Caffeine intake, short bouts of physical activity, and energy expenditure: a double-blind randomized crossover trial

Pedro B Júdice, Catarina N Matias, Diana A Santos, João P Magalhães, Marc T Hamilton, Luís B Sardinha, Analiza M Silva, Pedro B Júdice, Catarina N Matias, Diana A Santos, João P Magalhães, Marc T Hamilton, Luís B Sardinha, Analiza M Silva

Abstract

PA energy expenditure (PAEE) is the most variable component of Total Energy Expenditure (TEE) and largely due to the balance of sedentary time (SedT) and low intensity physical activity (LIPA). There has been an emergence for seeking an understanding of factors which determine variations in SedT, LIPA, and PAEE. Sedentary behavior and physical activity are relatively resistant to change by experimental dietary treatments and significant body weight changes. Although caffeine (Caf) is by far the most heavily used nutritional agent ingested to promote a sense of vigor/alertness, it is still unknown if Caf is effective in increasing PAEE and physical activity. The aim of the study was to test the hypothesis that 2 daily doses of Caf (as a capsule to blind the treatment and divided equally during breakfast and lunch) increase PAEE and TEE, and it would do so through increasing the frequent and brief bouts of physical activity (~1-5 min long) through the day as measured by accelerometry. In 21 low Caf users (<100 mg day(-1)), we used a double-blind crossover trial (ClinicalTrials.govID;NCT01477294) with two conditions (4-day each with a 3-day washout period) randomly ordered as 5 mg kg(-1) day(-1) of Caf and maltodextrin as placebo (Plc). Resting energy expenditure (REE) by indirect calorimetry, total energy expenditure (TEE) from doubly labeled water, PAEE calculated as TEE-(REE+0.1TEE), and accelerometry measurements of both LIPA and MVPA were not different between conditions. However, regardless of caffeine or placebo, there were several significant relationships between brief bouts of LIPA and MVPA with PAEE. In conclusion, this double-blind study found that low and moderate-vigorous activity as well as the total volume of PAEE in free-living conditions is resistant to dietary caffeine intake that was equivalent to 5 cups of espresso or 7 cups of tea.

Trial registration: ClinicalTrials.gov NCT01477294.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Screening, enrollment and interventions of…
Figure 1. Screening, enrollment and interventions of the study participants.
Figure 2. Physical activity energy expenditure and…
Figure 2. Physical activity energy expenditure and frequency of low intensity short bouts (>4-min), under both conditions.
Association between physical activity energy expenditure (PAEE) from doubly labeled water (DLW) and the frequency of short bouts (>4 min) performed at a low intensity physical activity, under placebo and caffeine conditions.
Figure 3. Physical activity energy expenditure and…
Figure 3. Physical activity energy expenditure and frequency of moderate-to-vigorous intensity short bouts, under placebo-(A) and caffeine-(B).
Association between physical activity energy expenditure (PAEE) from doubly labeled water (DLW) and the frequency of short bouts (1-4 min) performed at a moderate-to-vigorous physical activity intensity, under placebo (panels A) and caffeine (panels B).

