Role of Oxidative Stress and Mitochondrial Dysfunction in Sepsis and Potential Therapies

Konstantinos Mantzarlis, Vasiliki Tsolaki, Epaminondas Zakynthinos, Konstantinos Mantzarlis, Vasiliki Tsolaki, Epaminondas Zakynthinos

Abstract

Sepsis is one of the most important causes of death in intensive care units. Despite the fact that sepsis pathogenesis remains obscure, there is increasing evidence that oxidants and antioxidants play a key role. The imbalance of the abovementioned substances in favor of oxidants is called oxidative stress, and it contributes to sepsis process. The most important consequences are vascular permeability impairment, decreased cardiac performance, and mitochondrial malfunction leading to impaired respiration. Nitric oxide is perhaps the most important and well-studied oxidant. Selenium, vitamin C, and 3N-acetylcysteine among others are potential therapies for the restoration of redox balance in sepsis. Results from recent studies are promising, but there is a need for more human studies in a clinical setting for safety and efficiency evaluation.

Figures

Figure 1
Figure 1
The mechanism of cytopathic hypoxia. The production of NO inhibits normal function of the respiratory complex IV interrupting the normal transport of electrons. O₂− production is enhanced and reacts with NO inhibiting complex I normal function. NO, nitric oxide; NOS, nitric oxide synthase; ADP, adenosine diphosphate; ATP, adenosine triphosphate.
Figure 2
Figure 2
Mechanism of apoptosis. Mitochondrial damage by ROS releases cytochrome C, which contributes to the formation of apoptosome. The reaction of apoptosome with caspaces initiates cell apoptosis via DNA fragmentation and chromatin condensation. ROS, reactive oxygen species; Cyt C, cytochrome C; DNA, deoxyribonucleic acid.

References

    1. Vincent J. L., Sakr Y., Sprung C. L., et al. Sepsis in European intensive care units: results of the SOAP study. Critical Care Medicine. 2006;34(2):344–353. doi: 10.1097/01.CCM.0000194725.48928.3A.
    1. Angus D. C., Linde-Zwirble W. T., Lidicker J., Clermont G., Carcillo J., Pinsky M. R. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Critical Care Medicine. 2001;29(7):1303–1310.
    1. Singer M., Deutschman C. S., Seymour C. W., et al. The third international consensus definitions for sepsis and septic shock (sepsis-3) The Journal of the American Medical Association. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287.
    1. Rhodes A., Evans L. E., Alhazzani W., et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine. 2017;43(3):304–377. doi: 10.1007/s00134-017-4683-6.
    1. Thomas L. Germs. The New England Journal of Medicine. 1972;287(11):553–555. doi: 10.1056/NEJM197209142871109.
    1. Abraham E., Wunderink R., Silverman H., et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb sepsis study group. The Journal of the American Medical Association. 1995;273(12):934–941.
    1. Sprung C. L., Annane D., Keh D., et al. Hydrocortisone therapy for patients with septic shock. The New England Journal of Medicine. 2008;358(2):111–124. doi: 10.1056/NEJMoa071366.
    1. Fisher C. J., Jr., Dhainaut J. F., Opal S. M., et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. The Journal of the American Medical Association. 1994;271(23):1836–1843. doi: 10.1001/jama.1994.03510470040032.
    1. Bone R. C., Fisher C. J., Jr., Clemmer T. P., Slotman G. J., Metz C. A., Balk R. A. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. The New England Journal of Medicine. 1987;317(11):653–658. doi: 10.1056/NEJM198709103171101.
    1. Hotchkiss R. S., Swanson P. E., Freeman B. D., et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine. 1999;27(7):1230–1251. doi: 10.1097/00003246-199907000-00002.
    1. Gattinoni L., Brazzi L., Pelosi P., et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. The New England Journal of Medicine. 1995;333(16):1025–1032. doi: 10.1056/NEJM199510193331601.
    1. VanderMeer T. J., Wang H., Fink M. P. Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Critical Care Medicine. 1995;23(7):1217–1226. doi: 10.1097/00003246-199907000-00002.
    1. Jones D. P. Radical-free biology of oxidative stress. American Journal of Physiology. Cell Physiology. 2008;295(4):C849–C868. doi: 10.1152/ajpcell.00283.2008.
