: 10.1002/smi.909.
    1. Schull MJ, Ferris LE, Tu JV, Hux JE, Redelmeier DA. Problems for clinical judgement: 3. Thinking clearly in an emergency. Can Med Asso J. 2001 Apr 17;164(8):1170–5.
    1. Vincent A, Semmer NK, Becker C, Beck K, Tschan F, Bobst C, Schuetz P, Marsch S, Hunziker S. Does stress influence the performance of cardiopulmonary resuscitation? A narrative review of the literature. J Crit Care. 2021 Jun;63:223–30. doi: 10.1016/j.jcrc.2020.09.020.S0883-9441(20)30699-7
    1. Lauria MJ, Gallo IA, Rush S, Brooks J, Spiegel R, Weingart SD. Psychological skills to improve emergency care providers' performance under stress. Ann Emerg Med. 2017 Dec;70(6):884–90. doi: 10.1016/j.annemergmed.2017.03.018.S0196-0644(17)30314-1
    1. Dias R, Neto A. Stress levels during emergency care: A comparison between reality and simulated scenarios. J Crit Care. 2016 Jun;33:8–13. doi: 10.1016/j.jcrc.2016.02.010.S0883-9441(16)00068-X
    1. LeBlanc VR, MacDonald RD, McArthur B, King K, Lepine T. Paramedic performance in calculating drug dosages following stressful scenarios in a human patient simulator. Prehosp Emerg Care. 2005;9(4):439–44. doi: 10.1080/10903120500255255.G7Q37413PWP7126L
    1. Brindley PG, O'Dochartaigh D, Volney C, Ryan S, Douma MJ. Time delays associated with vasoactive medication preparation and delivery in simulated patients at risk of cardiac arrest. J Crit Care. 2017 Aug;40:149–53. doi: 10.1016/j.jcrc.2017.04.003.S0883-9441(16)30881-4
    1. Flannery AH, Parli SE. Medication errors in cardiopulmonary arrest and code-related situations. Am J Crit Care. 2016 Jan;25(1):12–20. doi: 10.4037/ajcc2016190.25/1/12
    1. Kaufmann J, Laschat M, Wappler F. Medication errors in pediatric emergencies: a systematic analysis. Dtsch Arztebl Int. 2012 Sep;109(38):609–16. doi: 10.3238/arztebl.2012.0609. doi: 10.3238/arztebl.2012.0609.
    1. Moreira ME, Hernandez C, Stevens AD, Jones S, Sande M, Blumen JR, Hopkins E, Bakes K, Haukoos JS. Color-coded prefilled medication syringes decrease time to delivery and dosing error in simulated emergency department pediatric resuscitations. Ann Emerg Med. 2015 Aug;66(2):97–106. doi: 10.1016/j.annemergmed.2014.12.035. S0196-0644(14)01661-8
    1. McDowell SE, Ferner HS, Ferner RE. The pathophysiology of medication errors: how and where they arise. Br J Clin Pharmacol. 2009 Jun;67(6):605–13. doi: 10.1111/j.1365-2125.2009.03416.x. doi: 10.1111/j.1365-2125.2009.03416.x.BCP3416
    1. Stucky ER, American Academy of Pediatrics Committee on Drugs. American Academy of Pediatrics Committee on Hospital Care Prevention of medication errors in the pediatric inpatient setting. Pediatrics. 2003 Aug;112(2):431–6. doi: 10.1542/peds.112.2.431.
    1. Cushman JT, Fairbanks RJ, O'Gara KG, Crittenden CN, Pennington EC, Wilson MA, Chin NP, Shah MN. Ambulance personnel perceptions of near misses and adverse events in pediatric patients. Prehosp Emerg Care. 2010;14(4):477–84. doi: 10.3109/10903127.2010.497901.
    1. Luten R, Wears RL, Broselow J, Croskerry P, Joseph MM, Frush K. Managing the unique size-related issues of pediatric resuscitation: reducing cognitive load with resuscitation aids. Acad Emerg Med. 2002 Aug;9(8):840–7.
