A phase I trial of ganetespib in combination with paclitaxel and trastuzumab in patients with human epidermal growth factor receptor-2 (HER2)-positive metastatic breast cancer

Komal Jhaveri, Rui Wang, Eleonora Teplinsky, Sarat Chandarlapaty, David Solit, Karen Cadoo, James Speyer, Gabriella D'Andrea, Sylvia Adams, Sujata Patil, Sofia Haque, Tara O'Neill, Kent Friedman, Francisco J Esteva, Clifford Hudis, Shanu Modi, Komal Jhaveri, Rui Wang, Eleonora Teplinsky, Sarat Chandarlapaty, David Solit, Karen Cadoo, James Speyer, Gabriella D'Andrea, Sylvia Adams, Sujata Patil, Sofia Haque, Tara O'Neill, Kent Friedman, Francisco J Esteva, Clifford Hudis, Shanu Modi

Abstract

Background: Targeted therapies in HER2-positive metastatic breast cancer significantly improve outcomes but efficacy is limited by therapeutic resistance. HER2 is an acutely sensitive Heat Shock Protein 90 (HSP90) client and HSP90 inhibition can overcome trastuzumab resistance. Preclinical data suggest that HSP90 inhibition is synergistic with taxanes with the potential for significant clinical activity. We therefore tested ganetespib, a HSP90 inhibitor, in combination with paclitaxel and trastuzumab in patients with trastuzumab-refractory HER2-positive metastatic breast cancer.

Methods: In this phase I dose-escalation study, patients with trastuzumab-resistant HER2-positive metastatic breast cancer received weekly trastuzumab (2 mg/kg) and paclitaxel (80 mg/m2) on days 1, 8, 15, and 22 of a 28-day cycle with escalating doses of ganetespib (100 mg/m2, 150 mg/m2, and a third cohort of 125 mg/m2 if needed) on days 1, 8, and 15. Therapy was continued until disease progression or toxicity. The primary objective was to establish the safety and maximum tolerated dose and/or recommended phase II dose (RP2D) of this therapy. The secondary objectives included evaluation of the effects of ganetespib on the pharmacokinetics of paclitaxel, and to make a preliminary assessment of the efficacy of the combination therapy.

Results: Dose escalation was completed for the two main cohorts without any observed dose-limiting toxicities. Nine patients received treatment. The median prior lines of anti-HER2 therapy numbered three (range 2-4), including prior pertuzumab in 9/9 patients and ado-trastuzumab emtansine (T-DM1) in 8/9 patients. The most common grade 1/2 adverse events (AEs) were diarrhea, fatigue, anemia, and rash. There were no grade 4 AEs related to ganetespib. The overall response rate was 22% (2/9 patients had partial response) and stable disease was seen in 56% (5/9 patients). The clinical benefit rate was 44% (4/9 patients). The median progression-free survival was 20 weeks (range 8-55).

Conclusion: The RP2D of ganetespib is 150 mg/m2 in combination with weekly paclitaxel plus trastuzumab. The combination was safe and well tolerated. Despite prior taxanes, pertuzumab, and T-DM1, clinical activity of this triplet regimen in this heavily pretreated cohort is promising and warrants further study in HER2-positive metastatic breast cancer.

Trial registration: ClinicalTrials.gov NCT02060253 . Registered 30 January 2014.

Keywords: Ganetespib; HER2; HSP90 inhibitor; Metastatic breast cancer; Paclitaxel; Phase I trial; Trastuzumab.

Conflict of interest statement

Ethics approval and consent to participate

This clinical trial was conducted in accordance with Good Clinical Practice guidelines. Approval for the protocol was obtained from the institutional review board for both Memorial Sloan Kettering Cancer Center and New York University Langone Medical Center. All participants gave informed consent before they entered the study.

