Expression of 5-HT3 receptors and TTX resistant sodium channels (Na(V)1.8) on muscle nerve fibers in pain-free humans and patients with chronic myofascial temporomandibular disorders

Nikolaos Christidis, Isabell Kang, Brian E Cairns, Ujendra Kumar, Xudong Dong, Annika Rosén, Sigvard Kopp, Malin Ernberg, Nikolaos Christidis, Isabell Kang, Brian E Cairns, Ujendra Kumar, Xudong Dong, Annika Rosén, Sigvard Kopp, Malin Ernberg

Abstract

Background: Previous studies have shown that 5-HT3-antagonists reduce muscle pain, but there are no studies that have investigated the expression of 5-HT3-receptors in human muscles. Also, tetrodotoxin resistant voltage gated sodium-channels (NaV) are involved in peripheral sensitization and found in trigeminal ganglion neurons innervating the rat masseter muscle. This study aimed to investigate the frequency of nerve fibers that express 5-HT3A-receptors alone and in combination with NaV1.8 sodium-channels in human muscles and to compare it between healthy pain-free men and women, the pain-free masseter and tibialis anterior muscles, and patients with myofascial temporomandibular disorders (TMD) and pain-free controls.

Methods: Three microbiopsies were obtained from the most bulky part of the tibialis and masseter muscles of seven and six healthy men and seven and six age-matched healthy women, respectively, while traditional open biopsies were obtained from the most painful spot of the masseter of five female patients and from a similar region of the masseter muscle of five healthy, age-matched women. The biopsies were processed by routine immunohistochemical methods. The biopsy sections were incubated with monoclonal antibodies against the specific axonal marker PGP 9.5, and polyclonal antibodies against the 5-HT3A-receptors and NaV1.8 sodium-channels.

Results: A similar percentage of nerve fibers in the healthy masseter (85.2%) and tibialis (88.7%) muscles expressed 5-HT3A-receptors. The expression of NaV1.8 by 5-HT3A positive nerve fibers associated with connective tissue was significantly higher than nerve fibers associated with myocytes (P < .001). In the patients, significantly more fibers per section were found with an average of 3.8 ± 3 fibers per section in the masseter muscle compared to 2.7 ± 0.2 in the healthy controls (P = .024). Further, the frequency of nerve fibers that co-expressed NaV1.8 and 5-HT3A receptors was significantly higher in patients (42.6%) compared to healthy controls (12.0%) (P < .001).

Conclusions: This study showed that the 5-HT3A-receptor is highly expressed in human masseter and tibialis muscles and that there are more nerve fibers that express 5-HT3A-receptors in the masseter of women with myofascial TMD compared to healthy women. These findings indicate that 5-HT3-receptors might be up-regulated in myofascial TMD and could serve as potential biomarkers of chronic muscle pain.

Figures

Figure 1
Figure 1
Example of high power (40 x) photomicrographs for a masseter section from one female patient with myofascial TMD and a healthy age- and sex-matched pain-free volunteer. The fibers shown are positively labelled for PGP 9.5 (A), 5-HT3A(B), and NaV1.8 (C). (D) is the composite image. Calibration bar: 100 μm.
Figure 2
Figure 2
A low power (10 x) (in A) and a high power (40 x) (in B) image of the same section of a masseter muscle (microbiopsy from a pain-free volunteer). A. The arrows indicate individual muscle fascicles composed of myocytes separated by connective tissue. B. A higher power (40 x, rounded square in A) image of PGP 9.5 labelling with examples of fibers associated with myocytes (arrows) and connective tissue (double arrows). The insets show examples of a PGP 9.5 positive fiber associated with a myocyte (i) and with connective tissue (ii). Calibration bar A: 100 μm, B: 25 μm.
Figure 3
Figure 3
A comparison showing the different mean frequencies for antibody labelling on PGP 9.5 immunoreactive fibers (5-HT3A; both 5-HT3A and NaV1.8) in the masseter and tibialis tissues. There were no significant differences in the frequency of fibers that expressed 5-HT3A or both 5-HT3A and NaV1.8, when the two muscles were compared (P > .05, Students t-test). Each bar represents the average from all the sections obtained from each muscle type. The error bars depict standard error of the mean.

