Association of somatic burden of disease with age and neuropsychological measures in attenuated mucopolysaccharidosis types I, II and VI

Alia Ahmed, Elsa Shapiro, Kyle Rudser, Alicia Kunin-Batson, Kelly King, Chester B Whitley, Alia Ahmed, Elsa Shapiro, Kyle Rudser, Alicia Kunin-Batson, Kelly King, Chester B Whitley

Abstract

Introduction: The mucopolysaccharidoses (MPSs) are a group of rare genetic lysosomal disorders with progressive multisystem involvement. An MPS-specific physical symptom scale was developed and introduced a Physical Symptom Score (PSS) to quantify the somatic disease burden across MPS I, II and VI.

Hypothesis: Somatic burden of disease in patients with attenuated MPS I, II and VI as measured by the PSS will be positively associated with age and negatively associated with neuropsychological functions [i.e. full scale intelligence quotient (FSIQ) and attention].

Materials and methods: Forty-eight patients with attenuated MPS I (n = 24), II (n = 14), and VI (n = 10) aged 6 to 32 years on enzyme replacement therapy who were enrolled in "Longitudinal Studies of Brain Structure and Functions in MPS Disorders" across seven centers. Somatic disease burden was measured by the PSS. Neuropsychological functions were measured by the Wechsler Abbreviated Scale of Intelligence (WASI) and Test of Variables of Attention (TOVA).

Results: PSS was positively associated with age in attenuated MPS I (P < 0.001), MPS II (P < 0.01) and MPS VI (P < 0.05). There was a negative association of PSS with FSIQ in attenuated MPS I (P < 0.001) and in MPS VI (P < 0.001) but not with MPS II. Although attention scores were below average in all groups, a significant negative association between PSS and one measures of sustained attention (TOVA d prime) was found only in MPS VI.

Conclusions: Physical Symptom Score increased with age in attenuated MPS I, II and VI, reflecting progressive somatic burden of disease despite treatment with enzyme replacement therapy. Furthermore, the association of increased somatic disease burden with decreased neurocognitive ability suggests that both measures reflect disease severity and are not independent.

Keywords: Enzyme replacement therapy; Mucopolysaccharidosis (MPS); Neuropsychological measures; Physical Symptom Score (PSS); Somatic disease burden.

Figures

Fig. 1
Fig. 1
Association of PSS with age in MPS I, II and VI.
Fig. 2
Fig. 2
Association of PSS with FSIQ in MPS I, II and VI.