    1. Seidel JS, Henderson DP, Ward P, Wayland BW, Ness B. Pediatric prehospital care in urban and rural areas. Pediatrics. 1991 Oct;88(4):681–90.
    1. Kaji AH, Gausche-Hill M, Conrad H, Young KD, Koenig WJ, Dorsey E, Lewis RJ. Emergency medical services system changes reduce pediatric epinephrine dosing errors in the prehospital setting. Pediatrics. 2006 Oct;118(4):1493–500. doi: 10.1542/peds.2006-0854.118/4/1493
    1. Shah MN, Cushman JT, Davis CO, Bazarian JJ, Auinger P, Friedman B. The epidemiology of emergency medical services use by children: an analysis of the National Hospital Ambulatory Medical Care Survey. Prehosp Emerg Care. 2008;12(3):269–76. doi: 10.1080/10903120802100167. 794475263
    1. Su E, Schmidt TA, Mann NC, Zechnich AD. A randomized controlled trial to assess decay in acquired knowledge among paramedics completing a pediatric resuscitation course. Acad Emerg Med. 2000 Jul;7(7):779–86. doi: 10.1111/j.1553-2712.2000.tb02270.x.
    1. Benjamin L, Frush K, Shaw K, Shook JE, Snow SK. Pediatric medication safety in the emergency department. Pediatrics. 2018 Mar 01;141(3):e20174066. doi: 10.1542/peds.2017-4066.
    1. Gonzales K. Medication administration errors and the pediatric population: a systematic search of the literature. J Pediatr Nurs. 2010 Dec;25(6):555–65. doi: 10.1016/j.pedn.2010.04.002.S0882-5963(10)00106-5
    1. Kaushal R, Bates DW, Landrigan C, McKenna KJ, Clapp MD, Federico F, Goldmann DA. Medication errors and adverse drug events in pediatric inpatients. J Am Med Assoc. 2001 Apr 25;285(16):2114–20.joc01942
    1. Marcin JP, Dharmar M, Cho M, Seifert LL, Cook JL, Cole SL, Nasrollahzadeh F, Romano PS. Medication errors among acutely ill and injured children treated in rural emergency departments. Ann Emerg Med. 2007 Oct;50(4):361–7. doi: 10.1016/j.annemergmed.2007.01.020.S0196-0644(07)00080-7
    1. Hoyle JD, Crowe RP, Bentley MA, Beltran G, Fales W. Pediatric prehospital medication dosing errors: a national survey of paramedics. Prehosp Emerg Care. 2017;21(2):185–91. doi: 10.1080/10903127.2016.1227001.
    1. Lammers R, Byrwa M, Fales W. Root causes of errors in a simulated prehospital pediatric emergency. Acad Emerg Med. 2012 Jan;19(1):37–47. doi: 10.1111/j.1553-2712.2011.01252.x. doi: 10.1111/j.1553-2712.2011.01252.x.
    1. Hall C, Robertson D, Rolfe M, Pascoe S, Passey ME, Pit SW. Do cognitive aids reduce error rates in resuscitation team performance? Trial of emergency medicine protocols in simulation training (TEMPIST) in Australia. Hum Resour Health. 2020 Jan 08;18(1):1. doi: 10.1186/s12960-019-0441-x. 10.1186/s12960-019-0441-x
    1. Gausche-Hill M, Krug S, Wright J. Emergency medical services (EMS) 2050: a vision for the future of pediatric prehospital care. Prehosp Emerg Care. 2021;25(1):91–4. doi: 10.1080/10903127.2020.1734123.