References

    1. Zeitz KP, Guy N, Malmberg AB, Dirajlal S, Martin WJ, Sun L, Bonhaus DW, Stucky CL, Julius D, Basbaum AI. The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci. 2002;22(3):1010–1019.
    1. Fiebich BL, Akundi RS, Seidel M, Geyer V, Haus U, Muller W, Stratz T, Candelario-Jalil E. Expression of 5-HT3A receptors in cells of the immune system. Scand J Rheumatol Suppl. 2004;119:9–11.
    1. Ernberg M, Hedenberg-Magnusson B, Alstergren P, Kopp S. The level of serotonin in the superficial masseter muscle in relation to local pain and allodynia. Life Sci. 1999;65(3):313–325. doi: 10.1016/S0024-3205(99)00250-7.
    1. Ghafouri B, Larsson BK, Sjors A, Leandersson P, Gerdle BU. Interstitial concentration of serotonin is increased in myalgic human trapezius muscle during rest, repetitive work and mental stress - an in vivo microdialysis study. Scand J Clin Lab Invest. 2010;70(7):478–486. doi: 10.3109/00365513.2010.511257. doi:10.3109/00365513.2010.511257.
    1. Rosendal L, Larsson B, Kristiansen J, Peolsson M, Sogaard K, Kjaer M, Sorensen J, Gerdle B. Increase in muscle nociceptive substances and anaerobic metabolism in patients with trapezius myalgia: microdialysis in rest and during exercise. Pain. 2004;112(3):324–334. doi: 10.1016/j.pain.2004.09.017. doi:10.1016/j.pain.2004.09.017.
    1. Shah JP, Phillips TM, Danoff JV, Gerber LH. An in vivo microanalytical technique for measuring the local biochemical milieu of human skeletal muscle. J Appl Physiol. 2005;99(5):1977–1984. doi: 10.1152/japplphysiol.00419.2005. doi:10.1152/japplphysiol.00419.2005.
    1. Sung D, Dong X, Ernberg M, Kumar U, Cairns BE. Serotonin (5-HT) excites rat masticatory muscle afferent fibers through activation of peripheral 5-HT3 receptors. Pain. 2008;134(1–2):41–50. doi:10.1016/j.pain.2007.03.034.
    1. Zhang ZJ, Qiang L, Kang WH, Tan QR, Gao CG, Zhang FG, Wang HH, Ma XC, Ce C, Wei W, Li G, Zhang YH, Yang XB, Zhang RG. Differences in hypothyroidism between lithium-free and -treated patients with bipolar disorders. Life Sci. 2006;78(7):771–776. doi: 10.1016/j.lfs.2005.05.090. doi:10.1016/j.lfs.2005.05.090.
    1. Yu WX, Zhang YH, Cai Y, Zhou XJ. Chronobiologic contrast of expression of p53, p16, and cyclin D1 in hepatocarcinoma cells. Chin J Hepatol. 2002;10(4):253–255.
    1. Christidis N, Ioannidou K, Milosevic M, Segerdahl M, Ernberg M. Changes of hypertonic saline-induced masseter muscle pain characteristics, by an infusion of the serotonin receptor type 3 antagonist granisetron. J Am Pain Soc. 2008;9(10):892–901. doi:10.1016/j.jpain.2008.05.002.
    1. Christidis N, Kopp S, Ernberg M. The effect on mechanical pain threshold over human muscles by oral administration of granisetron and diclofenac-sodium. Pain. 2005;113(3):265–270. doi: 10.1016/j.pain.2004.10.016. doi:10.1016/j.pain.2004.10.016.
    1. Ernberg M, Lundeberg T, Kopp S. Pain and allodynia/hyperalgesia induced by intramuscular injection of serotonin in patients with fibromyalgia and healthy individuals. Pain. 2000;85(1–2):31–39.
    1. Ernberg M, Lundeberg T, Kopp S. Effect of propranolol and granisetron on experimentally induced pain and allodynia/hyperalgesia by intramuscular injection of serotonin into the human masseter muscle. Pain. 2000;84(2–3):339–346.
