Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns

Alan Flanagan, David A Bechtold, Gerda K Pot, Jonathan D Johnston, Alan Flanagan, David A Bechtold, Gerda K Pot, Jonathan D Johnston

Abstract

The circadian timing system governs daily biological rhythms, synchronising physiology and behaviour to the temporal world. External time cues, including the light-dark cycle and timing of food intake, provide daily signals for entrainment of the central, master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN), and of metabolic rhythms in peripheral tissues, respectively. Chrono-nutrition is an emerging field building on the relationship between temporal eating patterns, circadian rhythms, and metabolic health. Evidence from both animal and human research demonstrates adverse metabolic consequences of circadian disruption. Conversely, a growing body of evidence indicates that aligning food intake to periods of the day when circadian rhythms in metabolic processes are optimised for nutrition may be effective for improving metabolic health. Circadian rhythms in glucose and lipid homeostasis, insulin responsiveness and sensitivity, energy expenditure, and postprandial metabolism, may favour eating patterns characterised by earlier temporal distribution of energy. This review details the molecular basis for metabolic clocks, the regulation of feeding behaviour, and the evidence for meal timing as an entraining signal for the circadian system in animal models. The epidemiology of temporal eating patterns in humans is examined, together with evidence from human intervention studies investigating the metabolic effects of morning compared to evening energy intake, and emerging chrono-nutrition interventions such as time-restricted feeding. Chrono-nutrition may have therapeutic application for individuals with and at-risk of metabolic disease and convey health benefits within the general population.

Keywords: circadian; clock gene; energy balance; meal timing; metabolism; time-restricted feeding.

© 2020 International Society for Neurochemistry.

References

REFERENCES

    1. Abrahamson, E., Leak, R., & Moore, R. (2001). The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. NeuroReport, 12, 435-440.
    1. Abrahamson, E., & Moore, R. (2001). Suprachiasmatic nucleus in the mouse: Retinal innervation, intrinsic organization and efferent projections. Brain Research, 916, 172-191.
    1. Acosta-Galvan, G., Yi, C., van der Vliet, J., Jhamandas, J., Panula, P., Angeles-Castellanos, M., del Carmen Basualdo, M., Escobar, C., & Buijs, R. (2011). Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proceedings of the National Academy of Sciences, 108, 5813-5818.
    1. Alhussain, M., Macdonald, I., & Taylor, M. (2016). Irregular meal-pattern effects on energy expenditure, metabolism, and appetite regulation: A randomized controlled trial in healthy normal-weight women. American Journal of Clinical Nutrition, 104, 21-32.
    1. Aljuraiban, G., Chan, Q., Oude Griep, L., Brown, I., Daviglus, M., Stamler, J., Van Horn, L., Elliott, P., & Frost, G. (2015). The impact of eating frequency and time of intake on nutrient quality and body mass index: The intermap study, a population-based study. Journal of the Academy of Nutrition and Dietetics, 115, 528-536.e1.
    1. Almoosawi, S., Vingeliene, S., Karagounis, L., & Pot, G. (2016). Chrono-nutrition: A review of current evidence from observational studies on global trends in time-of-day of energy intake and its association with obesity. The Proceedings of the Nutrition Society, 75, 487-500.
    1. Almoosawi, S., Winter, J., Prynne, C., Hardy, R., & Stephen, A. (2011). Daily profiles of energy and nutrient intakes: Are eating profiles changing over time? European Journal of Clinical Nutrition, 66, 678-686.
    1. Ángeles-Castellanos, M., Salgado-Delgado, R., Rodríguez, K., Buijs, R., & Escobar, C. (2008). Expectancy for food or expectancy for chocolate reveals timing systems for metabolism and reward. Neuroscience, 155, 297-307.
    1. Antoni, R., Robertson, T., Robertson, M., & Johnston, J. (2018). A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. Journal of Nutritional Science, 7, e22.
    1. Ballon, A., Neuenschwander, M., & Schlesinger, S. (2018). Breakfast skipping is associated with increased risk of type 2 diabetes among adults: A systematic review and meta-analysis of prospective cohort studies. Journal of Nutrition, 149, 106-113.
    1. Bandín, C., Scheer, F., Luque, A., Ávila-Gandía, V., Zamora, S., Madrid, J., Gómez-Abellán, P., & Garaulet, M. (2014). Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: A randomized, crossover trial. International Journal of Obesity, 39, 828-833.
    1. Baron, K., Reid, K., Horn, L., & Zee, P. (2013). Contribution of evening macronutrient intake to total caloric intake and body mass index. Appetite, 60, 246-251.
    1. Bass, J. (2012). Circadian topology of metabolism. Nature, 491, 348-356.
    1. Bechtold, D., & Loudon, A. (2013). Hypothalamic clocks and rhythms in feeding behaviour. Trends in Neurosciences, 36, 74-82.
    1. Bellisle, F., McDevitt, R., & Prentice, A. (1997). Meal frequency and energy balance. British Journal of Nutrition, 77, S57-S70.
    1. Betts, J., Richardson, J., Chowdhury, E., Holman, G., Tsintzas, K., & Thompson, D. (2014). The causal role of breakfast in energy balance and health: A randomized controlled trial in lean adults. American Journal of Clinical Nutrition, 100, 539-547.