    1. Roncero A, Marques G, Sainz-De-Abajo B, Martín-Rodríguez F, Vegas C, Garcia-Zapirain B, de la Torre-Díez I. Mobile health apps for medical emergencies: systematic review. JMIR Mhealth Uhealth. 2020 Dec 11;8(12):e18513. doi: 10.2196/18513. v8i12e18513
    1. Siebert JN, Ehrler F, Combescure C, Lacroix L, Haddad K, Sanchez O, Gervaix A, Lovis C, Manzano S. A mobile device app to reduce time to drug delivery and medication errors during simulated pediatric cardiopulmonary resuscitation: a randomized controlled trial. J Med Internet Res. 2017 Feb 01;19(2):e31. doi: 10.2196/jmir.7005. v19i2e31
    1. Siebert JN, Ehrler F, Combescure C, Lovis C, Haddad K, Hugon F, Luterbacher F, Lacroix L, Gervaix A, Manzano S, PedAMINES Trial Group A mobile device application to reduce medication errors and time to drug delivery during simulated paediatric cardiopulmonary resuscitation: a multicentre, randomised, controlled, crossover trial. Lancet Child Adolesc Health. 2019 May;3(5):303–11. doi: 10.1016/S2352-4642(19)30003-3.S2352-4642(19)30003-3
    1. Siebert JN, Bloudeau L, Combescure CB, Haddad K, Hugon F, Suppan L, Rodieux FM, Lovis C, Gervaix A, Ehrler F, Manzano S, Pediatric Accurate Medication in Emergency Situations (PedAMINES) Prehospital Group Effect of a mobile app on prehospital medication errors during simulated pediatric resuscitation: a randomized clinical trial. JAMA Netw Open. 2021 Aug 02;4(8):e2123007. doi: 10.1001/jamanetworkopen.2021.23007. 2783613
    1. Siebert JN, Bloudeau L, Ehrler F, Combescure C, Haddad K, Hugon F, Suppan L, Rodieux F, Lovis C, Gervaix A, Manzano S. A mobile device app to reduce prehospital medication errors and time to drug preparation and delivery by emergency medical services during simulated pediatric cardiopulmonary resuscitation: study protocol of a multicenter, prospective, randomized controlled trial. Trials. 2019 Nov 20;20(1):634. doi: 10.1186/s13063-019-3726-4. 10.1186/s13063-019-3726-4
    1. Stenner K, van Even S, Collen A. Early adopters of paramedic prescribing: a qualitative study. Br Paramed J. 2019 Dec 01;4(3):57. doi: 10.29045/14784726.2019.12.4.3.57.
    1. Kiguchi T, Okubo M, Nishiyama C, Maconochie I, Ong ME, Kern KB, Wyckoff MH, McNally B, Christensen EF, Tjelmeland I, Herlitz J, Perkins GD, Booth S, Finn J, Shahidah N, Shin SD, Bobrow BJ, Morrison LJ, Salo A, Baldi E, Burkart R, Lin C, Jouven X, Soar J, Nolan JP, Iwami T. Out-of-hospital cardiac arrest across the World: First report from the International Liaison Committee on Resuscitation (ILCOR) Resuscitation. 2020 Jul;152:39–49. doi: 10.1016/j.resuscitation.2020.02.044.S0300-9572(20)30129-5
    1. Ehrler F, Siebert JN. PedAMINES: a disruptive mHealth app to tackle paediatric medication errors. Swiss Med Wkly. 2020 Aug 24;150:w20335. doi: 10.4414/smw.2020.20335. Swiss Med Wkly. 2020;150:w20335
    1. Oviatt S. Human-centered design meets cognitive load theory: designing interfaces that help people think. Proceedings of the 14th ACM international conference on Multimedia; MM '06: 14th ACM international conference on Multimedia; October 23 - 27, 2006; Santa Barbara, CA, USA. New York, NY, United States: Association for Computing Machinery; 2006. Oct 23, pp. 871–80.
    1. Durrani S, Durrani Q. Applying cognitive psychology to user interfaces. Proceedings of the First International Conference on Intelligent Human Computer Interaction; First International Conference on Intelligent Human Computer Interaction; January 20–23, 2009; Allahabad, India. New Delhi: Springer India; 2009. pp. 156–68.
    1. Harper S, Michailidou E, Stevens R. Toward a definition of visual complexity as an implicit measure of cognitive load. ACM Trans Appl Percept. 2009 Feb 15;6(2):1–18. doi: 10.1145/1498700.1498704.