    1. Ernberg M, Voog U, Alstergren P, Lundeberg T, Kopp S. Plasma and serum serotonin levels and their relationship to orofacial pain and anxiety in fibromyalgia. J Orofacial Pain. 2000;14(1):37–46.
    1. Faerber L, Drechsler S, Ladenburger S, Gschaidmeier H, Fischer W. The neuronal 5–HT3 receptor network after 20 years of research–evolving concepts in management of pain and inflammation. Eur J Pharmacol. 2007;560(1):1–8. doi: 10.1016/j.ejphar.2007.01.028. doi:10.1016/j.ejphar.2007.01.028.
    1. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin) Pharmacol Rev. 1994;46(2):157–203.
    1. Niesler B, Walstab J, Combrink S, Moller D, Kapeller J, Rietdorf J, Bonisch H, Gothert M, Rappold G, Bruss M. Characterization of the novel human serotonin receptor subunits 5-HT3C,5-HT3D, and 5-HT3E. Mol Pharmacol. 2007;72(1):8–17. doi: 10.1124/mol.106.032144. doi:10.1124/mol.106.032144.
    1. Muller W, Stratz T. Local treatment of tendinopathies and myofascial pain syndromes with the 5-HT3 receptor antagonist tropisetron. Scand J Rheumatol Suppl. 2004;119:44–48.
    1. Stratz T, Farber L, Muller W. Local treatment of tendinopathies: a comparison between tropisetron and depot corticosteroids combined with local anesthetics. Scand J Rheumatol. 2002;31(6):366–370. doi: 10.1080/030097402320817103.
    1. Stratz T, Muller W. Treatment of chronic low back pain with tropisetron. Scand J Rheumatol Suppl. 2004;119:76–78.
    1. Christidis N, Nilsson A, Kopp S, Ernberg M. Intramuscular injection of granisetron into the masseter muscle increases the pressure pain threshold in healthy participants and patients with localized myalgia. Clin J Pain. 2007;23(6):467–472. doi: 10.1097/AJP.0b013e318058abb1. doi:10.1097/AJP.0b013e318058abb1.
    1. Yang X, Zhang YH, Ding CF, Yan ZZ, Du J. Extract from Morindae officinalis against oxidative injury of function to human sperm membrane. China J Chin Materia Medica. 2006;31(19):1614–1617.
    1. Cesare P, McNaughton P. Peripheral pain mechanisms. Curr Opin Neurobiol. 1997;7(4):493–499. doi: 10.1016/S0959-4388(97)80028-1.
    1. Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN. The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol. 2003;550(Pt 3):739–752. doi:10.1113/jphysiol.2003.042127.
    1. Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, Carroll W, Marron B, Atkinson R, Thomas J, Liu D, Krambis M, Liu Y, McGaraughty S, Chu K, Roeloffs R, Zhong C, Mikusa JP, Hernandez G, Gauvin D, Wade C, Zhu C, Pai M, Scanio M, Shi L, Drizin I, Gregg R, Matulenko M, Hakeem A, Gross M, Johnson M, Marsh K, Wagoner PK, Sullivan JP, Faltynek CR, Krafte DS. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci U S A. 2007;104(20):8520–8525. doi: 10.1073/pnas.0611364104. doi:10.1073/pnas.0611364104.
    1. Ramachandra R, McGrew SY, Baxter JC, Kiveric E, Elmslie KS. Tetrodotoxin-resistant voltage-dependent sodium channels in identified muscle afferent neurons. J Neurophysiol. 2012;108(8):2230–2241. doi: 10.1152/jn.00219.2012. doi:10.1152/jn.00219.2012.
    1. Connor M, Naves LA, McCleskey EW. Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat. Mol Pain. 2005;1:31. doi: 10.1186/1744-8069-1-31. doi:10.1186/1744-8069-1-31.
