Dental implant systems

Yoshiki Oshida, Elif B Tuna, Oya Aktören, Koray Gençay, Yoshiki Oshida, Elif B Tuna, Oya Aktören, Koray Gençay

Abstract

Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities.

Keywords: compatibility; dental implant system; gradual functional materials; surface engineering; titanium materials.

Figures

Figure 1.
Figure 1.
Relationship between yield strength and modulus of elasticity of various biomaterials. P: polymeric materials, B: bone, D: dentin, HSP: high strength polymers (e.g., Kevlar), E: enamel, TCP: tricalcium phosphate, HAP: hydroxyapatite, TI: commercially pure titanium, TA: titanium alloys (e.g., Ti-6Al-4V), S: 304-series stainless steel, PSZ: partially stabilized zirconia, A: alumina, CF: carbon fiber.
Figure 2.
Figure 2.
Schematic and conceptual Ti implant with gradient mechanical and biological functions.

References

    1. Brånemark PI, Zarb GA, Albrektsson T. Tissue-Integrated Prostheses; Osseointegration in Clinical Dentistry. Quintessence; Chicago, IL, USA: 1985. pp. 175–186.
    1. National Institutes of Health consensus development conference statement on dental implants. J. Dent. Educ. 1988;52:686–691.
    1. Stillman N, Douglass CW. Developing market for dental implants. J. Am. Dent. Assoc. 1993;124:51–56.
    1. Binon PP. Implants and Components. Int. J. Oral Max. Implants. 2000;15:76–94.
    1. Misch CE.Contemporary Implant Dentistry Misch CE.Mosby, Inc; St. Louis, MO, USA: 1999. Chapter 1, 3
    1. Lemons JE.Contemporary Implant Dentistry Misch CE.Mosby, Inc; St. Louis, MO, USA: 1999. Chapter 20, 286–287
    1. Giray B, Akça K, Ýplikçiođlu H, Akça E. Two-year follow-up of a patient with oligodontia treated with implant- and tooth-supported fixed partial dentures: A case report. Int. J. Oral Maxillofac. Implants. 2003;18:905–911.
    1. Oshida Y. Bioscience and Bioengineering of Titanium Materials. Elsevier; Amsterdam, Holland: 2007. pp. 217–253.
    1. Oshida Y, Tuna EB.Advanced Biomaterials Basu B.Wiley; Hoboken, NJ, USA: 2009. Chapter 5, 143–177
    1. Anusavice AJ. In: Phillip’s Science of Dental Materials. 11th ed. Anusavice AJ, editor. Saunders; St. Louis MO, USA: 2003. Chapter 1, 3–19.
    1. Moore BK, Oshida Y.Materials science and technology in dentistry Encyclopedic Handbook of Biomaterilas and Bioengineering Wise DL.Marcel Dekker; Boston, MA, USA: 1995. Chapter 48, 1325–1430
    1. ISO/FDIS: 7405:2008, Dentistry – Evaluation of Biocompatibility of Medical Devices Used in Dentistry; BSI: London, UK, 2008
    1. Long M, Rack HJ. Review: Titanium alloys in total joint replacement – a materials science perspective. Biomaterials. 1998;19:1621–1639.
    1. Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and maxillofacial implants: Current status and future developments. Int. J. Oral Maxillofac. Implants. 2000;15:15–46.
    1. Bannon BP, Mild EE. In: Titanium Alloys in Surgical Implants. Luckey HA, Kubli F, editors. ASTM STP 796, American Society for Testing and Materials; West Conshohocken, PA, USA: 1983. pp. 7–15.
    1. Oshida Y, Hashem A, Nishihara T, Yapchulay MV. Fractal dimension analysis of mandibular bones: Toward a morphological compatibility of implants. J. BioMed. Mater Eng. 1994;4:397–407.
    1. Oshida Y. The 2nd Symposium International of Advanced Bio-Materials. Montreal, Canada: 2000. Requirements for successful biofunctional implants; pp. 5–10.
    1. Brockhurst PJ. Dental Materials: New teritories for materials science. Au. Inst. Metals. 1980;3:200–210.
    1. Steinmann SG. In: Evaluation of Biomaterials. Winter GD, Leray JL, de Groot K, editors. John Wiley & Sons; New York, NY, USA: 1980. pp. 1–34.
    1. Kruger J. In: Corrosion and Degradation of Implant Materials. Syrett BC, Acharya A, editors. ASTM STP 684, American Society for Testing and Materials; West Conshohocken, PA, USA: 1979. pp. 107–127.
    1. Greene ND. In: Corrosion and Degradation of Implant Materials: Second Symposium. Farker AC, Griffin CD, editors. ASTM STP 859, American Society for Testing and Materials; West Conshohocken, PA, USA: 1983. pp. 5–10.
    1. Kubaschewski O, Hopkins BE. Oxidation of Metals and Alloys. Butterworths; London, UK: 1962. pp. 38–45.
    1. Kasemo B. Biocompatibility of titanium implants: Surface science aspects. J. Pros Dent. 1983;49:832–837.
    1. Tomashov ND. Theory of Corrosion and Protection of Metals: The Science of Corrosion. The MacMillan; New York, NY, USA: 1966.
    1. Ashby MF, Jones DRH. Engineering Materials An Introduction to Their Properties and Applications. Pergamon Press; New York, NY, USA: 1980. pp. 194–200.
    1. Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int. Dent. J. 1993;43:245–253.
    1. Coddet C, Chaze AM, Beranger G. Measurements of the adhesion of thermal oxide films: Application to the oxidation of titanium. J. Mater. Sci. 1987;22:2969–2974.
    1. Meachim G, Williams DF. Changes in nonosseous tissue adjacent to titanium implants. J. BioMed. Mater. Res. 1973;7:555–572.
    1. Ducheyne P, Williams G, Martens M, Helsen J. In vivo metal-ion release from porous titanium-silver material. J. BioMed. Mater. Res. 1984;18:293–308.
    1. Sundgren J-E, Bodö P, Lundström I. Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel. J. Colloid Interf. Sci. 1986;110:9–20.
    1. Ducheyne P, Healy KE. In: Surface Characterization of Biomaterials. Ratner BD, editor. Elsevier Science; Amsterdam, Holland: 1988. pp. 175–192.
    1. Fraker AC, Ruff AW. Titanium Science and Technology. Vol. 4. Plenum Press; New York, NY, USA: 1973. pp. 2447–2457.
    1. Albreksson T, Hansson HA. An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces. Biomaterials. 1986;7:201–205.
    1. Solar RJ. In: Corrosion and Degradation of Implant Materials. Syrett BD, editor. ASTM STP 684, American Society for Testing and Materials; West Conshohocken, PA, USA: 1979. pp. 259–273.