    1. Zhang J., Wang X., Vikash V., et al. ROS and ROS-mediated cellular signaling. Oxidative Medicine and Cellular Longevity. 2016;2016:18. doi: 10.1155/2016/4350965.4350965
    1. Kohen R., Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic Pathology. 2002;30(6):620–650. doi: 10.1080/01926230290166724.
    1. Webster N. R., Nunn J. F. Molecular structure of free radicals and their importance in biological reactions. British Journal of Anaesthesia. 1988;60(1):98–108. doi: 10.1093/bja/60.1.98.
    1. Droge W. Free radicals in the physiological control of cell function. Physiological Reviews. 2002;82(1):47–95. doi: 10.1152/physrev.00018.2001.
    1. Meo S. D., Reed T. T., Venditti P., Victor V. M. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Medicine and Cellular Longevity. 2016;2016:44. doi: 10.1155/2016/1245049.1245049
    1. Chanock S. J., Benna J. e., Smith R. M., Babior B. M. The respiratory burst oxidase. The Journal of Biological Chemistry. 1994;269(40):24519–24522.
    1. Robinson J. M., Badwey J. A. Production of active oxygen species by phagocytic leukocytes. Immunology Series. 1994;60:159–178.
    1. Gao X. P., Standiford T. J., Rahman A., et al. Role of NADPH oxidase in the mechanism of lung neutrophil sequestration and microvessel injury induced by Gram-negative sepsis: studies in p47phox-/- and gp91phox-/- mice. Journal of Immunology. 2002;168(8):3974–3982. doi: 10.4049/jimmunol.168.8.3974.
    1. Brown G. C. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2001;1504(1):46–57. doi: 10.1016/S0005-2728(00)00238-3.
    1. Poderoso J. J., Carreras M. C., Lisdero C., Riobo N., Schopfer F., Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Archives of Biochemistry and Biophysics. 1996;328(1):85–92. doi: 10.1006/abbi.1996.0146.
    1. Virdis A., Colucci R., Fornai M., et al. Cyclooxygenase-2 inhibition improves vascular endothelial dysfunction in a rat model of endotoxic shock: role of inducible nitric-oxide synthase and oxidative stress. The Journal of Pharmacology and Experimental Therapeutics. 2005;312(3):945–953. doi: 10.1124/jpet.104.077644.
    1. Jacobi J., Kristal B., Chezar J., Shaul S. M., Sela S. Exogenous superoxide mediates pro-oxidative, proinflammatory, and procoagulatory changes in primary endothelial cell cultures. Free Radical Biology and Medicine. 2005;39(9):1238–1248. doi: 10.1016/j.freeradbiomed.2005.06.010.
    1. Andrades M. E., Morina A., Spasic S., Spasojevic I. Bench-to-bedside review: sepsis - from the redox point of view. Critical Care. 2011;15(5):p. 230. doi: 10.1186/cc10334.
    1. Gutteridge J. M., Mitchell J. Redox imbalance in the critically ill. British Medical Bulletin. 1999;55(1):49–75. doi: 10.1258/0007142991902295.
    1. Poljsak B., Suput D., Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative Medicine and Cellular Longevity. 2013;2013:11. doi: 10.1155/2013/956792.956792
    1. Takeda K., Shimada Y., Amano M., Sakai T., Okada T., Yoshiya I. Plasma lipid peroxides and alpha-tocopherol in critically ill patients. Critical Care Medicine. 1984;12(11):957–959. doi: 10.1097/00003246-198411000-00007.
    1. Goode H. F., Cowley H. C., Walker B. E., Howdle P. D., Webster N. R. Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Critical Care Medicine. 1995;23(4):646–651.
    1. Cowley H. C., Bacon P. J., Goode H. F., Webster N. R., Jones J. G., Menon D. K. Plasma antioxidant potential in severe sepsis: a comparison of survivors and nonsurvivors. Critical Care Medicine. 1996;24(7):1179–1183.
    1. Chuang C. C., Shiesh S. C., Chi C. H., et al. Serum total antioxidant capacity reflects severity of illness in patients with severe sepsis. Critical Care. 2006;10(1, article R36) doi: 10.1186/cc4826.