    1. Brown, T. (2020). Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions. Journal of Pineal Research, 69, e12655.
    1. Buijs, F., Guzmán-Ruiz, M., León-Mercado, L., Basualdo, M., Escobar, C., Kalsbeek, A., & Buijs, R. (2017). Suprachiasmatic nucleus interaction with the arcuate nucleus; essential for organizing physiological rhythms. Eneuro, 4(2), ENEURO.0028-17.2017.
    1. Buijs, R., Hou, Y., Shinn, S., & Renaud, L. (1994). Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus. The Journal of Comparative Neurology, 340, 381-391.
    1. Cedernaes, J., Waldeck, N., & Bass, J. (2019). Neurogenetic basis for circadian regulation of metabolism by the hypothalamus. Genes & Development, 33, 1136-1158.
    1. Chaix, A., Zarrinpar, A., Miu, P., & Panda, S. (2014). Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metabolism, 20, 991-1005.
    1. Challet, E. (2019). The circadian regulation of food intake. Nature Reviews Endocrinology, 15, 393-405.
    1. Challet, E., Pévet, P., & Malan, A. (1997). Effect of prolonged fasting and subsequent refeeding on free-running rhythms of temperature and locomotor activity in rats. Behavioral Brain Research, 84, 275-284.
    1. Chow, L., Manoogian, E., Alvear, A., Fleischer, J., Thor, H., Dietsche, K., Wang, Q., Hodges, J., Esch, N., Malaeb, S., Harindhanavudhi, T., Nair, K., Panda, S., & Mashek, D. (2020). Time-restricted eating effects on body composition and metabolic measures in humans who are overweight: A feasibility study. Obesity, 28, 860-869.
    1. Chowdhury, E., Richardson, J., Gonzalez, J., Tsintzas, K., Thompson, D., & Betts, J. (2019). Six weeks of morning fasting causes little adaptation of metabolic or appetite responses to feeding in adults with obesity. Obesity, 7, 813-821.
    1. Chowdhury, E., Richardson, J., Holman, G., Tsintzas, K., Thompson, D., & Betts, J. (2016). The causal role of breakfast in energy balance and health: A randomized controlled trial in obese adults. American Journal of Clinical Nutrition, 103, 747-756.
    1. Chowdhury, E., Richardson, J., Tsintzas, K., Thompson, D., & Betts, J. (2018). Postprandial metabolism and appetite do not differ between lean adults that eat breakfast or morning fast for 6 weeks. Journal of Nutrition, 148, 13-21.
    1. Christou, S., Wehrens, S., Isherwood, C., Möller-Levet, C. S., Wu, H., Revell, V. L., Bucca, G., Skene, D. J., Laing, E. E., Archer, S. N., & Johnston, J. D. (2019). Circadian regulation in human white adipose tissue revealed by transcriptome and metabolic network analysis. Scientific Reports, 9, 2641.
    1. Chrobok, L., Northeast, R., Myung, J., Cunningham, P., Petit, C., & Piggins, H. (2020). Timekeeping in the hindbrain: A multi-oscillatory circadian centre in the mouse dorsal vagal complex. Communications Biology, 3, 225.
    1. Chung, S., Lee, E., Yun, S., Choe, H., Park, S., Son, H., Kim, K., Dluzen, D., Lee, I., Hwang, O., Son, G., & Kim, K. (2014). Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell, 157, 858-868.
    1. Cienfuegos, S., Gabel, K., Kalam, F., Ezpeleta, M., Wiseman, E., Pavlou, V., Lin, S., Oliveira, M., & Varady, K. (2020). Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. Cell Metabolism, 32, 366-378.e3.
    1. Coll, A., Farooqi, I., & O'Rahilly, S. (2007). The hormonal control of food intake. Cell, 129, 251-262.
    1. Coulthard, J., & Pot, G. (2016). The timing of the evening meal: How is this associated with weight status in UK children? British Journal of Nutrition, 115, 1616-1622.
    1. Crosby, P., Hamnett, R., Putker, M., Hoyle, N., Reed, M., Karam, C., Maywood, E., Stangherlin, A., Chesham, J., Hayter, E., Rosenbrier-Ribeiro, L., Newham, P., Clevers, H., Bechtold, D., & O’Neill, J. (2019). Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell, 177, 896-909.e20.
    1. Cui, L., & Dyball, R. (1996). Synaptic input from the retina to the suprachiasmatic nucleus changes with the light-dark cycle in the Syrian hamster. Journal of Physiology, 497, 483-493.
    1. Cunningham, P., Ahern, S., Smith, L., da Silva Santos, C., Wager, T., & Bechtold, D. (2016). Targeting of the circadian clock via CK1δ/ε to improve glucose homeostasis in obesity. Scientific Reports, 6, 29983.
    1. Dai, J., Swaab, D., & Buijs, R. (1997). Distribution of vasopressin and vasoactive intestinal polypeptide (VIP) fibers in the human hypothalamus with special emphasis on suprachiasmatic nucleus efferent projections. The Journal of Comparative Neurology, 383, 397-414.
    1. Damiola, F., Le Minli, N., Preitner, N., Kornmann, B., Fleury-Olela, F., & Schibler, U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes & Development, 14, 2950-2961.
    1. Dattilo, M., Crispim, C., Zimberg, I., Tufik, S., & de Mello, M. (2011). Meal distribution across the day and its relationship with body composition. Biological Rhythm Research, 42, 119-129.