References

    1. Ahmed A., Rudser K., Kunin-Batson A., Delaney K., Whitley C., Shapiro E. Mucopolysaccharidosis (MPS) physical symptom score: development, reliability, and validity. J. Inherit. Metab. Dis. 2015;1-8 PMID: 26303610.
    1. Sparrow S.S., Cicchetti D.V., Balla D.A. second ed. Psychological Corporation; San Antonio, TX: 2005. Vineland Adaptive Behavior Scales.
    1. Landgraf J.M., Abetz L., Ware J.E. first ed. The Health Institute; New England Medical Center, Boston: 1996. The CHQ User's Manual.
    1. Wechsler D. Psychological Corporation; San Antonio TX: 1999. Wechsler Abbreviated Scale of Intelligence.
    1. Greenberg L.M. The TOVA Company; Los Alamitos, CA: 2007. The Test of Variables of Attention (Version 7.3) [Computer software]
    1. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2014. .
    1. Desrocher M., Rovet J. Neurocognitive correlates of type 1 diabetes mellitus in childhood. Child Neuropsychol. 2004;10(1):36–52.
    1. Naguib J.M., Kulinskaya E., Lomax C.L., Garralda M.E. Neuro-cognitive performance in children with type 1 diabetes—a meta-analysis. J. Pediatr. Psychol. 2009;34(3):271–282.
    1. Karsdorp P.A., Everaerd W., Kindt M. Psychological and cognitive functioning in children and adolescents with congenital heart disease: a meta-analysis. J. Pediatr. Psychol. 2007;32(5):527–541.
    1. Wraith J.E., Scarpa M., Beck M., Bodamer O.A., De Meirleir L., Guffon N., Lund A.M., Malm G., Van der Ploeg A.T., Zeman J. Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur. J. Pediatr. 2008;167:267–277.
    1. Muenzer J., Beck M., Eng C.M., Escolar M.L., Giugliani R., Guffon N.H., Harmatz P., Kamin W., Kampmann C., Koseoglu S.T., Link B., Martin R.A., Molter D.W., Muñoz Rojas M.V., Ogilvie J.W., Parini R., Ramaswami U., Scarpa M., Schwartz I.V., Wood R.E., Wraith E. Multidisciplinary management of Hunter syndrome. Pediatrics. 2008;124(6):1228–1239.
    1. Martin R., Beck M., Eng C., Giugliani R., Harmatz P., Muñoz V., Muenzer J. Recognition and diagnosis of mucopolysaccharidosis II (Hunter syndrome) Pediatrics. 2008;121(2):377–386.
    1. Matheus M.G., Castillo M., Smith J.K., Armao D., Towle D., Muenzer J. Brain MRI findings in patients with mucopolysaccharidosis types I and II and mild clinical presentation. Neuroradiology. 2004;46(8):666–672.
    1. Vedolin L., Schwartz I.V.D., Komlos M., Schuch A., Azevedo A.C., Vieira T., Maeda F.K., Marques da Silva A.M., Giugliani R. Brain MRI in mucopolysaccharidosis Effect of aging and correlation with biochemical findings. Neurology. 2007;69(9):917–924.
    1. Shapiro E.G., Nestrasil I., Rudser K., Delaney K., Kovac V., Ahmed A., Yund B., Orchard P.J., Eisengart J., Niklason G.R., Raiman J., Mamak E., Cowan M.J., Bailey-Olson M., Harmatz P., Shankar S.P., Cagle S., Ali N., Steiner R.D., Wozniak J.R., Lim K.O., Whitley C.B. Neurocognition across the spectrum of mucopolysaccharidosis type I: age, severity, and treatment. Mol. Genet. Metab. 2015;116(1–2):61–68.
    1. Yund B., Rudser K., Ahmed A., Kovac V., Nestrasil I., Raiman J., Mamak E., Harmatz P., Steiner R., Lau H., Vekaria P., Wozniak J.R., Lim K.O., Delaney K., Whitley C.B., Shapiro E.G. Cognitive, medical, and neuroimaging characteristics of attenuated mucopolysaccharidosis type II. Mol. Genet. Metab. 2015;114(2):170–177.
    1. Shapiro E.G., Guler O.E., Rudser K., Delaney K., Bjoraker K., Whitley C.B., Tolar J., Orchard P.J., Provenzale J., Thomas K.M. An exploratory study of brain function and structure in mucopolysaccharidosis type I: long term observations following hematopoietic cell transplantation (HCT) Mol. Genet. Metab. 2012;107(1):116–121.
    1. Provenzale J.M., Nestrasil I., Chen S., Kan S.H., Le S.Q., Jens J.K., Snella E.M., Vondrak K.M., Yee J.K., Vite C.H., Elashoff D., Duan L., Wang R.Y., Ellinwood N.M., Guzman M.A., Shapiro E.G., Dickson P.I. Diffusion tensor imaging and myelin composition analysis reveal abnormal myelination in corpus callosum of canine mucopolysaccharidosis I. Exp. Neurol. 2015;273:1–10.
    1. Suris J.C., Michaud P.A., Viner R. The adolescent with a chronic condition. Part I: developmental issues. Arch. Dis. Child. 2004;89(10):938–942.
    1. Schatz J., Finke R.L., Kellet J.M., Krammer J.H. Cognitive functioning in children with sickle cell disease: a meta-analysis. J. Pediatr. Psychol. 2002;27(8):739–748.
    1. Lynch S.G., Parmenter B.A., Denney D.R. The association between cognitive impairment and physical disability in multiple sclerosis. Mult. Scler. 2005;11:469–476.

Source: PubMed

Подписаться