    1. Karapetsa M., Pitsika M., Goutzourelas N., Stagos D., Tousia Becker A., Zakynthinos E. Oxidative status in ICU patients with septic shock. Food and Chemical Toxicology. 2013;61:106–111. doi: 10.1016/j.fct.2013.03.026.
    1. Borrelli E., Roux-Lombard P., Grau G. E., et al. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Critical Care Medicine. 1996;24(3):392–397.
    1. Rubio-Gayosso I., Platts S. H., Duling B. R. Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. American Journal of Physiology. Heart and Circulatory Physiology. 2006;290(6):H2247–H2256. doi: 10.1152/ajpheart.00796.2005.
    1. Knowles R. G., Moncada S. Nitric oxide synthases in mammals. The Biochemical Journal. 1994;298(Part 2):249–258. doi: 10.1042/bj2980249.
    1. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacological Reviews. 1991;43(2):109–142.
    1. Forman H. J., Torres M. Redox signaling in macrophages. Molecular Aspects of Medicine. 2001;22(4-5):189–216. doi: 10.1016/S0098-2997(01)00010-3.
    1. Carreras M. C., Pargament G. A., Catz S. D., Poderoso J. J., Boveris A. Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Letters. 1994;341(1):65–68. doi: 10.1016/0014-5793(94)80241-6.
    1. Valdez L. B., Boveris A. Nitric oxide and superoxide radical production by human mononuclear leukocytes. Antioxidants & Redox Signaling. 2001;3(3):505–513. doi: 10.1089/15230860152409130.
    1. Xie Q. W., Kashiwabara Y., Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. The Journal of Biological Chemistry. 1994;269(7):4705–4708.
    1. Pantano C., Reynaert N. L., van der Vliet A., Janssen-Heininger Y. M. Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxidants & Redox Signaling. 2006;8(9-10):1791–1806. doi: 10.1089/ars.2006.8.1791.
    1. Abraham E. Nuclear factor-kappaB and its role in sepsis-associated organ failure. The Journal of Infectious Diseases. 2003;187(Supplement 2):S364–S369. doi: 10.1086/374750.
    1. Gunnett C. A., Chu Y., Heistad D. D., Loihl A., Faraci F. M. Vascular effects of LPS in mice deficient in expression of the gene for inducible nitric oxide synthase. The American Journal of Physiology. 1998;275(2) Part 2:H416–H421.
    1. Kilbourn R. G., Jubran A., Gross S. S., et al. Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochemical and Biophysical Research Communications. 1990;172(3):1132–1138. doi: 10.1016/0006-291X(90)91565-A.
    1. Hollenberg S. M., Cunnion R. E., Zimmerberg J. Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats. The American Journal of Physiology. 1993;264(2) Part 2:H660–H663.
    1. Flesch M., Kilter H., Cremers B., et al. Effects of endotoxin on human myocardial contractility involvement of nitric oxide and peroxynitrite. Journal of the American College of Cardiology. 1999;33(4):1062–1070. doi: 10.1016/S0735-1097(98)00660-3.
    1. Flesch M., Kilter H., Cremers B., et al. Acute effects of nitric oxide and cyclic GMP on human myocardial contractility. The Journal of Pharmacology and Experimental Therapeutics. 1997;281(3):1340–1349.
    1. Toth I., Heard S. O. Nitric oxide does not mediate lipopolysaccharide-induced myocardial depression in guinea pigs. Critical Care Medicine. 1997;25(4):684–688. doi: 10.1097/00003246-199704000-00021.
    1. Price S., Mitchell J. A., Anning P. B., Evans T. W. Type II nitric oxide synthase activity is cardio-protective in experimental sepsis. European Journal of Pharmacology. 2003;472(1-2):111–118. doi: 10.1016/S0014-2999(03)01826-0.
    1. Vincent J. L., Zhang H., Szabo C., Preiser J. C. Effects of nitric oxide in septic shock. American Journal of Respiratory and Critical Care Medicine. 2000;161(6):1781–1785. doi: 10.1164/ajrccm.161.6.9812004.
    1. Brealey D., Brand M., Hargreaves I., et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360(9328):219–223. doi: 10.1016/S0140-6736(02)09459-X.