    1. de Castro, J. (2004). The time of day of food intake influences overall intake in humans. Journal of Nutrition, 134, 104-111.
    1. DePoy, L., McClung, C., & Logan, R. (2017). Neural mechanisms of circadian regulation of natural and drug reward. Neural Plasticity, 2017, 1-14.
    1. Dibner, C., Schibler, U., & Albrecht, U. (2010). The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annual Review of Physiology, 72, 517-549.
    1. Dunlap, J., Loros, J., & DeCoursey, P. (2004). Chronobiology. Sinauer Associates.
    1. Eckel, R., Depner, C., Perreault, L., Markwald, R., Smith, M., McHill, A., Higgins, J., Melanson, E., & Wright, K. (2015). Morning circadian misalignment during short sleep duration impacts insulin sensitivity. Current Biology, 25, 3004-3010.
    1. Eckel-Mahan, K., Patel, V., de Mateo, S., Orozco-Solis, R., Ceglia, N., Sahar, S., Dilag-Penilla, S., Dyar, K., Baldi, P., & Sassone-Corsi, P. (2013). Reprogramming of the circadian clock by nutritional challenge. Cell, 155, 1464-1478.
    1. Eicher-Miller, H., Khanna, N., Boushey, C., Gelfand, S., & Delp, E. (2016). Temporal dietary patterns derived among the adult participants of the national health and nutrition examination survey 1999-2004 are associated with diet quality. Journal of the Academy of Nutrition and Dietetics, 116, 283-291.
    1. Fayet-Moore, F., McConnell, A., Cassettari, T., & Petocz, P. (2019). Breakfast choice is associated with nutrient, food group and discretionary intakes in Australian adults at both breakfast and the rest of the day. Nutrients., 11, 175.
    1. Feillet, C., Bainier, C., Mateo, M., Blancas-Velázquez, A., Salaberry, N., Ripperger, J., Albrecht, U., & Mendoza, J. (2015). Rev-erbα modulates the hypothalamic orexinergic system to influence pleasurable feeding behaviour in mice. Addiction Biology, 22, 411-422.
    1. Gaal, S., Livingstone, M., McNulty, H., Ward, M., & Kerr, M. (2018). Breakfast in relation to overall diet quality in UK children and adolescents. The Proceedings of the Nutrition Society, 77.
    1. Galindo Muñoz, J., Gómez Gallego, M., Díaz Soler, I., Barberá Ortega, M., Martínez Cáceres, C., & Hernández Morante, J. (2020). Effect of a chronotype-adjusted diet on weight loss effectiveness: A randomized clinical trial. Clinical Nutrition, 39, 1041-1048.
    1. Garaulet, M., Gómez-Abellán, P., Alburquerque-Béjar, J., Lee, Y., Ordovás, J., & Scheer, F. (2013). Timing of food intake predicts weight loss effectiveness. International Journal of Obesity, 37, 604-611.
    1. Gibbs, J., Blaikley, J., Beesley, S., Matthews, L., Simpson, K., Boyce, S., Farrow, S., Else, K., Singh, D., Ray, D., & Loudon, A. (2011). The nuclear receptor REV-ERB mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proceedings of the National Academy of Sciences, 109, 582-587.
    1. Gibney, M., Barr, S., Bellisle, F., Drewnowski, A., Fagt, S., Livingstone, B., Masset, G., Varela Moreiras, G., Moreno, L., Smith, J., Vieux, F., Thielecke, F., & Hopkins, S. (2018). Breakfast in human nutrition: The international breakfast research initiative. Nutrients., 10, 559.
    1. Gill, S., Le, H., Melkani, G., & Panda, S. (2015). Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science, 347, 1265-1269.
    1. Gill, S., & Panda, S. (2015). A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metabolism, 22, 789-798.
    1. Grill, H., & Hayes, M. (2012). Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metabolism, 16, 296-309.
    1. Guilding, C., Hughes, A., Brown, T., Namvar, S., & Piggins, H. (2009). A riot of rhythms: Neuronal and glial circadian oscillators in the mediobasal hypothalamus. Molecular Brain Research, 2, 28.
    1. Hamaguchi, Y., Tahara, Y., Hitosugi, M., & Shibata, S. (2015). Impairment of circadian rhythms in peripheral clocks by constant light is partially reversed by scheduled feeding or exercise. Journal of Biological Rhythms, 30, 533-542.
    1. Haraguchi, A., Aoki, N., Ohtsu, T., Ikeda, Y., Tahara, Y., & Shibata, S. (2014). Controlling access time to a high-fat diet during the inactive period protects against obesity in mice. Chronobiology International, 31, 935-944.
    1. Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E., Gill, S., Leblanc, M., Chaix, A., Joens, M., Fitzpatrick, J., Ellisman, M., & Panda, S. (2012). Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metabolism, 15, 848-860.
    1. Hawley, J., Sassone-Corsi, P., & Zierath, J. (2020). Chrono-nutrition for the prevention and treatment of obesity and type 2 diabetes: From mice to men. Diabetologia, 10, 1007.
    1. Herichová, I., Mravec, B., Stebelová, K., Križanová, O., Jurkovičová, D., Kvetňanský, R., & Zeman, M. (2006). Rhythmic clock gene expression in heart, kidney and some brain nuclei involved in blood pressure control in hypertensive TGR(mREN-2)27 rats. Molecular and Cellular Biochemistry, 296, 25-34.