Consent for publication

All authors agreed to this publication.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Most common ganetespib-related grade 1/2 AEs in ≥20% of patients. None of the nine patients experienced DLTs. ALT alanine aminotransferase, AST aspartate transaminase
Fig. 2
Fig. 2
Baseline and follow-up CT scans. Baseline (a) and follow-up (b) CT scans of a 43-year-old patient with left chest wall soft tissue metastases
Fig. 3
Fig. 3
Paclitaxel PK. Preliminary paclitaxel PK data for the nine study patients are not appreciably different from those reported in the literature

References

    1. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997. doi: 10.1200/JCO.2013.50.9984.
    1. Bilous M, Morey AL, Armes JE, Bell R, Button PH, Cummings MC, et al. Assessing HER2 amplification in breast cancer: findings from the Australian In Situ Hybridization Program. Breast Cancer Res Treat. 2012;134:617. doi: 10.1007/s10549-012-2093-6.
    1. Varga Z, Noske A, Ramach C, Padberg B, Moch H. Assessment of HER2 status in breast cancer: overall positivity rate and accuracy by fluorescence in situ hybridization and immunohistochemistry in a single institution over 12 years: a quality control study. BMC Cancer. 2013;13:615. doi: 10.1186/1471-2407-13-615.
    1. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006;3:269. doi: 10.1038/ncponc0509.
    1. Whitesell L. Lindquist SL.HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5:761. doi: 10.1038/nrc1716.
    1. Xu W, Neckers L. Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res. 2007;13:1625. doi: 10.1158/1078-0432.CCR-06-2966.
    1. Weinstein IB. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science. 2002;297:63. doi: 10.1126/science.1073096.
    1. Jhaveri K, Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471. doi: 10.1016/B978-0-12-397927-8.00015-4.
    1. Jhaveri K, Taldone T, Modi S, Chiosis G. Advances in the clinical development of heat shock protein 90 (HSP90) inhibitors in cancers. Biochim Biophys Acta. 2012;1823:742. doi: 10.1016/j.bbamcr.2011.10.008.
    1. Jhaveri K, Ochiana SO, Dunphy MP, Gerecitano JF, Corben AD, Peter RI, et al. Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin Investig Drugs. 2014;23:611. doi: 10.1517/13543784.2014.902442.
    1. Basso AD, Solit DB, Munster PN, Rosen N. Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene. 2002;21:1159. doi: 10.1038/sj.onc.1205184.
    1. Solit DB, Zheng FF, Drobnjak M, Münster PN, Higgins B, Verbel D, et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res. 2002;8:986.
    1. Modi S, Saura C, Henderson C, Lin NU, Mahtani R, Goddard J, et al. A multicenter trial evaluating retaspimycin HCL (IPI-504) plus trastuzumab in patients with advanced or metastatic HER2-positive breast cancer. Breast Cancer Res Treat. 2013;139:107. doi: 10.1007/s10549-013-2510-5.
    1. Jhaveri K, Miller K, Rosen L, Schneider B, Chap L, Hannah A, et al. A phase I dose-escalation trial of trastuzumab and alvespimycin hydrochloride (KOS-1022; 17 DMAG) in the treatment of advanced solid tumors. Clin Cancer Res. 2012;18:5090. doi: 10.1158/1078-0432.CCR-11-3200.
    1. Modi S, Stopeck AT, Gordon MS, Mendelson D, Solit DB, Bagatell R, et al. Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol. 2007;25:5410. doi: 10.1200/JCO.2007.11.7960.
    1. Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N, et al. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res. 2011;17:5132. doi: 10.1158/1078-0432.CCR-11-0072.