References

    1. Barone JJ, Roberts HR (1996) Caffeine consumption. Food Chem Toxicol 34: 119-129. doi:. PubMed: .
    1. Andrews KW, Schweitzer A, Zhao C, Holden JM, Roseland JM et al. (2007) The caffeine contents of dietary supplements commonly purchased in the US: analysis of 53 products with caffeine-containing ingredients. Anal Bioanal Chem 389: 231-239. doi:. PubMed: .
    1. Arciero PJ, Gardner AW, Calles-Escandon J, Benowitz NL, Poehlman ET (1995) Effects of caffeine ingestion on NE kinetics, fat oxidation, and energy expenditure in younger and older men. Am J Physiol 268: E1192-E1198. PubMed: .
    1. Astrup A, Toubro S, Cannon S, Hein P, Breum L et al. (1990) Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 51: 759-767. PubMed: .
    1. Bérubé-Parent S, Pelletier C, Doré J, Tremblay A (2005) Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men. Br J Nutr 94: 432-436. doi:. PubMed: .
    1. Dulloo AG, Geissler CA, Horton T, Collins A, Miller DS (1989) Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. Am J Clin Nutr 49: 44-50. PubMed: .
    1. Hursel R, Westerterp-Plantenga MS (2010) Thermogenic ingredients and body weight regulation. Int J Obes (Lond) 34: 659-669. doi:. PubMed: .
    1. Bracco D, Ferrarra JM, Arnaud MJ, Jéquier E, Schutz Y (1995) Effects of caffeine on energy metabolism, heart rate, and methylxanthine metabolism in lean and obese women. Am J Physiol 269: E671-E678. PubMed: .
    1. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N et al. (1999) Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 70: 1040-1045. PubMed: .
    1. Hursel R, Viechtbauer W, Dulloo AG, Tremblay A, Tappy L et al. (2011) The effects of catechin rich teas and caffeine on energy expenditure and fat oxidation: a meta-analysis. Obes Rev 12: e573-e581. doi:. PubMed: .
    1. Baptista F, Santos DA, Silva AM, Mota J, Santos R et al. (2012) Prevalence of the Portuguese population attaining sufficient physical activity. Med Sci Sports Exerc 44: 466-473. doi:. PubMed: .
    1. Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T et al. (2008) Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 40: 181-188. doi:. PubMed: .
    1. Sedentary Behaviour Research N (2012). Letter Editors Standardized Use Termssedentary" and "sedentary behaviours". Appl Physiol Nutr Metab 37: 540-542
    1. Dunstan DW, Howard B, Healy GN, Owen N (2012) Too much sitting - A health hazard. Diabetes Res Clin Pract.
    1. Hamilton MT, Hamilton DG, Zderic TW (2007) Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 56: 2655-2667. doi:. PubMed: .
    1. Owen N, Healy GN, Matthews CE, Dunstan DW (2010) Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev 38: 105-113. doi:. PubMed: .
    1. Church TS, Thomas DM, Tudor-Locke C, Katzmarzyk PT, Earnest CP et al. (2011) Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLOS ONE 6: e19657. doi:. PubMed: .
    1. Macfarlane DJ, Taylor LH, Cuddihy TF (2006) Very short intermittent vs continuous bouts of activity in sedentary adults. Prev Med 43: 332-336. doi:. PubMed: .
    1. Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E et al. (2012) Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 35: 976-983. doi:. PubMed: .
    1. Boreham CA, Kennedy RA, Murphy MH, Tully M, Wallace WF et al. (2005) Training effects of short bouts of stair climbing on cardiorespiratory fitness, blood lipids, and homocysteine in sedentary young women. Br J Sports Med 39: 590-593. doi:. PubMed: .
    1. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE et al. (2008) Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care 31: 661-666. doi:. PubMed: .
    1. Miyashita M, Burns SF, Stensel DJ (2008) Accumulating short bouts of brisk walking reduces postprandial plasma triacylglycerol concentrations and resting blood pressure in healthy young men. Am J Clin Nutr 88: 1225-1231. PubMed: .
    1. Swartz AM, Squires L, Strath SJ (2011) Energy expenditure of interruptions to sedentary behavior. Int J Behav Nutr Phys Act 8: 69. doi:. PubMed: .
    1. World Medical Association (2008) Declaration of Helsinki - ethical principles for medical research involving human subjects WMJ 54: 122-125.
    1. World Health Organization (2007) Steps to Health. A Eur Framework Promote Physical Act Health Copenhagen (Denmark) World Health Organization: 32–34.
    1. Currie SR, Wilson KG, Gauthier ST (1995) Caffeine and chronic low back pain. Clin J Pain 11: 214-219. PubMed: .
    1. Burke LM (2008) Caffeine and sports performance. Appl Physiol Nutr Metab 33: 1319-1334. doi:. PubMed: .
    1. Heckman MA, Weil J, Gonzalez de Mejia E (2010) Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75: R77-R87. doi:. PubMed: .
    1. Bird ET, Parker BD, Kim HS, Coffield KS (2005) Caffeine ingestion and lower urinary tract symptoms in healthy volunteers. Neurourol Urodyn 24: 611-615. doi:. PubMed: .