    1. Hughes, M., DiTacchio, L., Hayes, K., Vollmers, C., Pulivarthy, S., Baggs, J., Panda, S., & Hogenesch, J. (2009). Harmonics of circadian gene transcription in mammals. PLoS Genetics., 5, e1000442.
    1. Hutchison, A., Regmi, P., Manoogian, E., Fleischer, J., Wittert, G., Panda, S., & Heilbronn, L. (2019). Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: A randomized crossover trial. Obesity, 7, 724-732.
    1. Ikeda, Y., Kamagata, M., Hirao, M., Yasuda, S., Iwami, S., Sasaki, H., Tsubosaka, M., Hattori, Y., Todoh, A., Tamura, K., Shiga, K., Ohtsu, T., & Shibata, S. (2018). Glucagon and/or IGF-1 production regulates resetting of the liver circadian clock in response to a protein or amino acid-only diet. EBioMed., 28, 210-224.
    1. Jakubowicz, D., Barnea, M., Wainstein, J., & Froy, O. (2013). High Caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity., 21, 2504-2512.
    1. Jakubowicz, D., Froy, O., Wainstein, J., & Boaz, M. (2012). Meal timing and composition influence ghrelin levels, appetite scores and weight loss maintenance in overweight and obese adults. Steroids, 77, 323-331.
    1. Jakubowicz, D., Wainstein, J., Ahrén, B., Bar-Dayan, Y., Landau, Z., Rabinovitz, H., & Froy, O. (2015). High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: A randomised clinical trial. Diabetologia, 58, 912-919.
    1. Jakubowicz, D., Wainstein, J., Ahren, B., Landau, Z., Bar-Dayan, Y., & Froy, O. (2015). Fasting until noon triggers increased postprandial hyperglycemia and impaired insulin response after lunch and dinner in individuals with type 2 diabetes: a randomized clinical trial. Diabetes Care, 38, 1820-1826.
    1. Jamshed, H., Beyl, R., Della Manna, D., Yang, E., Ravussin, E., & Peterson, C. (2019). Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients., 11, 1234.
    1. Johnston, J., Ordovás, J., Scheer, F., & Turek, F. (2016). Circadian rhythms, metabolism, and chrononutrition in rodents and humans. Advances in Nutrition, 7, 399-406.
    1. Jovanovic, A., Gerrard, J., & Taylor, R. (2009). The second-meal phenomenon in type 2 diabetes. Diabetes Care, 32, 1199-1201.
    1. Jovanovic, A., Leverton, E., Solanky, B., Ravikumar, B., Snaar, J., Morris, P., & Taylor, R. (2009). The second-meal phenomenon is associated with enhanced muscle glycogen storage in humans. Clinical Science, 117, 119-127.
    1. Kahleova, H., Lloren, J., Mashchak, A., Hill, M., & Fraser, G. (2017). Meal frequency and timing are associated with changes in body mass index in adventist health study 2. Journal of Nutrition, 147, 1722-1728.
    1. Kalra, S., & Kalra, P. (2004). NPY and cohorts in regulating appetite, obesity and metabolic syndrome: Beneficial effects of gene therapy. Neuropeptides., 38, 201-211.
    1. Kalsbeek, A., Palm, I., La Fleur, S., Scheer, F., Perreau-Lenz, S., Ruiter, M., Kreier, F., Cailotto, C., & Buijs, R. (2006). SCN outputs and the hypothalamic balance of life. Journal of Biological Rhythms, 21, 458-469.
    1. Kaneko, N., & Sawamoto, K. (2009). Adult neurogenesis and its alteration under pathological conditions. Neuroscience Research, 63, 155-164.
    1. Kanerva, N., Kronholm, E., Partonen, T., Ovaskainen, M., Kaartinen, N., Konttinen, H., Broms, U., & Männistö, S. (2012). Tendency toward eveningness is associated with unhealthy dietary habits. Chronobiology International, 29, 920-927.
    1. Kessler, K., Hornemann, S., Petzke, K., Kemper, M., Kramer, A., Pfeiffer, A., Pivovarova, O., & Rudovich, N. (2017). The effect of diurnal distribution of carbohydrates and fat on glycaemic control in humans: A randomized controlled trial. Scientific Reports, 7, 44170.
    1. Koch, C. E., Begemann, K., Kiehn, J. T., Griewahn, L., Mauer, J., Hess, M. E., Moser, A., Schmid, S. M., Brüning, J. C., & Oster, H. (2020). Circadian regulation of hedonic appetite in mice by clocks in dopaminergic neurons of the VTA. Nature Commun., 11, 3071.
    1. Kohsaka, A., Laposky, A. D., Ramsey, K. M., Estrada, C., Joshu, C., Kobayashi, Y., Turek, F. W., & Bass, J. (2007). High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metabolism, 6, 414-421.
    1. Laing, E., Johnston, J., Möller-Levet, C., Bucca, G., Smith, C., Dijk, D., & Archer, S. (2015). Exploiting human and mouse transcriptomic data: Identification of circadian genes and pathways influencing health. BioEssays, 37, 544-556.
    1. Lamia, K., Storch, K., & Weitz, C. (2008). Physiological significance of a peripheral tissue circadian clock. Proceedings of the National Academy of Sciences, 105, 15172-15177.