    1. Gasparetto A., Corbucci G. G., Candiani A., Gohil K., Edwards R. H. Effect of tissue hypoxia and septic shock on human skeletal muscle mitochondria. Lancet. 1983;2(8365–8366):p. 1486. doi: 10.1016/S0140-6736(83)90823-1.
    1. Llesuy S., Evelson P., Gonzalez-Flecha B., et al. Oxidative stress in muscle and liver of rats with septic syndrome. Free Radical Biology and Medicine. 1994;16(4):445–451. doi: 10.1016/0891-5849(94)90121-X.
    1. Liaudet L., Soriano F. G., Szabo C. Biology of nitric oxide signaling. Critical Care Medicine. 2000;28(4 Supplement):N37–N52.
    1. Frost M. T., Wang Q., Moncada S., Singer M. Hypoxia accelerates nitric oxide-dependent inhibition of mitochondrial complex I in activated macrophages. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2005;288(2):R394–R400. doi: 10.1152/ajpregu.00504.2004.
    1. Fink M. P. Bench-to-bedside review: cytopathic hypoxia. Critical Care. 2002;6(6):491–499. doi: 10.1186/cc1824.
    1. Nisoli E., Clementi E., Paolucci C., et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 2003;299(5608):896–899. doi: 10.1126/science.1079368.
    1. Calvano S. E., Xiao W., Richards D. R., et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437(7061):1032–1037. doi: 10.1038/nature03985.
    1. Murphy M. P. How mitochondria produce reactive oxygen species. The Biochemical Journal. 2009;417(1):1–13. doi: 10.1042/BJ20081386.
    1. Kapralov A. A., Kurnikov I. V., Vlasova I. I., et al. The hierarchy of structural transitions induced in cytochrome c by anionic phospholipids determines its peroxidase activation and selective peroxidation during apoptosis in cells. Biochemistry. 2007;46(49):14232–14244. doi: 10.1021/bi701237b.
    1. Orrenius S., Gogvadze V., Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annual Review of Pharmacology and Toxicology. 2007;47:143–183. doi: 10.1146/annurev.pharmtox.47.120505.105122.
    1. Kroemer G., Galluzzi L., Brenner C. Mitochondrial membrane permeabilization in cell death. Physiological Reviews. 2007;87(1):99–163. doi: 10.1152/physrev.00013.2006.
    1. Fairweather-Tait S. J., Bao Y., Broadley M. R., et al. Selenium in human health and disease. Antioxidants & Redox Signaling. 2011;14(7):1337–1383. doi: 10.1089/ars.2010.3275.
    1. Manzanares W., Biestro A., Galusso F., et al. Serum selenium and glutathione peroxidase-3 activity: biomarkers of systemic inflammation in the critically ill? Intensive Care Medicine. 2009;35(5):882–889. doi: 10.1007/s00134-008-1356-5.
    1. Chelkeba L., Ahmadi A., Abdollahi M., et al. The effect of parenteral selenium on outcomes of mechanically ventilated patients following sepsis: a prospective randomized clinical trial. Annals of Intensive Care. 2015;5(1):p. 29. doi: 10.1186/s13613-015-0071-y.
    1. Bloos F., Trips E., Nierhaus A., et al. Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe sepsis or septic shock: a randomized clinical trial. JAMA Internal Medicine. 2016;176(9):1266–1276. doi: 10.1001/jamainternmed.2016.2514.
    1. Manzanares W., Lemieux M., Elke G., Langlois P. L., Bloos F., Heyland D. K. High-dose intravenous selenium does not improve clinical outcomes in the critically ill: a systematic review and meta-analysis. Critical Care. 2016;20(1):p. 356. doi: 10.1186/s13054-016-1529-5.
    1. Galley H. F., Howdle P. D., Walker B. E., Webster N. R. The effects of intravenous antioxidants in patients with septic shock. Free Radical Biology and Medicine. 1997;23(5):768–774. doi: 10.1016/S0891-5849(97)00059-2.
    1. Tyml K., Li F., Wilson J. X. Delayed ascorbate bolus protects against maldistribution of microvascular blood flow in septic rat skeletal muscle. Critical Care Medicine. 2005;33(8):1823–1828. doi: 10.1097/.
