The Effectiveness of Virtual Reality in Managing Acute Pain and Anxiety for Medical Inpatients: Systematic Review

Vinayak Smith, Ritesh Rikain Warty, Joel Arun Sursas, Olivia Payne, Amrish Nair, Sathya Krishnan, Fabricio da Silva Costa, Euan Morrison Wallace, Beverley Vollenhoven, Vinayak Smith, Ritesh Rikain Warty, Joel Arun Sursas, Olivia Payne, Amrish Nair, Sathya Krishnan, Fabricio da Silva Costa, Euan Morrison Wallace, Beverley Vollenhoven

Abstract

Background: Virtual reality is increasingly being utilized by clinicians to facilitate analgesia and anxiolysis within an inpatient setting. There is however, a lack of a clinically relevant review to guide its use for this purpose.

Objective: To systematically review the current evidence for the efficacy of virtual reality as an analgesic in the management of acute pain and anxiolysis in an inpatient setting.

Methods: A comprehensive search was conducted up to and including January 2019 on PubMed, Ovid Medline, EMBASE, and Cochrane Database of Systematic reviews according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Search terms included virtual reality, vr, and pain. Primary articles with a focus on acute pain in the clinical setting were considered for the review. Primary outcome measures included degree of analgesia afforded by virtual reality therapy, degree of anxiolysis afforded by virtual reality therapy, effect of virtual reality on physiological parameters, side effects precipitated by virtual reality, virtual reality content type, and type of equipment utilized.

Results: Eighteen studies were deemed eligible for inclusion in this systematic review; 67% (12/18) of studies demonstrated significant reductions in pain with the utilization of virtual reality; 44% (8/18) of studies assessed the effects of virtual reality on procedural anxiety, with 50% (4/8) of these demonstrating significant reductions; 28% (5/18) of studies screened for side effects with incidence rates of 0.5% to 8%; 39% (7/18) of studies evaluated the effects of virtual reality on autonomic arousal as a biomarker of pain, with 29% (2/7) demonstrating significant changes; 100% (18/18) of studies utilized a head mounted display to deliver virtual reality therapy, with 50% being in active form (participants interacting with the environment) and 50% being in passive form (participants observing the content only).

Conclusions: Available evidence suggests that virtual reality therapy can be applied to facilitate analgesia for acute pain in a variety of inpatient settings. Its effects, however, are likely to vary by patient population and indication. This highlights the need for individualized pilot testing of virtual reality therapy's effects for each specific clinical use case rather than generalizing its use for the broad indication of facilitating analgesia. In addition, virtual reality therapy has the added potential of concurrently providing procedural anxiolysis, thereby improving patient experience and cooperation, while being associated with a low incidence of side effects (nausea, vomiting, eye strain, and dizziness). Furthermore, findings indicated a head mounted display should be utilized to deliver virtual reality therapy in a clinical setting with a slight preference for active over passive virtual reality for analgesia. There, however, appears to be insufficient evidence to substantiate the effect of virtual reality on autonomic arousal, and this should be considered at best to be for investigational uses, at present.

Keywords: VR; acute pain; analgesia; anxiety; pain; pain management; procedural pain; virtual reality; wound management.

Conflict of interest statement

Conflicts of Interest: None declared.

©Vinayak Smith, Ritesh Rikain Warty, Joel Arun Sursas, Olivia Payne, Amrish Nair, Sathya Krishnan, Fabricio da Silva Costa, Euan Morrison Wallace, Beverley Vollenhoven. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 02.11.2020.

Figures

Figure 1
Figure 1
PRISMA flow diagram.