    1. Landgraf, D., Tsang, A., Leliavski, A., Koch, C., Barclay, J., Drucker, D., & Oster, H. (2015). The incretin hormone oxyntomodulin regulates resetting of the liver circadian clock by food. Experimental and Clinical Endocrinology & Diabetes, 122.
    1. LeCheminant, J., Christenson, E., Bailey, B., & Tucker, L. (2013). Restricting night-time eating reduces daily energy intake in healthy young men: A short-term cross-over study. British Journal of Nutrition, 110, 2108-2113.
    1. Lee, S., Tura, A., Mari, A., Ko, S., Kwon, H., Song, K., Yoon, K., Lee, K., & Ahn, Y. (2011). Potentiation of the early-phase insulin response by a prior meal contributes to the second-meal phenomenon in type 2 diabetes. American Journal of Physiology. Endocrinology and Metabolism, 301, E984-E990.
    1. Leech, R., Livingstone, K., Worsley, A., Timperio, A., & McNaughton, S. (2016). Meal frequency but not snack frequency is associated with micronutrient intakes and overall diet quality in Australian men and women. Journal of Nutrition, 146, 2027-2034.
    1. Leech, R., Timperio, A., Livingstone, K., Worsley, A., & McNaughton, S. (2017). Temporal eating patterns: Associations with nutrient intakes, diet quality, and measures of adiposity. American Journal of Clinical Nutrition, 106, 1121-1130.
    1. Leech, R., Worsley, A., Timperio, A., & McNaughton, S. (2015). Understanding meal patterns: Definitions, methodology and impact on nutrient intake and diet quality. Nutrition Research Reviews, 28, 1-21.
    1. Leech, R., Worsley, A., Timperio, A., & McNaughton, S. (2017). Temporal eating patterns: A latent class analysis approach. International Journal of Behavioral Nutrition and Physical Activity, 14.
    1. Lenard, N., & Berthoud, H. (2008). Central and peripheral regulation of food intake and physical activity: Pathways and genes. Obesity., 16, S11-S22.
    1. Leung, G., Huggins, C., & Bonham, M. (2019). Effect of meal timing on postprandial glucose responses to a low glycemic index meal: A crossover trial in healthy volunteers. Clinical Nutrition, 38, 465-471.
    1. Levitsky, D., & Pacanowski, C. (2013). Effect of skipping breakfast on subsequent energy intake. Physiology & Behavior, 119, 9-16.
    1. Lindgren, O., Mari, A., Deacon, C., Carr, R., Winzell, M., Vikman, J., & Ahrén, B. (2009). Differential islet and incretin hormone responses in morningversusafternoon after standardized meal in healthy men. Journal of Clinical Endocrinology and Metabolism, 94, 2887-2892.
    1. Longo, V., & Panda, S. (2016). Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metabolism, 23, 1048-1059.
    1. Lopez-Minguez, J., Dashti, H. S., Madrid-Valero, J. J., Madrid, J. A., Saxena, R., Scheer, F. et al (2019). Heritability of the timing of food intake. Clinical Nutrition, 38, 767-773.
    1. Mäkalä, J., Kjaernes, U., Pipping Ekström, M., L'Orange Fürst, E., Gronow, J., & Holm, L. (1999). Nordic meals: methodological notes on a comparative survey. Appetite, 32, 73-79.
    1. Maury, E., Ramsey, K., & Bass, J. (2010). Circadian rhythms and metabolic syndrome. Circulation Research, 106, 447-462.
    1. McHill, A., Czeisler, C., Phillips, A., Keating, L., Barger, L., Garaulet, M., Scheer, F., & Klerman, E. (2019). Caloric and macronutrient intake differ with circadian phase and between lean and overweight young adults. Nutrients., 11, 587.
    1. McHill, A., Phillips, A., Czeisler, C., Keating, L., Yee, K., Barger, L., Garaulet, M., Scheer, F., & Klerman, E. (2017). Later circadian timing of food intake is associated with increased body fat. American Journal of Clinical Nutrition, 106, 1213-1219.
    1. Mekary, R., Giovannucci, E., Willett, W., van Dam, R., & Hu, F. (2012). Eating patterns and type 2 diabetes risk in men: Breakfast omission, eating frequency, and snacking. American Journal of Clinical Nutrition, 95, 1182-1189.
    1. Melkani, G., & Panda, S. (2017). Time-restricted feeding for prevention and treatment of cardiometabolic disorders. Journal of Physiology, 595, 3691-3700.
    1. Mieda, M., & Sakurai, T. (2011). Bmal1 in the nervous system is essential for normal adaptation of circadian locomotor activity and food intake to periodic feeding. Journal of Neuroscience, 31, 15391-15396.
    1. Mistlberger, R. (2011). Neurobiology of food anticipatory circadian rhythms. Physiology & Behavior, 104, 535-545.
    1. Mistlberger, R. (2020). Food as circadian time cue for appetitive behavior. F1000Research, 9, 61.
    1. Mistlberger, R., & Antle, M. (2011). Entrainment of circadian clocks in mammals by arousal and food. Essays in Biochemistry, 49, 119-136.
    1. Moore, R., & Eichler, V. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Research, 42, 201-206.
    1. Morgan, L., Aspostolakou, F., Wright, J., & Gama, R. (1999). Diurnal variations in peripheral insulin resistance and plasma non-esterified fatty acid concentrations: a possible link? Annals of Clinical Biochemistry, 36, 447-450.