    1. Lim YJ, Oshida Y, Andres CJ, Barco MT. Surface characterizations of variously treated titanium materials. Int. J. Oral Maxillofac. Implants. 2001;16:333–342.
    1. Gaydos JM, Moore MA, Garetto LP, Oshida Y, Kowolik MJ.Bisphosphonate effect on neutrophil activation by titanium and hydroxyapatite implants J Dent Res 200079225(Abstract No. 890).
    1. McQueen D, Sundgren JE, Ivarsson B, Lundstrom I, Ekenstam CB, Svensson A, Brånemark PI, Albrektsson T. In: Clinical Applications of Biomaterials. Lee AJC, editor. Wiley; New York, NY, USA: 1982. pp. 179–185.
    1. Liedberg B, Ivarsson B, Lundstrom I. Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS) of fibrinogen adsorbed on metal and metal oxide surfaces. J. Biochem. Biophys. Method. 1984;9:233–243.
    1. Hanawa T. In: The Bone-Biomaterial Interface. Davies JE, editor. Univ. of Toronto Press; Toronto, ON, Canada: 1991. pp. 49–61.
    1. Healy KE, Ducheyne P. Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials. 1992;13:553–561.
    1. Healy KE, Ducheyne P. The mechanisms of passive dissolution of titanium in a model physiological environment. J. BioMed. Mater. Res. 1992;26:319–338.
    1. Brånemark PI. In: Tissue-Integrated Protheses. Brånemark PI, editor. Quintessence Pub.; Chicago, IL, USA: 1985. pp. 63–70.
    1. Kasemo B, Lausmaa J. In: Tissue-Integrated Protheses. Brånemark PI, editor. Quintessence; Chicago, IL, USA: 1985. pp. 108–115.
    1. Skalak R. Biomechanical considerations in osseointegrated prostheses. J. Prosthet Dent. 1983;49:843–848.
    1. Hekimoglu C, Anil N, Cehreli MC. Analysis of strain around endosseous implants opposing natural teeth or implants. J. Prosthet. Dent. 2004;92:441–446.
    1. van Rossen IP, Braak LH, de Putter C, de Groot K. Stress-absorbing elements in dental implants. J. Prosthet. Dent. 1990;64:198–205.
    1. Eriksson C, Lausmaa J, Nygren H. Intercations between human whole blood and modified TiO2-surfaces: Influence of surface topography and oxide thickness on leukocyte adhesion and activation. Biomaterials. 2001;22:1987–1996.
    1. Wen X, Wang X, Zhang N. Microsurface of metallic biomaterials: A literature review. J. BioMed. Mater. Eng. 1996;6:173–189.
    1. Keller JC, Dougherty WJ, Grotendorst GR, Wrightman JP. In vitro cell attachment to characterized cpTi surfaces. Adhesion. 1989;28:115–133.
    1. Keller JC, Wrightman JP, Dougherty WJ. Characterization of acid passivated cpTi surfaces. J Dent Res. 1989;68:872. (Abstract)
    1. Keller JC, Draughn RA, Wrightman JP, Dougherty WJ. Characterization of sterilized CP titanium implant surfaces. Int. J. Oral Maxillofac. Implants. 1990;5:360–369.
    1. Schroeder A, van der Zypen E, Stich H, Sutter F. The reactions of bone, connective tissue and epithelium to endosteal implants with titanium sprayed surfaces. J. Maxillofac. Surg. 1981;9:15–25.
    1. Rich A, Harris AK. Anomalous preferences of cultured macrophages for hydrophobic and roughended substrata. J. Cell Sci. 1981;50:1–7.
    1. Buser D, Schenk RK, Steinemann S, Fiorellinni JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J. BioMed. Mater. Res. 1991;25:889–902.
    1. Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP, Sneitivy D, Nolte LP. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: A biomechanically study in the maxilla of miniature pigs. J. BioMed. Mater. Res. 1999;45:75–83.
    1. Murray DW, Rae T, Rushton N. The influence of the surface energy and roughness of implants on bone resorption. J. Bone JoInt. Surg. 1989;71B:632–637.
    1. Cherhoudi B, Gould TR, Brunette DM. Effects of a grooved epoxy substratum on epithelial behavior in vivo and in vitro. J. BioMed. Mater. Res. 1988;22:459–477.
    1. von Recum AF. In: Clinical Implant Materials. Heimke G, Soltesz U, Lee AJC, editors. Elseveier Science Pub.; Amstrdam, The Netherlands: 1990. pp. 297–302.
    1. Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001;22:1241–1251.
    1. Yang Y, Cavin R, Ong LJ. Protein adsorption on titanium surfaces and their effect on osteoblast attachment. J. BioMed. Mater. Res. A. 2003;67:344–349.
    1. Albrektsson T. Direct bone anchorage of dental implants. J. Prosth. Dent. 1983;50:255–261.
    1. Kasemo B, Lausmaa J. Surfaces science aspects on inorganic. Biomaterials CRC Crit Rev. Biocomp. 1986;2:335–380.
    1. Schenk RK, Buser D. Osseointegration: A reality. Periodontology. 1998;17:22–35.
    1. Masuda T, Yliheikkaila PK, Fleton DA, Cooper LF. Generalizations regarding the process and phenomenon of osseointegration. Part I. In vivo studies. Int. J. Oral Maxillofac. Implants. 1998;13:17–29.
    1. Larsson C, Esposito M, Liao H, Thomsen P. In: Titanium in Medicine: Materials Science, Surface Science, Engineering, Biological Responsese, and Medical Applications. Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Springer; New York, NY, USA: 2001. pp. 587–648.
    1. Oshida Y, Sachdeva R, Miyazaki S. Microanalytical characterization and surface modification of NiTi orthodontic archwires. J. BioMed. Mater. Eng. 1991;2:51–69.
    1. Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials. 2004;25:2695–2711.
    1. Ratner BD. Surface characterization of biomaterials by electron spectroscopy for chemical analysis. Ann. BioMed. Eng. 1983;11:313–336.
    1. Baro AM, Garcia N, Miranda R, Vázquez L, Aparicio C, Olivé J, Lausmaa J. Characterization of surface roughness in titanium dental implants measured with scanning tunneling microscopy at atmospheric pressure. Biomaterials. 1986;7:463–466.
    1. Moroni A, Caja VL, Egger EL, Trinchese L, Chao EY. Histomorphometry of hydroxyapatite coated and uncoated porous titanium bone implants. Biomaterials. 1994;15:926–930.