References

    1. Merskey H, Bogduk N. Classification of Chronic Pain 2nd ed. Seattle: IASP Press; 1994. [2020-10-23]. .
    1. Federation of State Medical Boards of the United States‚ Inc Model policy for the use of controlled substances for the treatment of pain. J Pain Palliat Care Pharmacother. 2005;19(2):73–8.
    1. Noble M, Treadwell J, Tregear S, Coates Vivian H, Wiffen Philip J, Akafomo Clarisse, Schoelles Karen M. Long-term opioid management for chronic noncancer pain. Cochrane Database Syst Rev. 2010 Jan 20;(1):CD006605. doi: 10.1002/14651858.CD006605.pub2.
    1. Rosenblum A, Marsch LA, Joseph H, Portenoy RK. Opioids and the treatment of chronic pain: controversies, current status, and future directions. Exp Clin Psychopharmacol. 2008 Oct;16(5):405–16. doi: 10.1037/a0013628.
    1. Gandhi K, Heitz JW, Viscusi ER. Challenges in acute pain management. Anesthesiol Clin. 2011 Jun;29(2):291–309. doi: 10.1016/j.anclin.2011.04.009.
    1. Wardhan R, Chelly J. Recent advances in acute pain management: understanding the mechanisms of acute pain, the prescription of opioids, and the role of multimodal pain therapy. F1000Res. 2017;6:2065. doi: 10.12688/f1000research.12286.1.
    1. Stewart WF, Ricci J, Chee E, Morganstein D, Lipton R. Lost productive time and cost due to common pain conditions in the US workforce. JAMA. 2003 Nov 12;290(18):2443–54. doi: 10.1001/jama.290.18.2443.
    1. Gregory J, McGowan L. An examination of the prevalence of acute pain for hospitalised adult patients: a systematic review. J Clin Nurs. 2016 Mar;25(5-6):583–98. doi: 10.1111/jocn.13094.
    1. Won A, Bailey J, Bailenson J, Tataru C, Yoon I, Golianu B. Immersive virtual reality for pediatric pain. Children (Basel) 2017 Jun 23;4(7):52. doi: 10.3390/children4070052.
    1. Blondell R, Azadfard M, Wisniewski A. Pharmacologic therapy for acute pain. Am Fam Physician. 2013 Jun 01;87(11):766–72.
    1. Wiederhold BK, Soomro A, Riva G, Wiederhold MD. Future directions: advances and implications of virtual environments designed for pain management. Cyberpsychol Behav Soc Netw. 2014 Jun;17(6):414–22. doi: 10.1089/cyber.2014.0197.
    1. Chou R, Gordon DB, de Leon-Casasola Oscar A, Rosenberg JM, Bickler S, Brennan T, Carter T, Cassidy CL, Chittenden EH, Degenhardt E, Griffith S, Manworren R, McCarberg B, Montgomery R, Murphy J, Perkal MF, Suresh S, Sluka K, Strassels S, Thirlby R, Viscusi E, Walco GA, Warner L, Weisman SJ, Wu CL. Management of postoperative pain: a clinical practice guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists' Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J Pain. 2016 Feb;17(2):131–57. doi: 10.1016/j.jpain.2015.12.008.
    1. Trost Z, Zielke M, Guck A, Nowlin L, Zakhidov D, France CR, Keefe F. The promise and challenge of virtual gaming technologies for chronic pain: the case of graded exposure for low back pain. Pain Manag. 2015;5(3):197–206. doi: 10.2217/pmt.15.6.
    1. Hoffman HG, Doctor JN, Patterson DR, Carrougher GJ, Furness TA. Virtual reality as an adjunctive pain control during burn wound care in adolescent patients. Pain. 2000 Mar;85(1-2):305–9. doi: 10.1016/s0304-3959(99)00275-4.
    1. Wickens C. Processing Resources in Attention, Dual Task Performance, and Workload Assessment. USA: Defense Technical Information Center; 1981. [2020-10-23]. .