    1. Tripathi PK, Trujillo L, Cardenas CA, Cardenas CG, De Armendi AJ, Scroggs RS. Analysis of the variation in use-dependent inactivation of high-threshold tetrodotoxin-resistant sodium currents recorded from rat sensory neurons. Neuroscience. 2006;143(4):923–938. doi: 10.1016/j.neuroscience.2006.08.052. doi:10.1016/j.neuroscience.2006.08.052.
    1. Dong XW, Goregoaker S, Engler H, Zhou X, Mark L, Crona J, Terry R, Hunter J, Priestley T. Small interfering RNA-mediated selective knockdown of Na(V)1.8 tetrodotoxin-resistant sodium channel reverses mechanical allodynia in neuropathic rats. Neuroscience. 2007;146(2):812–821. doi: 10.1016/j.neuroscience.2007.01.054. doi:10.1016/j.neuroscience.2007.01.054.
    1. Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW. Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature. 2007;447(7146):855–858. doi:10.1038/nature05880.
    1. Gold MS, Reichling DB, Shuster MJ, Levine JD. Hyperalgesic agents increase a tetrodotoxin-resistant Na + current in nociceptors. Proc Natl Acad Sci U S A. 1996;93(3):1108–1112. doi: 10.1073/pnas.93.3.1108.
    1. Zhang YH, Fehrenbacher JC, Vasko MR, Nicol GD. Sphingosine-1-phosphate via activation of a G-protein-coupled receptor(s) enhances the excitability of rat sensory neurons. J Neurophysiol. 2006;96(3):1042–1052. doi: 10.1152/jn.00120.2006. doi:10.1152/jn.00120.2006.
    1. Zhang YH, Vasko MR, Nicol GD. Ceramide, a putative second messenger for nerve growth factor, modulates the TTX-resistant Na(+) current and delayed rectifier K(+) current in rat sensory neurons. J Physiol. 2002;544(Pt 2):385–402.
    1. Dworkin SF, LeResche L. Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique. J Craniomandibular Disord. 1992;6(4):301–355.
    1. Welker JA, Henshaw RM, Jelinek J, Shmookler BM, Malawer MM. The percutaneous needle biopsy is safe and recommended in the diagnosis of musculoskeletal masses. Cancer. 2000;89(12):2677–2686. doi: 10.1002/1097-0142(20001215)89:12<2677::AID-CNCR22>;2-L.
    1. Liang DY, Li X, Clark JD. 5-hydroxytryptamine type 3 receptor modulates opioid-induced hyperalgesia and tolerance in mice. Anesthesiology. 2011;114(5):1180–1189. doi: 10.1097/ALN.0b013e31820efb19. doi:10.1097/ALN.0b013e31820efb19.
    1. Pinto FM, Ravina CG, Fernandez-Sanchez M, Gallardo-Castro M, Cejudo-Roman A, Candenas L. Molecular and functional characterization of voltage-gated sodium channels in human sperm. Reprod Biol Endocrinol. 2009;7:71. doi: 10.1186/1477-7827-7-71. doi:10.1186/1477-7827-7-71.
    1. Pierce PA, Xie GX, Levine JD, Peroutka SJ. 5-Hydroxytryptamine receptor subtype messenger RNAs in rat peripheral sensory and sympathetic ganglia: a polymerase chain reaction study. Neuroscience. 1996;70(2):553–559. doi: 10.1016/0306-4522(95)00329-0.
    1. Renganathan M, Cummins TR, Waxman SG. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol. 2001;86(2):629–640.
    1. Blair NT, Bean BP. Roles of tetrodotoxin (TTX)-sensitive Na + current, TTX-resistant Na + current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci. 2002;22(23):10277–10290.
    1. Coward K, Plumpton C, Facer P, Birch R, Carlstedt T, Tate S, Bountra C, Anand P. Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain. 2000;85(1–2):41–50.
    1. Shields SD, Ahn HS, Yang Y, Han C, Seal RP, Wood JN, Waxman SG, Dib-Hajj SD. Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain. 2012;153(10):2017–2030. doi: 10.1016/j.pain.2012.04.022. doi:10.1016/j.pain.2012.04.022.