    1. Keller JC, Young FA, Natiella JR. Quantitative bone remolding resulting from the use of porous dental implants. J. BioMed. Mater. Res. 1987;21:305–319.
    1. Pilliar RM, Deporter DA, Watson PA, Valiquette N. Dental implant design-effect on bone remodeling. J. BioMed. Mater. Res. 1991;25:467–483.
    1. Gilbert JL, Berkery CA. Electrochemical reaction to mechanical disruption of titanium oxide films. J. Dent. Res. 1995;74:92–96.
    1. Deporter D, Watson P, Pharoah M, Levy D, Todescan R. Five-to six-year results of a prospective clinical trial using the ENDOPORE dental implant and a mandibular overdenture. Clin Oral Implants Res. 1999;10:95–102.
    1. Palmer RM, Plamer PJ, Smith BJ. A 5-year prospective study of astra single tooth implants. Clin Oral Implants Res. 2000;11:179–182.
    1. Testori T, Wiseman L, Woolfe S, Porter SS. A prospective multicenter clinical study of the osseitite implant: Four-years interim report. Int. J. Oral Maxillofac. Implants. 2001;16:193–200.
    1. Sul Y-T. The significance of the surface properties of oxidized titanium to the bone response: Special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials. 2003;24:3893–3907.
    1. Ishizawa H, Fujiino M, Ogino M. Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P. J. BioMed. Mater. Res. 1995;29:1459–1468.
    1. Larsson C, Emanuelsson L, Thomsen P, Ericson L, Aronsson B, Rodahl M, Kasemo B, Lausmaa J. Bone response to surface-modified titanium implants: Studies on the tissue response after one year to machined and electropolished implants with different oxide thicknesses. J. Mater Sci.: Mater Med. 1997;8:721–729.
    1. Skripitz R, Aspenberg P. Tensile bond between bone and titanium. Acta Orthop Scand. 1998;6:2–6.
    1. Fini M, Cigada A, Rondelli G, Chiesa R, Giardino R, Giavaresi G, Aldini N, Torricelli P, Vicentini B. In vitro and vivo behaviour of Ca and P-enriched anodized titanium. Biomaterials. 1999;20:1587–1594.
    1. Henry P, Tan AE, Allan BP. Removal torque comparison of TiUnite and turned implants in the Greyhound dog mandible. Appl. Osseointegr. Res. 2000;1:15–17.
    1. Sul Y-T, Johansson CB, Jeong Y, Röser K, Wennerberg A, Albreksson T. Oxidized implants and their influence on the bone response. J. Mater Sci.: Mater Med. 2001;12:1025–1031.
    1. Sul Y-T, Johansson CB, Jeong Y, Wennerberg A, Albrektson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxide. Clin Oral Implants Res. 2002;13:252–259.
    1. Sul Y-T, Johansson CB, Albreksson T. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. Int. J. Oral Maxillofac. Implants. 2002;17:625–634.
    1. Oshida Y. Surface science and technology – Titanium dental implant systems. J. Soc. Titanium Alloys Dent. 2007;5:52–53.
    1. Elias CN, Oshida Y, Lima JHC, Muller CA. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant torque. J. Mech. Behav. Biomed. Mater. 2008;1:234–242.
    1. Lausmaa GJ. Chemical composition and morphology of titanium surface oxides. Mat. Res. Soc. Symp. Proc. 1986;55:351–359.
    1. Albrektsson T, Jacobsson M. Bone-metal interface in osseointegration. J. Prosthet. Dent. 1987;57:5–10.
    1. Lauterbur PC. Image formation by induced local interactions: Example employing nuclear magnetic resonance. Nature. 1973;242:190.
    1. Shellock FG, Crues JV. High field strength MR imaging and metallic biomedical implants: An ex vivo evaluation of deflection forces. Am. J. Roentgenol. 1988;151:389–392.
    1. Shellock FG, Morisoli S, Kanal E. MR Procedures and Biomedical Implants, Materials, and Devices: Update. Radiology. 1993;189:587–599.
    1. Shellock FG, Mink JH, Curtin S, Friesman MJ. MR imaging and metallic implants for anterior cruciate ligament reconstruction: Assessment of ferromagnetism and artifact. J. Magn. Reson. Imaging. 1992;2:225–228.
    1. Shellock FG. Biomedical implants and devices: Assessment of magnetic field interactions with a 3.0 tesla MR system. J. Magn. Reson. Imaging. 2002;16:721–732.
    1. Shellock FG, Fieno DS, Thompson LJ, Talavage TM, Berman DS. Cardiac pacemaker: In vitro assessment at 1.5T. Am. Heart J. 2006;151:436–443.
    1. Shellock FG, Crues J. High field strength MR imaging and metallic biomedical implants: An in vitro evaluation of deflection forces and temperature changes induced in large prostheses. Radiology. 1987;165:150–152.
    1. Oshida Y. Bioscience and Bioengineering of Titanium Materials. Elsevier; Amstredam, The Netherlands: 2007. pp. 313–379.
    1. Kasemo B, Lausmaa J. Biomaterials and implant surfaces: A surface science approach. Int. J. Oral Maxillofac. Implants. 1988;3:247–259.
    1. Baier RE, Meyer AE. Implant surface preparation. Int. J. Oral Maxillofac. Implants. 1988;3:9–20.
    1. Reitz WE. The eighth international conference on surface modification technology. J. Metal. 1995;47:14–16.
    1. Smith DC, Pilliar RM, Chernecky R. Dental implant materials. I. Some effects of preparative procesdures on surface topography. J. BioMed. Mater. Res. 1991;25:1045–1068.
    1. Buddy D, Ratner B, Thomas JL. Biomaterial surfaces. J. BioMed. Mater. Res. 1987;21:59–89.
    1. Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J. Prosthet. Dent. 2000;84:522–534.
    1. Bachle M, Kohal RJ. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implants Res. 2004;15:683–692.
    1. Rompen E, Domken O, Degidi M, Farias Pontes AE, Piattelli A. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: A literature review. Clin Oral Implants Res. 2006;17:S55–S67.
    1. Boyan BD, Lossdorfer S, Wang L, Zhao G, Lohmann CH, Cochran DL, Schwartz Z. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Eur. Cell Mater. 2003;6:22–27.
    1. Lossdorfer S, Schwartz Z, Wang L, Lohmann CH, Turner JD, Wieland M, Cochran DL, Boyan BD. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J. BioMed. Mater. Res. A. 2004;70:361–369.
