The Benefits of an In-Office Arthroscopy in the Diagnosis of Unresolved Knee Pain

Garrett L Chapman, Nirav H Amin, Garrett L Chapman, Nirav H Amin

Abstract

We report a patient who developed persistent knee pain with mechanical symptoms after an uncomplicated patellofemoral arthroplasty. The etiology of his knee pain remained inconclusive following magnetic resonance imaging due to metallic artifact image distortion. With the use of an in-office needle arthroscopy, an immediate and definitive diagnosis was obtained, preventing an unnecessary surgery for a diagnostic arthroscopy. We discovered a lateral meniscus tear, an anterior cruciate ligament tear, and a medial femoral condyle chondral defect for which the patient underwent arthroscopic partial meniscectomy, ligament reconstruction, and osteochondral allograft transplantation, with resolution of his knee pain.

Figures

Figure 1
Figure 1
Coronal (a) and sagittal (b) T2-weighted metal reduction magnetic resonance images of the right knee, demonstrating an apparently intact ACL. Note the presence of metallic artifacts (white arrows) throughout the anterior and posterior aspect of the knee on the sagittal image.
Figure 2
Figure 2
Coronal proton density with metal reduction MRI of the right knee demonstrates significant image distortion (white arrows) from metallic artifacts, obscuring accurate evaluation of the medial femoral condyle articular surface.
Figure 3
Figure 3
Sequential sagittal T2-weighted metal reduction MR images of the right knee lateral compartment. The presence of metal artifacts (white arrows) obscures accurate evaluation of the lateral meniscus.
Figure 4
Figure 4
Arthroscopic images of the right knee obtained with mi-eye 2. (a) An intra-articular loose body () is visualized in the anterior knee. (b) A large chondral defect () on the weight-bearing surface of the medial femoral condyle with complete loss of the articular cartilage and exposed subchondral bone. (c) A view of the intercondylar notch showing a tear of the ACL () with the remnant fibers of the femoral origin (arrows) along the lateral wall of the notch.

References

    1. Kim S., Bosque J., Meehan J. P., Jamali A., Marder R. Increase in outpatient knee arthroscopy in the United States: a comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. Journal of Bone and Joint Surgery-American Volume. 2011;93(11):994–1000. doi: 10.2106/JBJS.I.01618.
    1. Cullen K. A., Hall M. J., Golosinskiy A. Ambulatory surgery in the United States. National Health Statistics Reports. 2009;28(11):1–25.
    1. Sihvonen R., Paavola M., Malmivaara A., et al. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. New England Journal of Medicine. 2013;369(26):2515–2524. doi: 10.1056/nejmoa1305189.
    1. Phelan N., Rowland P., Galvin R., O’Byrne J. M. A systematic review and meta-analysis of the diagnostic accuracy of MRI for suspected ACL and meniscal tears of the knee. Knee Surgery, Sports Traumatology, Arthroscopy. 2016;24(5):1525–1539. doi: 10.1007/s00167-015-3861-8.
    1. Behairy N. H., Dorgham M. A., Khaled S. A. Accuracy of routine magnetic resonance imaging in meniscal and ligamentous injuries of the knee: comparison with arthroscopy. International Orthopaedics. 2009;33(4):961–967. doi: 10.1007/s00264-008-0580-5.
    1. Quatman C. E., Hettrich C. M., Schmitt L. C., Spindler K. P. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. American Journal of Sports Medicine. 2011;39(7):1557–1568. doi: 10.1177/0363546511407612.
    1. Ben-Galim P., Steinberg E. L., Amir H., Ash N., Dekel S., Arbel R. Accuracy of magnetic resonance imaging of the knee and unjustified surgery. Clinical Orthopaedics and Related Research. 2006;447:100–104. doi: 10.1097/01.blo.0000203471.50808.b7.
    1. Figueroa D., Calvo R., Vaisman A., et al. Knee chondral lesions: Incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2007;23(3):312–315. doi: 10.1016/j.arthro.2006.11.015.
    1. Gomoll A. H., Yoshioka H., Watanabe A., Dunn J. C., Minas T. Preoperative management of cartilage defects by MRI underestimates lesion size. Cartilage. 2011;2(4):389–393. doi: 10.1177/1947603510397534.
    1. Campbell A. B., Knopp M. V., Kolovich G. P., et al. Preoperative MRI underestimates articular cartilage defect size compared with findings at arthroscopic knee surgery. American Journal of Sports Medicine. 2013;41(3):590–595. doi: 10.1177/0363546512472044.
    1. Baeten D., Van den Bosch F., Elewaut D., Stuer A., Veys E. M., De Keyser F. Needle arthroscopy of the knee with synovial biopsy sampling: technical experience in 150 patients. Clinical Rheumatology. 1999;18(6):434–441. doi: 10.1007/s100670050134.
    1. Szachnowski P., Wei N., Arnold W. J., Cohen L. M. Complications of office based arthroscopy of the knee. Journal of Rheumatology. 1995;22(9):1722–1725.
    1. Voigt J. D., Mosier M., Huber B. In-office diagnostic arthroscopy for knee and shoulder intra-articular injuries its potential impact on cost savings in the United States. BMC Health Services Research. 2014;14(1):p. 203. doi: 10.1186/1472-6963-14-203.

Source: PubMed

Подписаться