    1. MacKenzie IS. Fitts' law as a research and design tool in human-computer interaction. Hum Comput Interact. 2009 Nov 11;7(1):91–139. doi: 10.1207/s15327051hci0701_3.
    1. Spillers F. Progressive disclosure: the glossary of human computer interaction. Denmark: Interaction Design Foundation. 2016. [2021-09-19]. .
    1. Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology: toward a unified view. MIS Q. 2003;27(3):425. doi: 10.2307/30036540.
    1. Brooke J. Usability Evaluation in Industry. London, UK: Taylor and Francis; 1996. SUS- 'A quick and dirty' usability scale; pp. 4–7.
    1. Sousa VE, Lopez KD. Towards usable e-Health. A systematic review of usability questionnaires. Appl Clin Inform. 2017 Dec 10;8(2):470–90. doi: 10.4338/ACI-2016-10-R-0170. 2016-10-R-0170
    1. Gauthier J, Bouchard S. Adaptation canadienne-française de la forme révisée du State–Trait Anxiety Inventory de Spielberger. Can J Behav Sci / Revue canadienne des sciences du comportement. 1993 Oct;25(4):559–78. doi: 10.1037/h0078881.
    1. Spielberger CD. State-trait anxiety inventory for adults™. Mind Garden, Inc. [2021-09-19]. .
    1. Spielberger CD. Manual for the State-Trait Anxiety Inventory STAI (form Y) (“self-evaluation questionnaire”) Palo Alto, CA, USA: Consulting Psychologists Press; 1983.
    1. Spielberger C, Gorsuch R, Lushene R, Vagg P, Jacobs G. State-trait anxiety inventory for adults: self-evaluation questionnaire (STAI Form Y-1 and Form Y-2) Mind Garden, Redwood City, CA. 1968. [2021-09-22]. .
    1. Harvey A, Nathens AB, Bandiera G, Leblanc VR. Threat and challenge: cognitive appraisal and stress responses in simulated trauma resuscitations. Med Educ. 2010 Jun;44(6):587–94. doi: 10.1111/j.1365-2923.2010.03634.x.MED3634
    1. Leblanc VR, Regehr C, Tavares W, Scott AK, Macdonald R, King K. The impact of stress on paramedic performance during simulated critical events. Prehosp Disaster Med. 2012 Aug;27(4):369–74. doi: 10.1017/S1049023X12001021.S1049023X12001021
    1. Ghazali DA, Darmian-Rafei I, Nadolny J, Sosner P, Ragot S, Oriot D. Evaluation of stress response using psychological, biological, and electrophysiological markers during immersive simulation of life threatening events in multidisciplinary teams. Aust Crit Care. 2018 Jul;31(4):226–33. doi: 10.1016/j.aucc.2017.07.001.S1036-7314(17)30014-0
    1. Bong C, Fraser K, Oriot D. Cognitive load and stress in simulation. In: Grant V, Cheng A, editors. Comprehensive Healthcare Simulation: Pediatrics. Cham: Springer International Publishing; 2016. Jun 16, pp. 3–17.
    1. Spielberger C, Gorsuch R, Lushene R, Vagg R, Jacobs G. State-Trait Anxiety Inventory for Adults. Manual, Instrument, and Scoring Guide. Redwood City, CA, USA: Mind Garden, Inc; 1983.
    1. Lesage F, Berjot S, Deschamps F. Clinical stress assessment using a visual analogue scale. Occup Med (Lond) 2012 Dec;62(8):600–5. doi: 10.1093/occmed/kqs140. kqs140
    1. Furedy JJ, Szabo A, Péronnet F. Effects of psychological and physiological challenges on heart rate, T-wave amplitude, and pulse-transit time. Int J Psychophysiol. 1996;22(3):173–83. doi: 10.1016/0167-8760(96)00025-6.0167876096000256
    1. Rider BC, Conger SA, Ditzenberger GL, Besteman SS, Bouret CM, Coughlin AM. Examining the accuracy of the Polar A360 Monitor. J Strength Cond Res. 2021 Aug 01;35(8):2165–9. doi: 10.1519/JSC.0000000000003136.00124278-202108000-00014
    1. Boudreaux BD, Hebert EP, Hollander DB, Williams BM, Cormier CL, Naquin MR, Gillan WW, Gusew EE, Kraemer RR. Validity of wearable activity monitors during cycling and resistance exercise. Med Sci Sports Exerc. 2018 Mar;50(3):624–33. doi: 10.1249/MSS.0000000000001471.