    1. Mustafa K, Wennerberg A, Wroblewski J, Hultenby K, Lopez BS, Arvidson K. Determining optimal surface roughness of TiO2 blasted titanium implant Material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Implants Res. 2001;12:515–525.
    1. Castellani R, de Ruijter A, Renggli H, Jansen J. Response of rat bone marrow cells to differently roughened titanium discs. Clin Oral Implants Res. 1999;10:369–378.
    1. Diniz MG, Soares GA, Coelho MJ, Fernandes MH. Surface topography modulates the osteogenesis in human bone marrow cell cultures grown on titanium samples prepared by a combination of mechanical and acid treatments. J. Mater. Sci. Mater. Med. 2002;13:421–432.
    1. Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J. Biomed. Mater. Res. 2000;49:155–166.
    1. Sader MS, Balduino A, Soares GA, Borojevic R. Effect of three distinct treatments of titanium surface on osteoblast attachment, proliferation, and differentiation. Clin Oral Implants Res. 2005;16:667–675.
    1. Citeau A, Guicheux J, Vinatier C, Layrolle P, Nguyen TP, Pilet P, Daculsi G. In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials. 2005;26:157–165.
    1. Oshida Y, Daly J. Fatigue damage evaluation of shot peened high strength aluminum alloy. In: Meguid SA, editor. Surface Engineering. Elsevier Applied; New York, NY, USA: 1990. pp. 404–416.
    1. Oshida Y. Bioscience and Bioengineering of Titanium Materials. Elsevier; Amstredam, The Netherlands: 2007. pp. 179–182.
    1. Piattelli A, Scarano A, Coriglano M, Piattelli M. Presence of multinucleated giant cells around machined, sandblasted and plasma-sprayed titanium implants: A histological and histochemical time-course study in rabbit. Biomaterials. 1996;17:2053–2058.
    1. Kubo M, Fijishima A, Hotta Y, Kunii J, Shimakura Y, Shimidzu T, Kawawa T, Miyazaki T. Production method of resin-bonded titanium crown by CAD/CAM. Proc. Soc. Symp. Res. 2006;929:42.
    1. Miyakawa O, Watababe K, Okawa S, Shiokawa N, Kobayashi M, Tamura H. Grinding of titanium, Part 1: Commercial and experimental wheels made of silicon carbide abrasives. Dent. Mater. J. 1990;9:30–41.
    1. Miyakawa O, Watanabe K, Okawa S, Nakano S, Shiokawa N, Kobayashi M, Tamura H. Grinding of titanium, Part 2: Commercial vitrified wheels made of alumina abrasives. Dent. Mater. J. 1990;9:42–52.
    1. Miyakawa O, Watanabe K, Okawa S, Kanatani M, Nakano S, Kobayashi M. Surface contamination of titanium by abrading treatment. Dent. Mater. J. 1996;15:11–21.
    1. Mandelbrot BB. The Fractal Geometry of Nature. Freeman; New York, NY, USA: 1983. p. 34.
    1. Chesters S, Wen HY, Lundin M, Kasper G. Fractal-based characterization of surface texture. Appl. Surf. Sci. 1989;40:185–192.
    1. Sayles RS, Thomas TR. Surface topography as a non-stationary random process. Nature. 1978;271:431–434.
    1. Oshida Y, Munoz CA, Winkler MM, Hashem A, Ito M. Fractal dimension analysis of aluminum oxide particle for sandblasting dental use. J. Biomed. Mater. Eng. 1993;3:117–126.
    1. Miyakawa O, Okawa S, Kobayashi M, Uematsu K. Surface contamination of titanium by abrading treatment. Dent. Jpn. 1998;34:90–96.
    1. Mustafa K, Lopez BS, Hultenby K, Arvison K.Attachment of HGF of titanium surfaces blasted with TiO2 particles J Dent Res 19977685(Abstract No.573).
    1. Johansson CB, Albrektsson T, Thomsen P, Sonnerby I, Lodding A, Odelius H. Tissue reactions to titanium-6aluminum-4vanadium alloy. Eur. J. Exp. Musculoskel. Res. 1992;1:161–169.
    1. Wennerberg A, Albrektsson T, Johnsson C, Andersson B. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials. 1996;17:15–22.
    1. Wang CS.Surface modification of titanium for enhancing titabium-pocelain bond strengthMaster Degree ThesisIndiana University; Bloomington, IN, USA: 200497–115.
    1. Peutzfeld A, Asmussen E. Distortion of alloy by sandblasting. Am. J. Dent. 1996;9:65–66.
    1. Peutzfeld A, Asmussen E.Distortion of alloys caused by sandblasting J Dent Res 199675259(Abstract No. 1162).
    1. Shot Peening Applications. 7th ed. Metal Improvement Company, Inc; Vernon, CA, USA: 1990.
    1. DeWald AT, Rankin JE, Hill MR, Lee MJ, Chen H-L. Assessment of tensile residual stress mitigation in Alloy 22 welds due to laser peening. J. Eng. Mater. Technol. Trans. ASME. 2004;126:81–89.
    1. Fairland BP, Wilcox BA, Gallagher WJ, Williams D. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum. J. Appl. Phys. 1972;43:3893–3895.
    1. Fairland BP, Clauer AH. Laser generation of high amplitude stress waves in materials. J. Appl. Phys. 1979;50:1497–1502.
    1. Dane CB, Hackel LA, Daly J, Harrison J. High power laser for peening of metals enabling production technology. Mater. Manuf. Proc. 2000;15:81–96.
    1. Cho S-A, Jung S-K. A removal torque of the laser-treated titanium implants in rabbit tibia. Biomaterials. 2003;24:4859–4863.
    1. Gaggl A, Schultes G, Muller WD, Karcher H. Scanning electron microscopical analysis of laser-treated titanium implants surfaces–a comparative study. Biomaterials. 2000;21:1067–1073.
    1. Hansson S, Hansson KN. The effect of limited lateral resolution in the measurement of implant surface roughness: A computer simulation. J. Biomed. Mater. Res. A. 2005;75:472–477.
    1. Endo K. Chemical modification of metallic implant surfaces with biofunctional proteins (Part 1) Molecular structure and biological activity of a modified NiTi alloy surface. Dent. Mater. J. 1995;14:185–198.
    1. Browne M, Gregson PJ. Surface modification of titanium alloy implants. Biomaterials. 1994;15:894–898.
    1. Krozer A, Hall J, Ericsson I. Chemical treatment of machined titanium surfaces. Clin Oral Impl. Res. 1999;10:204–211.
    1. Rupp F, Scheideler L, Rehbein D, Axmann D, Geis-Gerstorfer J. Roughness induced dynamic changes of wettability of aid etched titanium implant modifications. Biomaterials. 2004;25:1429–1438.