    1. Ramachandra R, McGrew SY, Baxter JC, Howard JR, Elmslie KS. NaV1.8 channels are expressed in large, as well as small, diameter sensory afferent neurons. Channels. 2013;7(1):34–37. doi: 10.4161/chan.22445. doi:10.4161/chan.22445.
    1. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci. 1999;2(6):541–548. doi: 10.1038/9195. doi:10.1038/9195.
    1. Khasar SG, Gold MS, Levine JD. A tetrodotoxin-resistant sodium current mediates inflammatory pain in the rat. Neurosci Lett. 1998;256(1):17–20. doi: 10.1016/S0304-3940(98)00738-1.
    1. Kerr BJ, Souslova V, McMahon SB, Wood JN. A role for the TTX-resistant sodium channel Nav 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. Neuroreport. 2001;12(14):3077–3080. doi: 10.1097/00001756-200110080-00019.
    1. England S, Bevan S, Docherty RJ. PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol. 1996;495(Pt 2):429–440.
    1. Alfredson H, Lorentzon R. Intratendinous glutamate levels and eccentric training in chronic Achilles tendinosis: a prospective study using microdialysis technique. Knee Surg Sports Traumatol Arthrosc. 2003;11(3):196–199. doi:10.1007/s00167-003-0360-0.
    1. Schubert TE, Weidler C, Lerch K, Hofstadter F, Straub RH. Achilles tendinosis is associated with sprouting of substance P positive nerve fibres. Ann Rheum Dis. 2005;64(7):1083–1086. doi: 10.1136/ard.2004.029876. doi:10.1136/ard.2004.029876.
    1. Ernberg M, Lundeberg T, Kopp S. Effects on muscle pain by intramuscular injection of granisetron in patients with fibromyalgia. Pain. 2003;101(3):275–282. doi: 10.1016/S0304-3959(02)00334-2.
    1. De Ponti F. Pharmacology of serotonin: what a clinician should know. Gut. 2004;53(10):1520–1535. doi: 10.1136/gut.2003.035568. doi:10.1136/gut.2003.035568.
    1. Guertin PA, Steuer I. Ionotropic 5-HT3 receptor agonist-induced motor responses in the hindlimbs of paraplegic mice. J Neurophysiol. 2005;94(5):3397–3405. doi: 10.1152/jn.00587.2005. doi:10.1152/jn.00587.2005.
    1. Haus U, Spath M, Farber L. Spectrum of use and tolerability of 5-HT3 receptor antagonists. Scand J Rheumatol Suppl. 2004;119:12–18.
    1. Dickson EJ, Heredia DJ, Smith TK. Critical role of 5-HT1A, 5-HT3, and 5-HT7 receptor subtypes in the initiation, generation, and propagation of the murine colonic migrating motor complex. Am J Physiol Gastrointest Liver Physiol. 2010;299(1):G144–G157. doi: 10.1152/ajpgi.00496.2009. doi:10.1152/ajpgi.00496.2009.
    1. Romeo HE, Weihe E, Muller S, Vollrath L. Protein gene product (PGP) 9.5 immunoreactivity in nerve fibres and pinealocytes of guinea-pig pineal gland: interrelationship with tyrosine- hydroxylase- and neuropeptide-Y-immunoreactive nerve fibres. Cell Tissue Res. 1993;271(3):477–484. doi: 10.1007/BF02913730.
    1. Okeson JP. Management of temporomandibular disorders and occlusion. 7. Elsevier Inc, St. Louis, Missouri, Mosby; 2013.
    1. Hayot M, Michaud A, Koechlin C, Caron MA, Leblanc P, Prefaut C, Maltais F. Skeletal muscle microbiopsy: a validation study of a minimally invasive technique. Eur Respir J. 2005;25(3):431–440. doi: 10.1183/09031936.05.00053404. doi:10.1183/09031936.05.00053404.
    1. Tortora GJ, Grabowski SR. Principles of Anatomy and Physiology. 8. HarperCollins College Publishers, New York; 1996.

Source: PubMed

Подписаться