    1. Morgan, L., Shi, J., Hampton, S., & Frost, G. (2011). Effect of meal timing and glycaemic index on glucose control and insulin secretion in healthy volunteers. British Journal of Nutrition, 108, 1286-1291.
    1. Morris, C., Garcia, J., Myers, S., Yang, J., Trienekens, N., & Scheer, F. (2015). The human circadian system has a dominating role in causing the morning/evening difference in diet-induced thermogenesis. Obesity., 23, 2053-2058.
    1. Morton, G., Meek, T., & Schwartz, M. (2014). Neurobiology of food intake in health and disease. Nature Reviews Neuroscience, 15, 367-378.
    1. Mouland, J., Martial, F., Watson, A., Lucas, R., & Brown, T. (2019). Cones support alignment to an inconsistent world by suppressing mouse circadian responses to the blue colors associated with twilight. Current Biology, 29, 4260-4267.e4.
    1. Mukherji, A., Kobiita, A., & Chambon, P. (2015). Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proceedings of the National Academy of Sciences, 112, E6683-E6690.
    1. Murray, G., Allen, N., & Trinder, J. (2002). Mood and the circadian system: Investigation of a circadian component in positive affect. Chronobiology International, 19, 1151-1169.
    1. Nas, A., Mirza, N., Hägele, F., Kahlhöfer, J., Keller, J., Rising, R., Kufer, T., & Bosy-Westphal, A. (2017). Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and metabolic risk. American Journal of Clinical Nutrition, 105, 1351-1361.
    1. Palla, L., & Almoosawi, S. (2019). Diurnal patterns of energy intake derived via principal component analysis and their relationship with adiposity measures in adolescents: results from the national diet and nutrition survey RP (2008-2012). Nutrients., 11, 422.
    1. Pappas, C., Kandaraki, E., Tsirona, S., Kountouras, D., Kassi, G., & Diamanti-Kandarakis, E. (2016). Postprandial dysmetabolism: Too early or too late? Hormones (Athens)., 15, 321-344.
    1. Parr, E., Devlin, B., Radford, B., & Hawley, J. (2020). A delayed morning and earlier evening time-restricted feeding protocol for improving glycemic control and dietary adherence in men with overweight/obesity: A randomized controlled trial. Nutrients, 12, 505.
    1. Parsons, M., Moffitt, T., Gregory, A., Goldman-Mellor, S., Nolan, P., Poulton, R., & Caspi, A. (2014). Social jetlag, obesity and metabolic disorder: Investigation in a cohort study. Int J Obes., 39, 842-848.
    1. Patton, A., & Hastings, M. (2018). The suprachiasmatic nucleus. Current Biology, 28, R816-R822.
    1. Patton, D., & Mistlberger, R. (2013). Circadian adaptations to meal timing: Neuroendocrine mechanisms. Frontiers in Neuroscience, 7, 185.
    1. Paul, E., Tossell, K., & Ungless, M. (2019). Transcriptional profiling aligned with in situ expression image analysis reveals mosaically expressed molecular markers for GABA neuron sub-groups in the ventral tegmental area. European Journal of Neuroscience, 50, 3732-3749.
    1. Paul, S., Hanna, L., Harding, C., Hayter, E., Walmsley, L., Bechtold, D., & Brown, T. (2020). Output from VIP cells of the mammalian central clock regulates daily physiological rhythms. Nature Communications, 11, 1453.
    1. Pearce, K., Noakes, M., Keogh, J., & Clifton, P. (2008). Effect of carbohydrate distribution on postprandial glucose peaks with the use of continuous glucose monitoring in type 2 diabetes. American Journal of Clinical Nutrition, 87, 638-644.
    1. Pendergast, J., Nakamura, W., Friday, R., Hatanaka, F., Takumi, T., & Yamazaki, S. (2009). robust food anticipatory activity in bmal1-deficient mice. PLoS One, 4, e4860.
    1. Pendergast, J., & Yamazaki, S. (2018). The mysterious food-entrainable oscillator: insights from mutant and engineered mouse models. Journal of Biological Rhythms, 33, 458-474.
    1. Perelis, M., Marcheva, B., Moynihan Ramsey, K., Schipma, M., Hutchison, A., Taguchi, A., Peek, C., Hong, H., Huang, W., Omura, C., Allred, A., Bradfield, C., Dinner, A., Barish, G., & Bass, J. (2015). Pancreatic cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science, 350, aac4250-aac4250.
    1. Perrin, L., Loizides-Mangold, U., Chanon, S., Gobet, C., Hulo, N., Isenegger, L., Weger, B. D., Migliavacca, E., Charpagne, A., Betts, J. A., Walhin, J.-P., Templeman, I., Stokes, K., Thompson, D., Tsintzas, K., Robert, M., Howald, C., Riezman, H., Feige, J. N., … Dibner, C. (2018). Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle. eLife, 7, e34114.
    1. Pitts, S., Perone, E., & Silver, R. (2003). Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 285, R57-R67.
    1. Pot, G., Almoosawi, S., & Stephen, A. (2016). Meal irregularity and cardiometabolic consequences: Results from observational and intervention studies. The Proceedings of the Nutrition Society, 75, 475-486.