    1. MacDonald DE, Rapuano BE, Deo N, Stranick M, Somasundaran P, Boskey AL. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: Effects of surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials. 2004;25:3135–3146.
    1. Li L-H, Kong Y-M, Kim H-W, Kim Y-W, Kim H-E, Heo S-J, Koak J-Y. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;15:1867–1875.
    1. Xie Y, Liu X, Huang A, Ding C, Chu PK. Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation. Biomaterials. 2005;26:6129–6135.
    1. Rohanizadeh R, Al-Sadeq M, LeGeros RZ. Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition. J. BioMed. Mater. Res. A. 2004;71:343–352.
    1. Demri B, Hage-Ali M, Moritz M, Muster D. Surface characterization of C/Ti-6Al-4V coating treated with ion beam. Biomaterials. 1997;18:305–310.
    1. Poon RWY, Yeung KWK, Liu XY, Chu PK, Chung CY, Lu WW, Cheung KMC, Chan D. Carbon plasma immersion ion implantation of nickel- titanium shape memory alloys. Biomaterials. 2005;26:2265–2272.
    1. Schrooten J, Helsen JA. Adhesion of bioactive glass coating to Ti6Al4V oral implant. Biomaterials. 2000;21:1461–1419.
    1. Saiz E, Goldman M, Gomez-Vega JM, Tomsia AP, Marshall GW, Marshall SJ. In vitro behavior of silicate glass coatings on Ti6Al4V. Biomaterials. 2002;23:3749–3756.
    1. Lee JH, Ryu H-S, Lee D-S, Hong KS, Chang B-S, Lee C-K. Bio-mechanical and histomorphometric study on the bone-screw interface of bioactive ceramic-coated titanium screws. Biomaterials. 2005;26:3249–3257.
    1. Chu KT, Oshida Y, Hancock EB, Kowolik MJ, Barco TM, Zunt SL. Hydroxyapatite/PMMA composites as bone cements. J. BioMed. Mat. Eng. 2004;14:87–105.
    1. Liu DM. Fabrication and characterization of porous hydroxyapatite granules. Biomatrials. 1996;17:1955–1957.
    1. Luo P, Nieh TG. Preparing hydroxyapatite powders with controlled morphology. Biomaterials. 1996;17:1959–1964.
    1. Porter AE, Taakm P, Hobbs LW, Coathup MJ, Blunn GW, Spector M. Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy. Biomaterials. 2004;25:5199–5208.
    1. Souto RM, Lemus MM, Reis RL. Electrochemical behavior of different preparations of plasma-sprayed hydroxyapatite coatings on Ti6Al4V substrate. J. BioMed. Mater. Res. A. 2004;70:59–65.
    1. Filiaggi MJ, Coombs NA, Pilliar RM. Characterization of the interface in the plasma-sprayed HA coating/Ti-6Al-4V implant system. J. BioMed. Mater. Res. 1991;25:1211–1229.
    1. Yang YC, Chang E, Lee ST. Mechanical properties and Young’s modulus of plasma-sprayed hydroxyapatite coating on Ti substrate in simulated body fluid. J. BioMed. Mater. Res. A. 2003;67:886–899.
    1. Yang YC, Ong JL. Bond strength, compositional, and structural properties of hydroxyapatite coating on Ti, ZrO2-coated Ti, and TPS-coated Ti substrate. J. BioMed. Mater. Res. A. 2003;4:509–516.
    1. Yang YC, Kim K-H, Agrawal CM, Ong JL. Interaction of hydroxyapatite-titanium at elevated temperature in vacuum environment. Biomaterials. 2004;25:2927–2932.
    1. Brossa F, Cigada A, Chiesa R, Paracchini L, Consonni C. Adhesion properties of plasma sprayed hydroxylapatite coating for orthopaedic prostheses. J. BioMed. Mater. Eng. 1993;3:127–136.
    1. Lee E-J, Lee S-H, Kim H-W, Kong Y-M, Kim H-E. Fluoridated apatite coatings on titanium obtained by electron-beam deposition. Biomaterials. 2005;26:3843–3851.
    1. Kim H-W, Kim H-E, Knowles LC. Fluor-hydroxyapatite sol–gel coating on titanium substrate for hard tissue implants. Biomaterials. 2004;25:3351–3358.
    1. Filiaggi MJ, Pilliar RM, Coombs NA. Post-plasma-spraying heat treatment of the HA coating/Ti-6Al-4V implant system. J. BioMed. Mater. Res. 1993;27:191–198.
    1. Lynn AK, DuQuesnay DL. Hydroxyapatite-coated Ti-6Al-4V Part 2: The effect of post-deposition heat treatment at low temperatures. Biomaterials. 2002;23:1947–1953.
    1. Yang YC, Chang E. Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate. Biomaterials. 2001;22:1827–1836.
    1. Mano T, Ueyama Y, Ishikawa K, Matsumura T, Suzuki K. Initial tissue response to a titanium implant coated with apatite at room temperature using a blast coating method. Biomaterials. 2002;23:1931–1936.
    1. Moritz N, Jokinen M, Peltola T, Areva S, Yli-Urpo A. Local induction of calcium phosphate formation on TiO2 coatings on titanium via surface treatment with a CO2 laser. J. BioMed. Mater. Res. A. 2003;65:9–16.
    1. Han Y, Xu K. Photoexcited formation of bone apatite-like coatings on micro-arc oxidized titanium. J. BioMed. Mater. Res. A. 2004;71:608–614.
    1. Kim H-W, Kim H-E, Salih V, Knowles JC. Sol-gel-modified titanium with hydroxyl-apatite thin films and effect on osteoblast-like cell responses. J. BioMed. Mater. Res. A. 2005;74:294–305.
    1. Kim H-W, Koh Y-H, Li L-H, Lee S, Kim H-E. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials. 2004;25:2533–2538.
    1. Ergun C, Doremus R, Lanford W. Hydroxylapatite and titanium: Interfacial reactions. J. BioMed. Mater. Res. A. 2003;65:336–343.
    1. Hayashi K, Mashima T, Uenoyama K. The effect of hydroxyapatite coating on bony ingrowth into grooved titanium implants. Biomaterials. 1999;20:111–119.
    1. Hayashi K, Inadome T, Tsumura H, Nakashima Y, Sugioka Y. Effect of surface roughness of hydroxyapatite-coated titanium on the bone-implant interface shear strength. Biomaterials. 1994;15:1187–1191.