    1. Wu F., Wilson J. X., Tyml K. Ascorbate protects against impaired arteriolar constriction in sepsis by inhibiting inducible nitric oxide synthase expression. Free Radical Biology and Medicine. 2004;37(8):1282–1289. doi: 10.1016/j.freeradbiomed.2004.06.025.
    1. Shen K. P., Lo Y. C., Yang R. C., Liu H. W., Chen I. J., Wu B. N. Antioxidant eugenosedin-A protects against lipopolysaccharide-induced hypotension, hyperglycaemia and cytokine immunoreactivity in rats and mice. The Journal of Pharmacy and Pharmacology. 2005;57(1):117–125. doi: 10.1211/0022357055137.
    1. Wilson J. X. Mechanism of action of vitamin C in sepsis: ascorbate modulates redox signaling in endothelium. BioFactors. 2009;35(1):5–13. doi: 10.1002/biof.7.
    1. Pleiner J., Mittermayer F., Schaller G., Marsik C., MacAllister R. J., Wolzt M. Inflammation-induced vasoconstrictor hyporeactivity is caused by oxidative stress. Journal of the American College of Cardiology. 2003;42(9):1656–1662. doi: 10.1016/j.jacc.2003.06.002.
    1. Fowler A. A., 3rd, Syed A. A., Knowlson S., et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. Journal of Translational Medicine. 2014;12:p. 32. doi: 10.1186/1479-5876-12-32.
    1. Marik P. E., Khangoora V., Rivera R., Hooper M. H., Catravas J. Hydrocortisone, vitamin C and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017;151(6):1229–1238. doi: 10.1016/j.chest.2016.11.036.
    1. Meydani S. N., Wu D., Santos M. S., Hayek M. G. Antioxidants and immune response in aged persons: overview of present evidence. The American Journal of Clinical Nutrition. 1995;62(6 Supplement):1462S–1476S.
    1. Aruoma O. I., Halliwell B., Hoey B. M., Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biology and Medicine. 1989;6(6):593–597. doi: 10.1016/0891-5849(89)90066-X.
    1. Victor V. M., Guayerbas N., Garrote D., Rio M. D., Fuente M. D. l. Modulation of murine macrophage function by N-acetylcysteine in a model of endotoxic shock. BioFactors. 1999;10(4):347–357. doi: 10.1002/biof.5520100405.
    1. Victor V. M., Fuente M. D. l. N-Acetylcysteine improves in vitro the function of macrophages from mice with endotoxin-induced oxidative stress. Free Radical Research. 2002;36(1):33–45. doi: 10.1080/10715760210160.
    1. Fuente M. D. l., Victor V. M. Ascorbic acid and N-acetylcysteine improve in vitro the function of lymphocytes from mice with endotoxin-induced oxidative stress. Free Radical Research. 2001;35(1):73–84. doi: 10.1080/10715760100300611.
    1. Zhang H., Spapen H., Nguyen D. N., Benlabed M., Buurman W. A., Vincent J. L. Protective effects of N-acetyl-L-cysteine in endotoxemia. The American Journal of Physiology. 1994;266(5) Part 2:H1746–H1754.
    1. Rank N., Michel C., Haertel C., et al. N-Acetylcysteine increases liver blood flow and improves liver function in septic shock patients: results of a prospective, randomized, double-blind study. Critical Care Medicine. 2000;28(12):3799–3807. doi: 10.1097/00003246-200012000-00006.
    1. Heller A. R., Groth G., Heller S. C., et al. N-Acetylcysteine reduces respiratory burst but augments neutrophil phagocytosis in intensive care unit patients. Critical Care Medicine. 2001;29(2):272–276. doi: 10.1097/00003246-200102000-00009.
    1. Emet S., Memis D., Pamukcu Z. The influence of N-acetyl-L-cystein infusion on cytokine levels and gastric intramucosal pH during severe sepsis. Critical Care. 2004;8(4):R172–R179. doi: 10.1186/cc2866.