    1. Pot, G., Hardy, R., & Stephen, A. (2014). Irregular consumption of energy intake in meals is associated with a higher cardio-metabolic risk in adults of a British birth cohort. International Journal of Obesity, 38, 1518-1524.
    1. Pot, G., Hardy, R., & Stephen, A. (2015). Irregularity of energy intake at meals: Prospective associations with the metabolic syndrome in adults of the 1946 British birth cohort. British Journal of Nutrition, 115, 315-323.
    1. Potter, G., Skene, D., Arendt, J., Cade, J., Grant, P., & Hardie, L. (2016). Circadian rhythm and sleep disruption: Causes, metabolic consequences, and countermeasures. Endocrine Reviews, 37, 584-608.
    1. Preitner, N., Damiola, F., Zakany, J., Duboule, D., Albrecht, U., & Schibler, U. (2002). The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell, 110, 251-260.
    1. Ravussin, E., Beyl, R., Poggiogalle, E., Hsia, D., & Peterson, C. (2019). Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity., 27, 1244-1254.
    1. Reddy, A. B., Karp, N. A., Maywood, E. S., Sage, E. A., Deery, M., O'Neill, J. S., Wong, G. K., Chesham, J., Odell, M., Lilley, K. S., Kyriacou, C. P., & Hastings, M. H. (2006). Circadian orchestration of the hepatic proteome. Current Biology, 16, 1107-1115.
    1. Reeves, S., Halsey, L., McMeel, Y., & Huber, J. (2013). Breakfast habits, beliefs and measures of health and wellbeing in a nationally representative UK sample. Appetite, 60, 51-57.
    1. Reid, K., Baron, K., & Zee, P. (2014). Meal timing influences daily caloric intake in healthy adults. Nutrition Research, 34, 930-935.
    1. Reutrakul, S., Hood, M., Crowley, S., Morgan, M., Teodori, M., & Knutson, K. (2013a). The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiology International, 31, 64-71.
    1. Reutrakul, S., Hood, M., Crowley, S., Morgan, M., Teodori, M., Knutson, K., & Van Cauter, E. (2013b). Chronotype is independently associated with glycemic control in type 2 diabetes. Diabetes Care, 36, 2523-2529.
    1. Richter, C. (1927). Animal behavior and internal drives. The Quarterly Review of Biology, 2, 307-343.
    1. Richter, J., Herzog, N., Janka, S., Baumann, T., Kistenmacher, A., & Oltmanns, K. (2020). Twice as high diet-induced thermogenesis after breakfast vs dinner on high-calorie as well as low-calorie meals. Journal of Clinical Endocrinology and Metabolism, 105, e211-e221.
    1. Rivera-Estrada, D., Aguilar-Roblero, R., Alva-Sánchez, C., & Villanueva, I. (2018). The homeostatic feeding response to fasting is under chronostatic control. Chronobiology International, 35, 1680-1688.
    1. Robles, M., Cox, J., & Mann, M. (2014). In-Vivo Quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genetics, 10, e1004047.
    1. Rosenwasser, A., Pelchat, R., & Adler, N. (1984). Memory for feeding time: Possible dependence on coupled circadian oscillators. Physiology & Behavior, 32, 25-30.
    1. Rothschild, J., Hoddy, K., Jambazian, P., & Varady, K. (2014). Time-restricted feeding and risk of metabolic disease: A review of human and animal studies. Nutrition Reviews, 72, 308-318.
    1. Ruddick-Collins, L., Johnston, J., Morgan, P., & Johnstone, A. (2018). The big breakfast study: Chrono-nutrition influence on energy expenditure and bodyweight. Nutrition Bulletin, 43, 174-183.
    1. Ruddick-Collins, L., Morgan, P., & Johnstone, A. (2020). Mealtime: A circadian disruptor and determinant of energy balance? Journal of Neuroendocrinology, 32, e12886.
    1. Scheer, F., Morris, C., & Shea, S. (2013). The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity, 21, 421-423.
    1. Schibler, U., Ripperger, J., & Brown, S. (2001). Chronobiology-reducing time. Science, 293, 437-438.
    1. Scott, E. (2015). Circadian clocks, obesity and cardiometabolic function. Diabetes, Obesity and Metabolism, 17, 84-89.
    1. Sherman, H., Genzer, Y., Cohen, R., Chapnik, N., Madar, Z., & Froy, O. (2012). Timed high-fat diet resets circadian metabolism and prevents obesity. The FASEB Journal, 26, 3493-3502.
    1. Sievert, K., Hussain, S., Page, M., Wang, Y., Hughes, H., Malek, M., & Cicuttini, F. (2019). Effect of breakfast on weight and energy intake: Systematic review and meta-analysis of randomised controlled trials. BMJ, 364, 142.
    1. Silver, R., LeSauter, J., Tresco, P., & Lehman, M. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 382, 810-813.
    1. Smit, A., Patton, D., Michalik, M., Opiol, H., & Mistlberger, R. (2013). Dopaminergic regulation of circadian food anticipatory activity rhythms in the rat. PLoS One, 8, e82381.
    1. Stephan, F. (2002). The "Other" circadian system: Food as a Zeitgeber. Journal of Biological Rhythms, 17, 284-292.
    1. Stephan, F., Swann, J., & Sisk, C. (1979a). Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behavioral and Neural Biology, 25, 346-363.
    1. Stephan, F., Swann, J., & Sisk, C. (1979b). Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions. Behavioral and Neural Biology, 25, 545-554.