    1. Moroni A, Caja VL, Egger EL, Trinchese L, Chao EYS. Histomorphometry of hydroxyapatite coated and uncoated porous titanium bone implant. Biomaterials. 1994;15:926–930.
    1. Thomas KA, Cook SD, Haddad RJ, Kay JF, Jarcho M. Biologicla response to hydroxyapatite-coated titanium hips. J. Arthrop. 1989;4:43–53.
    1. Jansen JA, van de Waerden JPCM, Wolke JGC, de Groot K. Histologic evaluation of the osseo adaptation to titanium and hydroxyapatite-coated titanium implants. J. BioMed. Mater. Res. 1991;25:973–989.
    1. Gottlander M, Albrektsson T. Histomorphometric studies of hydroxylapatite-coated and uncoated cp titanium threaded implants in bone. Int. J. Oral Maxillofac. Implants. 1991;6:399–404.
    1. Schreurs BW, Huiskes R, Buma P, Slooff TJJH. Biomechanicla and histological evaluation of a hydroxyapatite-coated titanium femoral stem fixed with an intramedullary morsellized bone grafting technique: An animal experiment on goats. Biomaterials. 1996;17:1177–1186.
    1. Cabrini M, Cigada A, Rondelli G, Vicentini B. Effect of different surface finishing and of hydroxyapatite coatings on passive and corrosion current of Ti6Al4V alloy in simulated physiological solution. Biomaterials. 1997;18:783–787.
    1. Cook SD, Thomas KA, Kay J, Jarcho M. Hydroxyapatite-coated titanium for orthopedic implant applications. Clin Orthop. 1988;186:225–243.
    1. Yang YC, Chang E, Hwang BH, Lee SY. Biaxial residual stress states of plasma-sprayed hydroxyapatite coatings on titanium alloy substrate. Biomaterials. 2000;12:1327–1337.
    1. Mimura K, Watanabe K, Okawa S, Kobayashi M, Miyakawa O. Morphological and chemical characterizations of the interface of a hydroxyapatite-coated implant. Dent. Mater. J. 2004;23:353–360.
    1. Jonášová L, Müller FA, Helebrant A, Strnad J, Greil P. Hydroxyapatite formation on alkali-treated titanium with different content of Na+ in the surface layer. Biomaterials. 2002;23:3095–3101.
    1. Jonášová L, Müller FA, Helebrant A, Strnad J, Greil P. Biomimetic apatite formation on chemically treated titanium. Biomaterials. 2004;25:1187–1194.
    1. Wang CX, Wang M, Zhou X. Nucleation and growth of apatite on chemically treated titanium alloy: An electrochemical impedance spectroscopy study. Biomaterials. 2003;24:3069–3077.
    1. Lu X, Leng Y. TEM study of calcium phosphate precipiotation on bioactive titanium surfaces. Biomaterials. 2004;25:1779–1786.
    1. Hanawa T, Ota M. Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials. 1991;12:767–774.
    1. Barrère F, van der Valk CM, Dalmeijer RAJ, van Blitterswijk CA, de Groot K, Layrolle P. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. J. BioMed. Mater. Res. A. 2003;64:378–387.
    1. Barrère F, Snel MME, van Blitterswijk CA, de Groot K, Layrolle P. Nano- scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials. 2004;25:2901–2910.
    1. Li SJ, Yang R, Niinomi M, Hao YL, Cui YY. Formation and growth ofcalcium phosphate on the surface of oxidized Ti-29Nb-13Ta-4.6Zr alloy. Biomaterials. 2004;25:2525–2532.
    1. Bogdanski D, Esenwien SA, Prymak O, Epple M, Muhr G, Köller M. Inhibition of PMN apotosis after adherence to dip-coated calcium phosphate surfaces on a NiTi shape memory alloy. Biomaterials. 2004;25:4627–4623.
    1. Kim CS, Ducheyne P. Compositional variations in the suface and interface of calcium phosphate ceramic coatings on Ti and Ti-6Al-4V due to sintering and immersion. Biomaterials. 1991;12:461–469.
    1. Ducheyne P, Bianco PD, Kim C. Bone tissue growth enhancement of calcium phosphate coatings on porous titanium alloys: Effect of shielding metal dissolution product. Biomaterials. 1992;13:617–624.
    1. Krupa D, Baszkiewicz J, Kozubowski JA, Barcz A, Sobczak JW, Biliński A, Lewandowska-Szumieł M, Rajchel B. Effect of dual ion implantation of calcium and phosphorus on the properties of titanium. Biomaterials. 2005;26:2847–2856.
    1. Jansen JA, Hulshoff JE, van Dijk K.Biological evaluation of thin calcium-phosphate (Ca-P) coatings J Dent Res 199776282(Abstract No. 2150).
    1. Hayakawa T, Yoshinari M, Kiba H, Yamamoto H, Nemoto K, Jansen JA. Trabeular bone response to surface roughened and calcium phosphate (Ca-P) coated titanium implants. Biomaterials. 2002;23:1025–1031.
    1. Zhang Q, Leng Y, Xin R. A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium. Biomaterials. 2005;26:2857–2865.
    1. Heimann RB, Wirth R. Formation and transformation of amorphous calcium phosphates on titanium alloy surfaces during atmospheric plasma spraying and their subsequent in vitro performance. Biomaterials. 2006;27:823–831.
    1. Ban S, Maruno S, Iwata H, Itoh H. Calcium phosphate precipitation on the surface HA-G-Ti composite under physiologic conditions. J. BioMed. Mater. Res. 1994;28:65–71.
    1. Lucas LC, Ong deposition heat treatments of Ca-P coating J Dent Res 199371228(Abstract No. 998).
    1. Gan L, Wang J, Pilliar RM. Evaluating interface strength of calcium phosphate sol-gel-derived thin films to Ti6Al4 V substrate. Biomaterials. 2005;26:189–196.
    1. Choi J, Bogdanski D, Köller M, Esenwein SA, Müller D, Epple M. Calcium phosphate coating of nickel-titanium shape-memory alloys, coating procedure and adherence of leukocytes and platelets. Biomaterials. 2003;24:3689–3696.
    1. Fend B, Weng J, Yangm BC, Qu SX, Zhang XD. Characterization of titanim surfaces with calcium and phosphate and osteoblast adhesion. Biomaterials. 2004;25:3421–3428.
    1. Watanabe K, Hashimoto A, Nomura S, Endo MM, Okawa S, Kanatani M, Nakano S, Kobayashi M, Miyakawa O. Surface properties of dental implants (Part 2) Surface analysis of the titanium implant extracted from a rat bone. J. Jpn Dent. Mater. 2004;23:329–334.