    1. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965 Nov 19;150(3699):971–9. doi: 10.1126/science.150.3699.971.
    1. Mosso-Vázquez José Luis, Gao K, Wiederhold BK, Wiederhold MD. Virtual reality for pain management in cardiac surgery. Cyberpsychol Behav Soc Netw. 2014 Jun;17(6):371–8. doi: 10.1089/cyber.2014.0198.
    1. Hoffman HG, Patterson DR, Seibel E, Soltani M, Jewett-Leahy L, Sharar SR. Virtual reality pain control during burn wound debridement in the hydrotank. Clin J Pain. 2008 May;24(4):299–304. doi: 10.1097/AJP.0b013e318164d2cc.
    1. Nilsson S, Finnström Berit, Kokinsky E, Enskär Karin. The use of virtual reality for needle-related procedural pain and distress in children and adolescents in a paediatric oncology unit. Eur J Oncol Nurs. 2009 Apr;13(2):102–9. doi: 10.1016/j.ejon.2009.01.003.
    1. Andrasik F, Flor H, Turk DC. An expanded view of psychological aspects in head pain: the biopsychosocial model. Neurol Sci. 2005 May;26 Suppl 2:s87–91. doi: 10.1007/s10072-005-0416-7.
    1. Mosso J, Gorini A, De La Cerda G, Obrador Tomas, Almazan Andrew, Mosso Dejanira, Nieto Jesus J, Riva Giuseppe. Virtual reality on mobile phones to reduce anxiety in outpatient surgery. Stud Health Technol Inform. 2009;142:195–200.
    1. Cowen R, Stasiowska MK, Laycock H, Bantel C. Assessing pain objectively: the use of physiological markers. Anaesthesia. 2015 Jul;70(7):828–47. doi: 10.1111/anae.13018. doi: 10.1111/anae.13018.
    1. Price D, Graham C, Parkin CG, Peyser TA. Are systematic reviews and meta-analyses appropriate tools for assessing evolving medical device technologies? J Diabetes Sci Technol. 2015 Sep 29;10(2):439–46. doi: 10.1177/1932296815607863.
    1. Downs S H, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998 Jun;52(6):377–84. doi: 10.1136/jech.52.6.377.
    1. Chad R, Emaan S, Jillian O. Effect of virtual reality headset for pediatric fear and pain distraction during immunization. Pain Manag. 2018 May;8(3):175–179. doi: 10.2217/pmt-2017-0040.
    1. Chan EA, Chung JW, Wong TK, Lien AS, Yang JY. Application of a virtual reality prototype for pain relief of pediatric burn in Taiwan. J Clin Nurs. 2007 Apr;16(4):786–93. doi: 10.1111/j.1365-2702.2006.01719.x.
    1. Chau B, Chi B, Wilson T. Decreasing pediatric pain and agitation during botulinum toxin injections for spasticity with virtual reality: Lessons learned from clinical use. J Pediatr Rehabil Med. 2018;11(3):199–204. doi: 10.3233/PRM-180534.
    1. Frey DP, Bauer ME, Bell CL, Low LK, Hassett AL, Cassidy RB, Boyer KD, Sharar SR. Virtual reality analgesia in labor: the VRAIL pilot study-a preliminary randomized controlled trial suggesting benefit of immersive virtual reality analgesia in unmedicated laboring women. Anesth Analg. 2019 Jun;128(6):e93–e96. doi: 10.1213/ANE.0000000000003649.
    1. Gerçeker Gülçin Ö, Binay ?, Bilsin E, Kahraman A, Yılmaz HB. Effects of virtual reality and external cold and vibration on pain in 7- to 12-year-old children during phlebotomy: a randomized controlled trial. J Perianesth Nurs. 2018 Dec;33(6):981–989. doi: 10.1016/j.jopan.2017.12.010.
    1. Gershon J, Zimand E, Pickering M, Rothbaum BO, Hodges L. A pilot and feasibility study of virtual reality as a distraction for children with cancer. J Am Acad Child Adolesc Psychiatry. 2004 Oct;43(10):1243–9. doi: 10.1097/01.chi.0000135621.23145.05.