    1. Spapen H. D., Diltoer M. W., Nguyen D. N., Hendrickx I., Huyghens L. P. Effects of N-acetylcysteine on microalbuminuria and organ failure in acute severe sepsis: results of a pilot study. Chest. 2005;127(4):1413–1419. doi: 10.1378/chest.127.4.1413.
    1. Kelso G. F., Porteous C. M., Coulter C. V., et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. The Journal of Biological Chemistry. 2001;276(7):4588–4596. doi: 10.1074/jbc.M009093200.
    1. Dhanasekaran A., Kotamraju S., Kalivendi S. V., et al. Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. The Journal of Biological Chemistry. 2004;279(36):37575–37587. doi: 10.1074/jbc.M404003200.
    1. Lowes D. A., Thottakam B. M., Webster N. R., Murphy M. P., Galley H. F. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radical Biology and Medicine. 2008;45(11):1559–1565. doi: 10.1016/j.freeradbiomed.2008.09.003.
    1. Supinski G. S., Murphy M. P., Callahan L. A. MitoQ administration prevents endotoxin-induced cardiac dysfunction. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2009;297(4):R1095–R1102. doi: 10.1152/ajpregu.90902.2008.
    1. Filipovska A., Kelso G. F., Brown S. E., Beer S. M., Smith R. A., Murphy M. P. Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic. Insights into the interaction of ebselen with mitochondria. The Journal of Biological Chemistry. 2005;280(25):24113–24126. doi: 10.1074/jbc.M501148200.
    1. Smith R. A., Porteous C. M., Gane A. M., Murphy M. P. Delivery of bioactive molecules to mitochondria in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(9):5407–5412. doi: 10.1073/pnas.0931245100.
    1. Macarthur H., Couri D. M., Wilken G. H., et al. Modulation of serum cytokine levels by a novel superoxide dismutase mimetic, M40401, in an Escherichia coli model of septic shock: correlation with preserved circulating catecholamines. Critical Care Medicine. 2003;31(1):237–245.
    1. Spasojevic I., Chen Y., Noel T. J., et al. Mn porphyrin-based superoxide dismutase (SOD) mimic, MnIIITE-2-PyP5+, targets mouse heart mitochondria. Free Radical Biology and Medicine. 2007;42(8):1193–1200. doi: 10.1016/j.freeradbiomed.2007.01.019.
    1. Fink M. P., Macias C. A., Xiao J., et al. Hemigramicidin-TEMPO conjugates: novel mitochondria-targeted anti-oxidants. Biochemical Pharmacology. 2007;74(6):801–809. doi: 10.1016/j.bcp.2007.05.019.
    1. Macias C. A., Chiao J. W., Xiao J., et al. Treatment with a novel hemigramicidin-TEMPO conjugate prolongs survival in a rat model of lethal hemorrhagic shock. Annals of Surgery. 2007;245(2):305–314. doi: 10.1097/01.sla.0000236626.57752.8e.
    1. Teale D. M., Atkinson A. M. L-canavanine restores blood pressure in a rat model of endotoxic shock. European Journal of Pharmacology. 1994;271(1):87–92. doi: 10.1016/0014-2999(94)90268-2.
    1. Cobb J. P., Natanson C., Hoffman W. D., et al. N omega-amino-L-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin. The Journal of Experimental Medicine. 1992;176(4):1175–1182. doi: 10.1084/jem.176.4.1175.
    1. Lopez A., Lorente J. A., Steingrub J., et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Critical Care Medicine. 2004;32(1):21–30. doi: 10.1097/01.CCM.0000105581.01815.C6.
    1. Yamashita T., Kawashima S., Ohashi Y., et al. Resistance to endotoxin shock in transgenic mice overexpressing endothelial nitric oxide synthase. Circulation. 2000;101(8):931–937. doi: 10.1161/01.CIR.101.8.931.
    1. Ichinose F., Buys E. S., Neilan T. G., et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock. Circulation Research. 2007;100(1):130–139. doi: 10.1161/01.RES.0000253888.09574.7a.
    1. Unno N., Wang H., Menconi M. J., et al. Inhibition of inducible nitric oxide synthase ameliorates endotoxin-induced gut mucosal barrier dysfunction in rats. Gastroenterology. 1997;113(4):1246–1257. doi: 10.1053/gast.1997.v113.pm9322519.