    1. Kim H-W, Lee E-J, Jun I-K, Kim H-E. On the feasibility of phosphate glass and hydroxyapatite engineered coating on titanium. J. BioMed. Mater. Res. A. 2005;75:656–667.
    1. Maxian SH, Zawadsky JP, Dunn MG. Mechanical and histological evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titaniuim implants. J. BioMed. Mater. Res. 1993;27:717–728.
    1. Khor KA, Gu YW, Pan D, Cheang P. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti–6Al–4V composite coatings. Biomaterials. 2004;25:4009–4017.
    1. Gu YW, Khor KA, Pan D, Cheang P. Activity of plasma sprayued yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid. Biomaterials. 2004;25:3177–3185.
    1. Chou BY, Chang E, Yao SY, Chen JM. Phase transformation during plasma spraying of hydroxyapatite-19wt%-zirconia composite coating. J Am CerAm Soc. 2002;85:661–669.
    1. Kasuga T, Yoshida M, Ikushima AJ, Tuchiya M, Kusakari H. Stability of zirconia-toughended bioactive glass-ceramics - invivo study using dogs. J Mater Sci: Mater Med. 1993;4:36–39.
    1. Takagi M, Mochida M, Uchida N, Saito K, Uematsu K. Filter cake forming and hot isostatic pressing for TZP-dispressed hydroxyapatite composite. J. Mater Sci.: Mater. Med. 1992;3:199–203.
    1. Yamada K, Imamura K, Itoh H, Iwata H, Maruno S. Bone bonding behavior of the hydroxyapatite containing glass-titanium composite prepared by the Cullet method. Biomaterials. 2001;22:2207–2214.
    1. Suzuki R, Muyco J, McKittrick J, Frangos JA. Reactive oxygen species inhibited by titanium oxide coatings. J. BioMed. Mater. Res. A. 2003;66:396–402.
    1. Li H, Khor KA, Cheang P. Titanium dioxide reinforced bydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials. 2002;23:85–91.
    1. Lu Y-P, Li M-S, Li S-T, Wang Z-G, Zhu R-F. Plasma-sprayed hydroxyapatite + titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials. 2004;25:4393–4403.
    1. Ng BS, Annergren I, Soutar AM, Khor KA, Jarfors AEW. Characterization of a douplex TiO2/CaP coatings on Ti6Al4V for hard tissue replacement. Biomaterials. 2005;26:1087–1095.
    1. Knabe C, Berger G, Gildenhaar R, Klar F, Zreiqat H. The modulation of osteogenesis in vitro by calcium titanium phosphate coatings. Biomaterials. 2004;25:4911–4919.
    1. Shtansky DV, Gloushankova NA, Sheveiko AN, Kharitonova MA, Moizhess TG, Levashov EA, Rossi F. Design, characterization and testing of Ti-based multi-component coatings for load-bearing medical applications. Biomaterials. 2005;26:2909–2924.
    1. von Walter M, Rüger M, Ragoß C, Steffens GCM, Hollander DA, Paar O, Maier HR, Jahnen-Dechent W, Bosserhoff AK, Erli H-J. In vitro behavior of a porous TiO2/perlite composite and its surface modification with fibronectin. Biomaterials. 2005;26:2813–2826.
    1. Rodrigues CVM, Serricella P, Linhares ABR, Guerdes RM, Borojevic R, Rossi MA, Duarte MEL, Farina M. Characteriation of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials. 2003;24:4987–4997.
    1. Cheng X, Filiaggi M, Roscoe SG. Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy. Biomaterials. 2004;25:5395–5403.
    1. Redepenning J, Venkataraman G, Chen J, Stafford N. Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates. J. BioMed. Mater. Res. 2003;66A:411–416.
    1. Tamura Y, Yokoyama A, Watari F, Kawasaki T. Surface properties and biocompatibility of nitrided titanium for abrasion resistant implant materials. Dent. Mater. J. 2002;21:355–372.
    1. Kokubo T, Ito S, Shigematsu M, Sakka S. Fatigue and life-time of bioactive glass-ceramic A-W containing apatite and wollastonite. J. Mater. Sci. 1987;22:4067–4070.
    1. Cyster LA, Parkerm KG, Parker TL, Grant DM. The effect of surface chemistry and nanotopography of titanium nitride (TiN) filmson primary hippocampal neurons. Biomaterials. 2004;25:97–107.
    1. Bull SJ, Chalker PR. The role of titanium interlayers in the adhesion of titanium nitride thin films. In: Sudarsahn TS, editor. Surface Modification Technologies. Cambridge University Press; Cambrodge, UK: 1992. pp. 205–215.
    1. Venugopalan R, George MA, Weimer JJ, Lucas LC. Surface topography, corrosion and microhardness of nitrogen-diffusion-hardened titanium alloy. Biomaterials. 1999;20:1709–1716.
    1. Dion I, Rouais F, Trut L, Baquency CH, Monties JR, Havlik P. TiN coating: Surface characterization and haemocompatibility. Biomaterials. 1993;14:1230–1235.
    1. Oshida Y, Hashem A. Titanium-procelain system. Part I: Oxidation kinetics of nitrided pure titanium, simulated to porcelain firing process. J. BioMed. Mater. Eng. 1993;3:185–198.
    1. Bordji K, Jouzeau JM, Mainaird D, Payan E, Netter P, Rie KT, Stucky T, Hage-Ali M. Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials. 1996;17:929–940.
    1. Goldberg JR, Gilbert JL. The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys. Biomaterials. 2004;25:851–864.
    1. Morton PH, Bell T, Weisheit A, Kroll J, Mordike BL, Sagoo K. Laser gas nitriding of titanium and titanium alloys. In: Sudarshan TS, Braza JF, editors. Surface Modification Technologies V. Cambridge University Press; Cambridge, UK: 1992. pp. 593–609.
    1. Eberhardt AW, Pandey R, Williams JM, Weimer JJ, Ila D, Zimmerrmann RL. The role of residual stress and surface topography on hardness of ion implanted Ti-6Al-4V. Mater. Sci. Eng. 1997;A229:147–155.
    1. Shetty RH. Mechanicl and corrosion properties of nitrogen diffusion hardened Ti-6Al-4V alloy. In: Brown SA, Lemons JE, editors. Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. ASTM STP 1272 American Society for Testing and Materials; West Conshohocken, PA, USA: 1996. pp. 240–251.