    1. Glennon C, McElroy S, Connelly L, Mische Lawson L, Bretches A, Gard A, Newcomer L. Use of virtual reality to distract from pain and anxiety. Oncol Nurs Forum. 2018 Jul 02;45(4):545–552. doi: 10.1188/18.ONF.545-552.
    1. Gold J, Mahrer N. Is virtual reality ready for prime time in the medical space? a randomized control trial of pediatric virtual reality for acute procedural pain management. J Pediatr Psychol. 2018 Apr 01;43(3):266–275. doi: 10.1093/jpepsy/jsx129.
    1. McSherry T, Atterbury M, Gartner S, Helmold E, Searles DM, Schulman C. Randomized, crossover study of immersive virtual reality to decrease opioid use during painful wound care procedures in adults. J Burn Care Res. 2018 Feb 20;39(2):278–285. doi: 10.1097/BCR.0000000000000589.
    1. Mosso Vázquez José Luis, Mosso Lara D, Mosso Lara JL, Miller I, Wiederhold MD, Wiederhold BK. Pain distraction during ambulatory surgery: virtual reality and mobile devices. Cyberpsychol Behav Soc Netw. 2019 Jan;22(1):15–21. doi: 10.1089/cyber.2017.0714.
    1. Piskorz J, Czub M. Effectiveness of a virtual reality intervention to minimize pediatric stress and pain intensity during venipuncture. J Spec Pediatr Nurs. 2018 Jan;23(1):1. doi: 10.1111/jspn.12201.
    1. JahaniShoorab N, Ebrahimzadeh Zagami Samira, Nahvi A, Mazluom Seyed Reza, Golmakani Nahid, Talebi Mahdi, Pabarja Ferial. The effect of virtual reality on pain in primiparity women during episiotomy repair: a randomize clinical trial. Iran J Med Sci. 2015 May;40(3):219–24.
    1. Tashjian VC, Mosadeghi S, Howard AR, Lopez M, Dupuy T, Reid M, Martinez B, Ahmed S, Dailey F, Robbins K, Rosen B, Fuller G, Danovitch I, IsHak W, Spiegel B. Virtual reality for management of pain in hospitalized patients: results of a controlled trial. JMIR Ment Health. 2017 Mar 29;4(1):e9. doi: 10.2196/mental.7387.
    1. Walker MR, Kallingal GJ, Musser JE, Folen R, Stetz MC, Clark JY. Treatment efficacy of virtual reality distraction in the reduction of pain and anxiety during cystoscopy. Mil Med. 2014 Aug;179(8):891–6. doi: 10.7205/MILMED-D-13-00343.
    1. Hua Y, Qiu R, Yao W, Zhang Q, Chen X. The effect of virtual reality distraction on pain relief during dressing changes in children with chronic wounds on lower limbs. Pain Manag Nurs. 2015 Oct;16(5):685–91. doi: 10.1016/j.pmn.2015.03.001.
    1. Li A, Montaño Zorash, Chen VJ, Gold JI. Virtual reality and pain management: current trends and future directions. Pain Manag. 2011 Mar;1(2):147–157. doi: 10.2217/pmt.10.15.
    1. Dascal J, Reid M, IsHak W, Spiegel Brennan, Recacho Jennifer, Rosen Bradley, Danovitch Itai. Virtual reality and medical inpatients: a systematic review of randomized, controlled trials. Innov Clin Neurosci. 2017;14(1-2):14–21.
    1. Gupta A, Scott K, Dukewich M. Innovative technology using virtual reality in the treatment of pain: does it reduce pain via distraction, or is there more to it? Pain Med. 2018 Jan 01;19(1):151–159. doi: 10.1093/pm/pnx109.
    1. Hoffman HG, Richards TL, Bills AR, Van Oostrom T, Magula J, Seibel EJ, Sharar SR. Using FMRI to study the neural correlates of virtual reality analgesia. CNS Spectr. 2006 Jan;11(1):45–51. doi: 10.1017/s1092852900024202.
    1. Loreto-Quijada D, Gutiérrez-Maldonado José, Nieto R, Gutiérrez-Martínez Olga, Ferrer-García Marta, Saldaña Carmina, Fusté-Escolano Adela, Liutsko L. Differential effects of two virtual reality interventions: distraction versus pain control. Cyberpsychol Behav Soc Netw. 2014 Jun;17(6):353–8. doi: 10.1089/cyber.2014.0057.