    1. Baldwin S, Bennell C, Andersen JP, Semple T, Jenkins B. Stress-activity mapping: physiological responses during general duty police encounters. Front Psychol. 2019;10:2216. doi: 10.3389/fpsyg.2019.02216. doi: 10.3389/fpsyg.2019.02216.
    1. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Soft. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01.
    1. World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Med Assoc. 2013 Nov 27;310(20):2191–4. doi: 10.1001/jama.2013.281053.1760318
    1. International Conference on Harmonisation E9 Expert Working Group ICH Harmonised Tripartite Guideline. Statistical principles for clinical trials. Stat Med. 1999 Aug 15;18(15):1905–42.
    1. Eysenbach G, CONSORT-EHEALTH Group CONSORT-EHEALTH: improving and standardizing evaluation reports of Web-based and mobile health interventions. J Med Internet Res. 2011;13(4):e126. doi: 10.2196/jmir.1923. v13i4e126
    1. Cheng A, Kessler D, Mackinnon R, Chang TP, Nadkarni VM, Hunt EA, Duval-Arnould J, Lin Y, Cook DA, Pusic M, Hui J, Moher D, Egger M, Auerbach M, International Network for Simulation-based Pediatric Innovation‚ Research‚Education (INSPIRE) Reporting Guidelines Investigators Reporting guidelines for health care simulation research: extensions to the CONSORT and STROBE statements. Simul Healthc. 2016 Aug;11(4):238–48. doi: 10.1097/SIH.0000000000000150.
    1. Ramadanov N, Klein R, Schumann U, Aguilar AD, Behringer W. Factors, influencing medication errors in prehospital care: a retrospective observational study. Medicine (Baltimore) 2019 Dec;98(49):e18200. doi: 10.1097/MD.0000000000018200. doi: 10.1097/MD.0000000000018200.00005792-201912060-00041
    1. Hunziker S, Pagani S, Fasler K, Tschan F, Semmer NK, Marsch S. Impact of a stress coping strategy on perceived stress levels and performance during a simulated cardiopulmonary resuscitation: a randomized controlled trial. BMC Emerg Med. 2013 Apr 22;13(8):1–9. doi: 10.1186/1471-227X-13-8. 1471-227X-13-8
    1. Bjørshol CA, Myklebust H, Nilsen KL, Hoff T, Bjørkli C, Illguth E, Søreide E, Sunde K. Effect of socioemotional stress on the quality of cardiopulmonary resuscitation during advanced life support in a randomized manikin study. Crit Care Med. 2011 Feb;39(2):300–4. doi: 10.1097/CCM.0b013e3181ffe100.
    1. Martín D, De La Torre I, Garcia-Zapirain B, Lopez-Coronado M, Rodrigues J. Managing and controlling stress using mHealth: systematic search in App stores. JMIR Mhealth Uhealth. 2018 May 09;6(5):e111. doi: 10.2196/mhealth.8866. v6i5e111
    1. Walker D, Moloney C, SueSee B, Sharples R. Contributing factors that influence medication errors in the prehospital paramedic environment: a mixed-method systematic review protocol. BMJ Open. 2019 Dec 23;9(12):e034094. doi: 10.1136/bmjopen-2019-034094. bmjopen-2019-034094
    1. Hoyle JD, Davis AT, Putman KK, Trytko JA, Fales WD. Medication dosing errors in pediatric patients treated by emergency medical services. Prehosp Emerg Care. 2012;16(1):59–66. doi: 10.3109/10903127.2011.614043.