    1. Lohman TG, Roche AS, Martorell R (1988) Anthropometric standardization reference manual. Champaign, IL: Human Kinetics. 177 p.
    1. Compher C, Frankenfield D, Keim N, Roth-Yousey L (2006) Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc 106: 881-903. doi:. PubMed: .
    1. Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109: 1-9. PubMed: .
    1. Schoeller DA, Taylor PB (1987) Precision of the doubly labelled water method using the two-point calculation. Hum Nutr Clin Nutr 41: 215-223. PubMed: .
    1. Schoeller DA, van Santen E (1982) Measurement of energy expenditure in humans by doubly labeled water method. J Appl Physiol 53: 955-959. PubMed: .
    1. Martin CK, Correa JB, Han H, Allen HR, Rood JC et al. (2012) Validity of the Remote Food Photography Method (RFPM) for estimating energy and nutrient intake in near real-time. Obesity (Silver Spring) 20: 891-899. doi:. PubMed: .
    1. Trost SG, McIver KL, Pate RR (2005) Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc 37: S531-S543. doi:. PubMed: .
    1. Ward DS, Evenson KR, Vaughn A, Rodgers AB, Troiano RP (2005) Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc 37: S582-S588. doi:. PubMed: .
    1. Santos DA, Silva AM, Matias CN, Fields DA, Heymsfield SB et al. (2010) Accuracy of DXA in estimating body composition changes in elite athletes using a four compartment model as the reference method. Nutr Metab (Lond) 7: 22. doi:. PubMed: .
    1. Roberts AT, de Jonge-Levitan L, Parker CC, Greenway F (2005) The effect of an herbal supplement containing black tea and caffeine on metabolic parameters in humans. Altern Med Rev 10: 321-325. PubMed: .
    1. Greenberg JA, Axen KV, Schnoll R, Boozer CN (2005) Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes (Lond) 29: 1121-1129. doi:. PubMed: .
    1. John D, Tyo B, Bassett DR (2010) Comparison of four ActiGraph accelerometers during walking and running. Med Sci Sports Exerc 42: 368-374. . PubMed: .
    1. Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS (2011) Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc 43: 1561-1567. doi:. PubMed: .
    1. Lyden K, Kozey Keadle SL, Staudenmayer JW, Freedson PS (2012) Validity of two wearable monitors to estimate breaks from sedentary time. Med Sci Sports Exerc 44: 2243-2252. doi:. PubMed: .
    1. Kozey-Keadle S, Libertine A, Staudenmayer J, Freedson P (2012) The Feasibility of Reducing and Measuring Sedentary Time among Overweight, Non-Exercising Office Workers. J Obes, 2012: 2012: . PubMed: 22175004
    1. Robertson D, Wade D, Workman R, Woosley RL, Oates JA (1981) Tolerance to the humoral and hemodynamic effects of caffeine in man. J Clin Invest 67: 1111-1117. doi:. PubMed: .
    1. Koot P, Deurenberg P (1995) Comparison of changes in energy expenditure and body temperatures after caffeine consumption. Ann Nutr Metab 39: 135-142. doi:. PubMed: .
    1. Collins LC, Cornelius MF, Vogel RL, Walker JF, Stamford BA (1994) Effect of caffeine and/or cigarette smoking on resting energy expenditure. Int J Obes Relat Metab Disord 18: 551-556. PubMed: .
    1. Hamada T, Kotani K, Higashi A, Ikeda J, Tagaki E et al. (2008) Lack of association of the Trp64Arg polymorphism of beta3-adrenergic receptor gene with energy expenditure in response to caffeine among young healthy women. Tohoku J Exp Med 214: 365-370. doi:. PubMed: .
    1. Drescher AA, Goodwin JL, Silva GE, Quan SF (2011) Caffeine and screen time in adolescence: associations with short sleep and obesity. J Clin Sleep Med 7: 337-342. PubMed: .
    1. Gregersen NT, Bitz C, Krog-Mikkelsen I, Hels O, Kovacs EM et al. (2009) Effect of moderate intakes of different tea catechins and caffeine on acute measures of energy metabolism under sedentary conditions. Br J Nutr 102: 1187-1194. doi:. PubMed: .
    1. Katzmarzyk PT, Church TS, Craig CL, Bouchard C (2009) Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc 41: 998-1005. doi:. PubMed: .
    1. Matthews CE, George SM, Moore SC, Bowles HR, Blair A et al. (2012) Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr 95: 437-445. doi:. PubMed: .
    1. Vandelanotte C, Sugiyama T, Gardiner P, Owen N (2009) Associations of leisure-time internet and computer use with overweight and obesity, physical activity and sedentary behaviors: cross-sectional study. J Med Internet Res 11: e28. doi:. PubMed: .
    1. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM et al. (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32: S498-S504. doi:. PubMed: .
    1. Dulloo AG, Seydoux J, Girardier L (1992) Potentiation of the thermogenic antiobesity effects of ephedrine by dietary methylxanthines: adenosine antagonism or phosphodiesterase inhibition? Metabolism 41: 1233-1241. doi:. PubMed: .

Source: PubMed

Подписаться