    1. Mahrer NE, Gold JI. The use of virtual reality for pain control: a review. Curr Pain Headache Rep. 2009 Apr;13(2):100–9. doi: 10.1007/s11916-009-0019-8.
    1. Hoffman HG, Sharar SR, Coda B, Everett JJ, Ciol M, Richards T, Patterson DR. Manipulating presence influences the magnitude of virtual reality analgesia. Pain. 2004 Sep;111(1-2):162–8. doi: 10.1016/j.pain.2004.06.013.
    1. Hoffman HG, Garcia-Palacios A, Kapa V, Beecher J, Sharar SR. Immersive virtual reality for reducing experimental ischemic pain. International Journal of Human-Computer Interaction. 2003 Jun;15(3):469–486. doi: 10.1207/S15327590IJHC1503_10.
    1. McCaul KD, Malott JM. Distraction and coping with pain. Psychological Bulletin. 1984;95(3):516–533. doi: 10.1037/0033-2909.95.3.516.
    1. Silverthorn D, Johnson B, Ober W, Ober C, Silverthorn A. Human Physiology: An Integrated Approach. London, UK: Pearson; 2016. p. 2016.
    1. Rosen JB, Schulkin J. From normal fear to pathological anxiety. Psychol Rev. 1998 Apr;105(2):325–50. doi: 10.1037/0033-295x.105.2.325.
    1. Fodor LA, Coteț CD, Cuijpers P, Szamoskozi S, David D, Cristea IA. The effectiveness of virtual reality based interventions for symptoms of anxiety and depression: a meta-analysis. Sci Rep. 2018 Jul 09;8(1):10323. doi: 10.1038/s41598-018-28113-6. doi: 10.1038/s41598-018-28113-6.
    1. Triberti S, Repetto C, Riva G. Psychological factors influencing the effectiveness of virtual reality-based analgesia: a systematic review. Cyberpsychol Behav Soc Netw. 2014 Jun;17(6):335–45. doi: 10.1089/cyber.2014.0054.
    1. Ganry L, Hersant B, Sidahmed-Mezi M, Dhonneur G, Meningaud J. Using virtual reality to control preoperative anxiety in ambulatory surgery patients: a pilot study in maxillofacial and plastic surgery. J Stomatol Oral Maxillofac Surg. 2018 Sep;119(4):257–261. doi: 10.1016/j.jormas.2017.12.010.
    1. Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ, Grasby PM. Evidence for striatal dopamine release during a video game. Nature. 1998 May 21;393(6682):266–8. doi: 10.1038/30498.
    1. Smith V, Warty RR, Kashyap R, Neil P, Adriaans C, Nair A, Krishnan S, Da Silva Costa F, Vollenhoven B, Wallace EM. A randomised controlled trial to assess the feasibility of utilising virtual reality to facilitate analgesia during external cephalic version. Sci Rep. 2020 Feb 21;10(1):3141. doi: 10.1038/s41598-020-60040-3. doi: 10.1038/s41598-020-60040-3.
    1. Kyle BN, McNeil DW. Autonomic arousal and experimentally induced pain: a critical review of the literature. Pain Res Manag. 2014;19(3):159–67. doi: 10.1155/2014/536859. doi: 10.1155/2014/536859.
    1. Terkelsen AJ, Andersen OK, Molgaard H, Hansen J, Jensen TS. Mental stress inhibits pain perception and heart rate variability but not a nociceptive withdrawal reflex. Acta Physiol Scand. 2004 Apr;180(4):405–414. doi: 10.1111/j.1365-201x.2004.01263.x.
    1. Kyle BN, McNeil DW. Autonomic arousal and experimentally induced pain: a critical review of the literature. Pain Res Manag. 2014;19(3):159–67. doi: 10.1155/2014/536859. doi: 10.1155/2014/536859.