    1. Stephan, F., & Zucker, I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proceedings of the National Academy of Sciences, 69, 1583-1586.
    1. Storch, K., & Weitz, C. (2009). Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proceedings of the National Academy of Sciences, 106, 6808-6813.
    1. Sun, X., Dang, F., Zhang, D., Yuan, Y., Zhang, C., Wu, Y., Wang, Y., & Liu, Y. (2014). Glucagon-CREB/CRTC2 signaling cascade regulates hepatic BMAL1 protein. Journal of Biological Chemistry, 290, 2189-2197.
    1. Sun, X., Whitefield, S., Rusak, B., & Semba, K. (2001). Electrophysiological analysis of suprachiasmatic nucleus projections to the ventrolateral preoptic area in the rat. European Journal of Neuroscience, 14, 1257-1274.
    1. Sutton, E., Beyl, R., Early, K., Cefalu, W., Ravussin, E., & Peterson, C. (2018). Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metabolism, 27, 1212-1221.e3.
    1. Tahara, Y., Hirao, A., Moriya, T., Kudo, T., & Shibata, S. (2010). Effects of medial hypothalamic lesions on feeding-induced entrainment of locomotor activity and liverper2expression inPer2:Luc mice. Journal of Biological Rhythms, 25, 9-18.
    1. Takahashi, J. (2016). Transcriptional architecture of the mammalian circadian clock. Nature Reviews Genetics, 18, 164-179.
    1. Takasu, N., Kurosawa, G., Tokuda, I., Mochizuki, A., Todo, T., & Nakamura, W. (2012). Circadian regulation of food-anticipatory activity in molecular clock-deficient mice. PLoS One, 7, e48892.
    1. Tan, K., Knight, Z., & Friedman, J. (2014). Ablation of AgRP neurons impairs adaption to restricted feeding. Molecular Metabolism, 3, 694-704.
    1. Tempel, D., Shor-Posner, G., Dwyer, D., & Leibowitz, S. (1989). Nocturnal patterns of macronutrient intake in freely feeding and food-deprived rats. American Journal of Physiology, 256, R541-R548.
    1. Turek, F., Joshu, E., Kohsaka, A., Lin, E., Ivanova, G., & Laposky, A. (2005). Obesity and metabolic syndrome in circadian clock mutant mice. Science, 308, 1043-1045.
    1. van Cauter, E., Desir, D., DeCoster, C., Fery, F., & Balasse, E. (1989). Nocturnal decrease in glucose tolerance during constant glucose infusion*. Journal of Clinical Endocrinology and Metabolism, 69, 604-611.
    1. Verwey, M., Dhir, S., & Amir, S. (2016). Circadian influences on dopamine circuits of the brain: Regulation of striatal rhythms of clock gene expression and implications for psychopathology and disease. F1000Res., 5, 2062.
    1. Walker, R., & Christopher, A. (2016). Time-of-day preference mediates the relationship between personality and breakfast attitudes. Personality and Individual Differences, 91, 138-143.
    1. Wang, C., Almoosawi, S., & Palla, L. (2019). Day-time patterns of carbohydrate intake in adults by non-parametric multi-level latent class analysis-results from the UK national diet and nutrition survey (2008/09-2015/16). Nutrients, 11, 2476.
    1. Wang, J., Patterson, R., Ang, A., Emond, J., Shetty, N., & Arab, L. (2013). Timing of energy intake during the day is associated with the risk of obesity in adults. Journal of Human Nutrition & Dietetics, 27, 255-262.
    1. Wang, Y., Song, L., Liu, M., Ge, R., Zhou, Q., Liu, W., Li, R., Qie, J., Zhen, B., Wang, Y., He, F., Qin, J., & Ding, C. (2018). A proteomics landscape of circadian clock in mouse liver. Nature Communications, 9, 1553.
    1. Watts, A., Swanson, L., & Sanchez-Watts, G. (1987). Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport ofPhaseolus vulgaris leucoagglutinin in the rat. The Journal of Comparative Neurology, 258, 204-229.
    1. Wehrens, S., Christou, S., Isherwood, C., Middleton, B., Gibbs, M., Archer, S., Skene, D., & Johnston, J. (2017). Meal timing regulates the human circadian system. Current Biology, 27, 1768-1775.e3.
    1. West, A., & Bechtold, D. (2015). The cost of circadian desynchrony: Evidence, insights and open questions. BioEssays, 37, 777-788.
    1. Williams, K., & Elmquist, J. (2012). From neuroanatomy to behavior: Central integration of peripheral signals regulating feeding behavior. Nature Neuroscience, 15, 1350-1355.
    1. Wittmann, M., Dinich, J., Merrow, M., & Roenneberg, T. (2006). Social Jetlag: Misalignment of biological and social time. Chronobiology International, 23, 497-509.
    1. Xiao, Q., Garaulet, M., & Scheer, F. (2019). Meal timing and obesity: Interactions with macronutrient intake and chronotype. International Journal of Obesity, 43, 1701-1711.
    1. Yamajuku, D., Inagaki, T., Haruma, T., Okubo, S., Kataoka, Y., Kobayashi, S., Ikegami, K., Laurent, T., Kojima, T., Noutomi, K., Hashimoto, S., & Oda, H. (2012). Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock. Scientific Reports, 2, 439.

Source: PubMed

Подписаться