    1. King C. J., Tytgat S., Delude R. L., Fink M. P. Ileal mucosal oxygen consumption is decreased in endotoxemic rats but is restored toward normal by treatment with aminoguanidine. Critical Care Medicine. 1999;27(11):2518–2524.
    1. Matejovic M., Krouzecky A., Martinkova V., et al. Selective inducible nitric oxide synthase inhibition during long-term hyperdynamic porcine bacteremia. Shock. 2004;21(5):458–465.
    1. Liu C., Zhang G. F., Song S. W., et al. Effects of ketanserin on endotoxic shock and baroreflex function in rodents. The Journal of Infectious Diseases. 2011;204(10):1605–1612. doi: 10.1093/infdis/jir609.
    1. Liu C., Zhang X., Zhou J. X., et al. The protective action of ketanserin against lipopolysaccharide-induced shock in mice is mediated by inhibiting inducible NO synthase expression via the MEK/ERK pathway. Free Radical Biology and Medicine. 2013;65:658–666. doi: 10.1016/j.freeradbiomed.2013.07.045.
    1. Vellinga N. A., Veenstra G., Scorcella C., et al. Effects of ketanserin on microcirculatory alterations in septic shock: an open-label pilot study. Journal of Critical Care. 2015;30(6):1156–1162. doi: 10.1016/j.jcrc.2015.07.004.
    1. Srinivasan V., Mohamed M., Kato H. Melatonin in bacterial and viral infections with focus on sepsis: a review. Recent Patents Endocrine Metabolic Immune Drug Discovery. 2012;6(1):30–39. doi: 10.2174/187221412799015317.
    1. Srinivasan V., Pandi-Perumal S. R., Spence D. W., Kato H., Cardinali D. P. Melatonin in septic shock: some recent concepts. Journal of Critical Care. 2010;25(4):656.e1–656.e6. doi: 10.1016/j.jcrc.2010.03.006.
    1. Carrillo-Vico A., Lardone P. J., Naji L., et al. Beneficial pleiotropic actions of melatonin in an experimental model of septic shock in mice: regulation of pro-/anti-inflammatory cytokine network, protection against oxidative damage and anti-apoptotic effects. Journal of Pineal Research. 2005;39(4):400–408. doi: 10.1111/j.1600-079X.2005.00265.x.
    1. Wu J. Y., Tsou M. Y., Chen T. H., Chen S. J., Tsao C. M., Wu C. C. Therapeutic effects of melatonin on peritonitis-induced septic shock with multiple organ dysfunction syndrome in rats. Journal of Pineal Research. 2008;45(1):106–116. doi: 10.1111/j.1600-079X.2008.00567.x.
    1. Sewerynek E., Melchiorri D., Reiter R. J., Ortiz G. G., Lewinski A. Lipopolysaccharide-induced hepatotoxicity is inhibited by the antioxidant melatonin. European Journal of Pharmacology. 1995;293(4):327–334. doi: 10.1016/0926-6917(95)90052-7.
    1. Escames G., Leon J., Macias M., Khaldy H., Acuna-Castroviejo D. Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats. The FASEB Journal. 2003;17(8):932–934. doi: 10.1096/fj.02-0692fje.
    1. Escames G., Lopez L. C., Tapias V., et al. Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice. Journal of Pineal Research. 2006;40(1):71–78. doi: 10.1111/j.1600-079X.2005.00281.x.
    1. Lopez L. C., Escames G., Ortiz F., Ros E., Acuna-Castroviejo D. Melatonin restores the mitochondrial production of ATP in septic mice. Neuro Endocrinology Letters. 2006;27(5):623–630.
    1. Alamili M., Bendtzen K., Lykkesfeldt J., Rosenberg J., Gogenur I. Melatonin suppresses markers of inflammation and oxidative damage in a human daytime endotoxemia model. Journal of Critical Care. 2014;29(1):184.e9–184.e13. doi: 10.1016/j.jcrc.2013.09.006.
    1. Gitto E., Karbownik M., Reiter R. J., et al. Effects of melatonin treatment in septic newborns. Pediatric Research. 2001;50(6):756–760. doi: 10.1203/00006450-200112000-00021.

Source: PubMed

Подписаться