    1. Friedland JC, Sang J, Modi S, Bradley R, El-Hariry I, Wada Y, Proia DA. Beyond HER2 and hormonal agents: the Heat Shock Protein 90 inhibitor ganetespib as a potential new breast cancer therapy. Cancer Res. 2011;71(24 Suppl):Abstract nr P3-17-05.
    1. Ying W, Du Z, Sun L, Foley KP, Proia DA, Blackman RK, et al. Ganetespib, a unique triazolone-containing Hsp90inhibitor exhibits potent antitumor activity and a superior safety profile for cancer therapy. Mol Cancer Ther. 2012;11:475. doi: 10.1158/1535-7163.MCT-11-0755.
    1. Jhaveri K, Chandarlapaty S, Lake D, Gilewski T, Robson M, Goldfarb S, et al. A phase II open-label study of ganetespib, a novel heat shock protein 90 inhibitor for patients with metastatic breast cancer. Clin Breast Cancer. 2014;14:154. doi: 10.1016/j.clbc.2013.12.012.
    1. Nguyen DM, Lorang D, Chen GA, Stewart JH, 4th, Tabibi E, Schrump DS. Enhancement of paclitaxel-mediated cytotoxicity in lung cancer cells by 17-allylamino geldanamycin: in vitro and in vivo analysis. Ann Thorac Surg. 2001;72:371. doi: 10.1016/S0003-4975(01)02787-4.
    1. Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N. Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res. 2003;63:2139.
    1. Münster PN, Basso A, Solit D, Norton L, Rosen N. Modulation of HSP90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. Clin Cancer Res. 2001;7:2228.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45:228. doi: 10.1016/j.ejca.2008.10.026.
    1. Maier-Lenz H, Hauns B, Haering B, Koetting J, Mross K, Unger C, et al. Phase I study of paclitaxel administered as a 1-hour infusion: toxicity and pharmacokinetics. Semin Oncol. 1997;24(Suppl 19):S19-16–9.
    1. Mross K, Holländer N, Hauns B, Schumacher M, Maier-Lenz H. The pharmacokinetics of a 1-h paclitaxel infusion. Cancer Chemother Pharmacol. 2000;45:463–70. doi: 10.1007/s002800051020.
    1. Jhaveri K, Modi S. Ganetespib: research and clinical development. Onco Targets Ther. 2015;8:1849.
    1. Ramalingam S, Goss G, Rosell R, Schmid-Bindert G, Zaric B, Andric Z, et al. A randomized phase II study of ganetespib, a heat shock protein 90 inhibitor, in combination with docetaxel in second-line therapy of advanced non-small cell lung cancer (GALAXY-1) Ann Oncol. 2015;26:1741. doi: 10.1093/annonc/mdv220.
    1. Schroder C, Pederson JV, Chua S, Swanton C, Akimov M, Ide S, et al. Use of biomarkers and imaging to evaluate the treatment effect of AUY922, an HSP90 inhibitor, in patients with HER2+ or ER+ metastatic breast cancer. J Clin Oncol. 2011;29 Suppl:Abstract e11024.
    1. Jensen MR, Schoepfer J, Radimerski T, Massey A, Guy CT, Brueggen J, et al. NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res. 2008;10:R33. doi: 10.1186/bcr1996.
    1. Shapiro GI, Kwak E, Dezube BJ, Yule M, Ayrton J, Lyons J, Mahadevan D. First-in-human phase I dose escalation study of a second-generation non-ansamycin HSP90 inhibitor, AT13387, in patients with advanced solid tumors. Clin Cancer Res. 2015;21:87. doi: 10.1158/1078-0432.CCR-14-0979.
    1. Cavenagh JD, Yong K, Byrne J, et al. The safety, pharmacokinetics and pharmacodynamics of KW-2478, a novel HSP90 antagonist, in patients with B-cell malignancies: a first-in-man, phase I, multicentre, open-label, dose escalation study. Blood. 2008;112(Suppl 11):2777.