    1. Hohenschurz-Schmidt DJ, Calcagnini G, Dipasquale O, Jackson JB, Medina S, O'Daly Owen, O'Muircheartaigh Jonathan, de Lara Rubio A, Williams SCR, McMahon SB, Makovac E, Howard MA. Linking pain sensation to the autonomic nervous system: the role of the anterior cingulate and periaqueductal gray resting-state networks. Front Neurosci. 2020;14:147. doi: 10.3389/fnins.2020.00147. doi: 10.3389/fnins.2020.00147.
    1. Almeida A, Rebelo F, Noriega P, Vilar E. Virtual reality self induced cybersickness: an exploratory study. In: Rebelo F, Soares M, editors. Advances in Ergonomics in Design. Advances in Intelligent Systems and Computing, vol 588. Cham, Switzerland: Springer Internatinal; 2018. p. A.
    1. LaViola JJ. A discussion of cybersickness in virtual environments. SIGCHI Bull. 2000 Jan 01;32(1):47–56. doi: 10.1145/333329.333344.
    1. Shafer D, Carbonara C, Korpi M. Modern virtual reality technology: cybersickness, sense of presence, and gender. Media Psychology Review. 2017;11(2):1.
    1. Gorini A, Riva G. Virtual reality in anxiety disorders: the past and the future. Expert Rev Neurother. 2008 Feb;8(2):215–33. doi: 10.1586/14737175.8.2.215.
    1. Pausch R, Crea T, Conway M. A Literature Survey for Virtual Environments: Military Flight Simulator Visual Systems and Simulator Sickness. 1992 Jan;1(3):344–363. doi: 10.1162/pres.1992.1.3.344.
    1. Mourant RR, Thattacherry TR. Simulator sickness in a virtual environments driving simulator. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2016 Nov 06;44(5):534–537. doi: 10.1177/154193120004400513.
    1. Lo W, So RH. Cybersickness in the presence of scene rotational movements along different axes. Applied Ergonomics. 2001 Feb;32(1):1–14. doi: 10.1016/s0003-6870(00)00059-4.
    1. McCauley ME, Sharkey TJ. Cybersickness: perception of self-motion in virtual environments. 1992 Jan;1(3):311–318. doi: 10.1162/pres.1992.1.3.311.
    1. Rebenitsch L. Managing cybersickness in virtual reality. XRDS. 2015 Sep 06;22(1):46–51. doi: 10.1145/2810054.
    1. Lee J, Ahn SC, Hwang J. A walking-in-place method for virtual reality using position and orientation tracking. Sensors (Basel) 2018 Aug 27;18(9):2832. doi: 10.3390/s18092832.
    1. de Franca A, Soares M. Review of virtual reality technology: an ergonomic approach and current challenges. In: de Franca A, Soares M, editors. Advances in Ergonomics in Design. AHFE 2017. Advances in Intelligent Systems and Computing, vol 588. Cham, Switzerland: Springer International; 2018. pp. 52–61.
    1. Sherman W, Sherman WR, Craig A. Understanding Virtual Reality Interface, Application, and Design. San Francisco, CA: Elsevier Science; 2003.
    1. Gutierrez-Martinez O, Gutierrez-Maldonado J, Cabas-Hoyos K, Loreto D. The illusion of presence influences VR distraction: effects on cold-pressor pain. Stud Health Technol Inform. 2010;154:155–9.
    1. Gutiérrez-Martínez Olga, Gutiérrez-Maldonado José, Loreto-Quijada D. Control over the virtual environment influences the presence and efficacy of a virtual reality intervention on pain. Stud Health Technol Inform. 2011;167:111–5.
    1. Gutierrez-Maldonado J, Gutierrez-Martinez O, Cabas-Hoyos K. Interactive and passive virtual reality distraction: effects on presence and pain intensity. Stud Health Technol Inform. 2011;167:69–73.
    1. Fanelli D. "Positive" results increase down the Hierarchy of the Sciences. PLoS One. 2010 Apr 07;5(4):e10068. doi: 10.1371/journal.pone.0010068.

Source: PubMed

Подписаться