    1. Schneiderman N, Ironson G, Siegel SD. Stress and health: psychological, behavioral, and biological determinants. Annu Rev Clin Psychol. 2005;1:607–28. doi: 10.1146/annurev.clinpsy.1.102803.144141.
    1. Epel E, Crosswell A, Mayer S, Prather A, Slavich G, Puterman E, Mendes WB. More than a feeling: a unified view of stress measurement for population science. Front Neuroendocrinol. 2018 Apr;49:146–69. doi: 10.1016/j.yfrne.2018.03.001. S0091-3022(18)30021-9
    1. Can YS, Chalabianloo N, Ekiz D, Ersoy C. Continuous stress detection using wearable sensors in real life: algorithmic programming contest case study. Sensors. 2019 Apr 18;19(8):1849. doi: 10.3390/s19081849.
    1. Oldehinkel AJ, Ormel J, Bosch NM, Bouma EM, Van Roon AM, Rosmalen JG, Riese H. Stressed out? Associations between perceived and physiological stress responses in adolescents: the TRAILS study. Psychophysiology. 2011 Apr;48(4):441–52. doi: 10.1111/j.1469-8986.2010.01118.x.
    1. Clarke S, Horeczko T, Cotton D, Bair A. Heart rate, anxiety and performance of residents during a simulated critical clinical encounter: a pilot study. BMC Med Educ. 2014 Jul 27;14:153. doi: 10.1186/1472-6920-14-153. 1472-6920-14-153
    1. Harvey A, Bandiera G, Nathens AB, LeBlanc VR. Impact of stress on resident performance in simulated trauma scenarios. J Trauma Acute Care Surg. 2012 Feb;72(2):497–503. doi: 10.1097/ta.0b013e31821f84be.
    1. Yerkes RM, Dodson JD. The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol. 1908 Nov;18(5):459–482. doi: 10.1002/cne.920180503.
    1. Frazier SE, Parker SH. Measurement of physiological responses to acute stress in multiple occupations: a systematic review and implications for front line healthcare providers. Transl Behav Med. 2019 Jan 01;9(1):158–66. doi: 10.1093/tbm/iby019.4924416
    1. Zamkah A, Hui T, Andrews S, Dey N, Shi F, Sherratt RS. Identification of suitable biomarkers for stress and emotion detection for future personal affective wearable sensors. Biosensors (Basel) 2020 Apr 16;10(4):40. doi: 10.3390/bios10040040. bios10040040
    1. Kim H, Cheon E, Bai D, Lee YH, Koo B. Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. 2018 Mar;15(3):235–45. doi: 10.30773/pi.2017.08.17. pi.2017.08.17
    1. Mejía-Mejía E, Budidha K, Abay TY, May JM, Kyriacou PA. Heart rate variability (HRV) and pulse rate variability (PRV) for the assessment of autonomic responses. Front Physiol. 2020;11:779. doi: 10.3389/fphys.2020.00779. doi: 10.3389/fphys.2020.00779.
    1. Pinheiro N, Couceiro R, Henriques J, Muehlsteff J, Quintal I, Goncalves L, Carvalho P. Can PPG be used for HRV analysis? Conf Proc IEEE Eng Med Biol Soc. 2016 Dec;2016:2945–9. doi: 10.1109/EMBC.2016.7591347.
    1. Ghazali DA, Breque C, Sosner P, Lesbordes M, Chavagnat J, Ragot S, Oriot D. Stress response in the daily lives of simulation repeaters. A randomized controlled trial assessing stress evolution over one year of repetitive immersive simulations. PLoS One. 2019;14(7):e0220111. doi: 10.1371/journal.pone.0220111. PONE-D-18-35868
    1. Cheng A, Auerbach M, Hunt EA, Chang TP, Pusic M, Nadkarni V, Kessler D. Designing and conducting simulation-based research. Pediatrics. 2014 Jun;133(6):1091–101. doi: 10.1542/peds.2013-3267.peds.2013-3267

Source: PubMed

Подписаться