    1. Modi S, Ismail-Khan R, Munster P, Lucas M, Galluppi GR, Tangri S, et al. Phase 1 dose-escalation study of the heat shock protein 90 inhibitor BIIB021 with trastuzumab in HER2+ metastatic breast cancer. Cancer Res. 2010;70 Suppl 2:Abstract P3-14-02.
    1. Chiosis G, Timaul MN, Lucas B, Munster PN, Zheng FF, Sepp-Lorenzino L, et al. A small molecule designed to bind to the adenine nucleotide pocket of HSP90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol. 2001;8:289. doi: 10.1016/S1074-5521(01)00015-1.
    1. Samlowski WE, Papadopoulos K, Olszanski AJ, Zavitz K, Cimbora DM, Shawbell S, et al. Phase 1 study of HSP90 inhibitor MPC-3100 in subjects with refractory or recurrent cancer. Molecular targets and cancer therapeutics. Mol Cancer Ther. 2011;10 Suppl:Abstract nr A96.
    1. Bao R, Lai CJ, Qu H, Wang D, Yin L, Zifcak B, et al. CUDC-305, a novel synthetic HSP90 inhibitor with unique pharmacologic properties for cancer therapy. Clin Cancer Res. 2009;15:4046. doi: 10.1158/1078-0432.CCR-09-0152.
    1. Taldone T, Patel PD, Patel M, Patel HJ, Evans CE, Rodina A, et al. Experimental and structural testing module to analyze paralogue-specificity and affinity in the HSP90 inhibitors series. J Med Chem. 2013;56:6803. doi: 10.1021/jm400619b.
    1. Isambert N, Hollebecque A, Berge Y, Ingen HV, Brienza S, Destaillats A, et al. A phase I study of Debio 0932, an oral HSP90 inhibitor, in patients with solid tumors. J Clin Oncol. 2012;30:Abstract 3026.
    1. Fadden P, Huang KH, Veal JM, Steed PM, Barabasz AF, Foley, et al. Application of chemoproteomics to drug discovery: identification of a clinical candidate targeting HSP90. Chem Biol. 2010;17:686. doi: 10.1016/j.chembiol.2010.04.015.
    1. Rajan A, Kelly RJ, Trepel JB, Kim YS, Alarcon SV, Kummar S, et al. A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clin Cancer Res. 2011;17:6831. doi: 10.1158/1078-0432.CCR-11-0821.
    1. Menezes DL, Taverna P, Jensen MR, Abrams T, Stuart D, Yu GK, et al. The novel oral HSP90 inhibitor NVP-HSP990 exhibits potent and broad-spectrum antitumor activities in vitro and in vivo. Mol Cancer Ther. 2012;11:730. doi: 10.1158/1535-7163.MCT-11-0667.
    1. Spreafico A, Delord JP, De Mattos-Arruda L, Berge Y, Rodon J, Cottura E, et al. Phase I dose-escalation, open-label study of HSP990 administered orally in adult patients with advanced solid malignancies. Br J Cancer. 2015;112(4):650–9. doi: 10.1038/bjc.2014.653.
    1. Bussenius J, Blazey CM, Aay N, Anand NK, Arcalas A, Baik T, et al. Discovery of XL888: a novel tropane-derived small molecule inhibitor of HSP90. Bioorg Med Chem Lett. 2012;22:5396. doi: 10.1016/j.bmcl.2012.07.052.
    1. Gerecitano JF, Modi S, Rampa R, Drilon AE, Fury MG, Gounder MM, et al. Phase I trial of the HSP-90 inhibitor PU-H71. J Clin Oncol. 2015;33 Suppl:Abstract 2537.
    1. Jhaveri K, Chandarlapaty S, Iyengar N, Morris PG, Corben AD, Patil S, et al. Biomarkers that predict sensitivity to heat shock protein 90 inhibitors. Clin Breast Cancer. 2016;16:276. doi: 10.1016/j.clbc.2015.11.004.
    1. Dunphy M, Chiosis G, Beattie B, Gerecitano JF, Bromberg J, Janjigian Y, et al. Progress in first-in-human trial of HSP90-targeted PET imaging in cancer patients. J Nucl Med. 2013;54 Suppl 2:Abstract 279.
    1. Gerecitano JF, Modi S, Gajria D, Taldone T, Alpaugh M, DaGama EG, et al. Using 124I-PU-H71 PET imaging to predict intratumoral concentration in patients on a phase I trial of PU-H71. J Clin Oncol. 2013;31 Suppl:Abstract 11076.

Source: PubMed

Подписаться