    1. Semlitsch MF, Weber H, Streicher RM, Schon R. Joint replacement components made of hot-forged ad surface-treated Ti-6Al-7Nb alloy. Biomaterials. 1992;13:781–788.
    1. Thull R. Semiconductive properties of passived titanium and titanium based hard coatings on metals for implants – an experimental approach. Med. Progr Technol. 1990;16:225–234.
    1. Wisbey A, Gregson PJ, Tuke M. Application of PVD TiN coating to Co-Cr-Mo-based surgical implants. Biomaterials. 1987;8:477–480.
    1. Venugopalan R, Weimer JJ, George MA, Lucas LC. The effect of nitrogen diffusion hardening on the surface chemistry and scratch resistance of Ti-6Al-4V alloy. Biomaterials. 2000;21:1669–1677.
    1. Oshida Y, Fung LW, Ishikbay SC. Titanium-porcelain system. Part II: Bond strength of fired porcelain on nitrided pure titanium. J. BioMed. Mater. Eng. 1997;7:13–34.
    1. Głuszek J, Jedrokowiak J, Markowski J, Masalski J. Galvanic couples of 316L steel with Ti and ion plated Ti and TiN coatings in Ringer’s solutions. Biomaterials. 1990;11:330–335.
    1. Lee B-H, Kim JK, Kim YD, Choi K, Lee KH. In vivo behavior and mechanical stability of surface-modified titanium implants by plasma spray coating and chemical treatments. J. BioMed. Mater. Res. A. 2004;69:279–285.
    1. Sonoda T, Kotake S, Kakimi H, Yamada M, Naganuma K, Kato M, Saka T, Shimizu T, Katoh K. On the dental application of titanium-base alloy. Part 7: Titanium coating by sputtering. News Govon. Ind. Res. Inst. (Osaka) 1991;40:291–299.
    1. Sonoda T, Kotake S, Kakimi H, Yamada M, Naganuma M, Kato M, Saka T, Shimizu T, Katoh K. On the dental application of titanium-base alloy. Part 8: Pure titanium coating on the denture base of Ti-6Al-4V alloy by sputtering. Gov. Indust. Res. Inst. 1991;40:300–307.
    1. Breme J, Steinhäuser E, Paulus G. Commercially pure titanium Steinäuser plate-screw system for maxillofacial surgery. Biomaterials. 1988;9:310–313.
    1. Rae T. A study on the effects of particulate metals of orthopaedic interest on murine macrophages in vitro. J. Bone Jt Surg. Br. 1975;57:444–450.
    1. Rae T. The toxicity of metals used in orthopaedic prostheses. An experimental study using cultured human synovial fibroblasts. J Bone Jt Surg Br. 1981;63-B:435–440.
    1. Brune D, Evje D, Melson S. Corrosion of gold alloys and titanium in artificial saliva. Scand. J. Dent. Res. 1982;90:168–171.
    1. Franchi M, Bacchelli B, Martini D, DePasquale V, Orsini E, Ottani V, Fini M, Giavaresi G, Giardino R, Ruggeri A. Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials. 2004;25:2239–2246.
    1. Smith TS. Rationale for biological fixation of prosthetic devices. SAMPE J. 1985;21:14–16.
    1. Engh CA, Bobyn JD. Biologic fixation of hip prosthesis: A review of the clinical status and current concepts. Adv. Orthop. Surg. 1984;18:136–149.
    1. Smith T. The effect of plasma-sprayed coatings on the fatigue of titanium alloy implants. J. Metal. 1994;46:54–56.
    1. Head WC, Mallory TH, Emerson RH. The promixal porous coating alternative for primary total hip arthroplasty. Orthopedics. 1999;22:813–815.
    1. Bourne RB, Rorabeck CH, Burkart BC, Kirk PG. Ingrowth surfaces-plasma sprayed coating to titanium alloy hip replacements. Clin Orthop Relat. Res. 1994;298:37–46.
    1. Reclaru L, Lerf R, Eschler P-Y, Blatter A, Meyer J-M. Evaluation of corrosion on plasma sprayed and anodized titanium implants, both with and without bone cement. Biomaterials. 2003;24:3027–3038.
    1. Xue W, Liu X, Zheng XB, Ding C. In vivo evaluation of plasma-sprayed titanium coating after alkali modification. Biomaterials. 2005;26:3029–3037.
    1. Borsari V, Giavaresi G, Fini M, Torricelli P, Tschon M, Chiesa R, Chiusoli L, Salito A, Volpert A, Giardino R. Comparative in vitro study on a ultra-high roughness and dense titanium coating. Biomaterials. 2005;26:4948–4955.
    1. Vercaigne S, Wolke JBC, Naert I, Jansen JA. The effect of titanium plasma-sprayed implants on trabecular bone healing in the goat. Biomaterials. 1998;19:1093–1099.
    1. Ong JL, Carnes DL, Bessho K. Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials. 2004;25:4601–4606.
    1. Pan J, Leygraf C, Thierry D, Ektessabi AM. Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. J. BioMed. Mater. Res. 1997;35:309–318.
    1. New Technology Japan Ti-O oating in Ti-6Al-4V alloy by DC reactive sputtering method. JETR. 1994;22:18.
    1. Głuszek J, Masalski J, Furman P, Nitsch K. Structural and electrochemical examinations of PACVD TiO2 films in Ringer solution. Biomaterials. 1997;18:789–794.
    1. De Aza PN, Guitian F, De Aza S. Reactivity of wollastonite-tricalcium phosphate bioeutectic ceramic in human parotid saliva. Biomaterials. 2000;21:1735–1741.
    1. Siriphannon P, Hayashi S, Yasumori A, Okada K. Preparation and sintering of CaSiO3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution. J. Mater. Res. 1999;4:529–536.
    1. Lui X, Ding C. Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys. Biomaterials. 2002;23:4065–4077.
    1. Haddow DB, Kothari S, James PF, Short RD, Hatton PV, van Noort R. Synthetic implant surfaces 1. The formation and characterization of sol-gel titania films. Biomaterials. 1996;17:501–507.
    1. Sato M, Slamovich EB, Webster TJ. Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings. Biomaterials. 2005;26:1349–1347.
    1. Wang X-X, Hayakawa S, Tsuru K, Osaka A. Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials. 2002;23:1353–1357.
    1. Manjubala I, Kumar TSS. Effect of TiO2-Ag2O additives on the formation of calcium phosphate based functionally graded bioceramics. Biomaterials. 2000;21:1995–2002.
    1. Wheeler KR, Karagianes MT, Sump KR. Porous titanium alloy for prosthesis attachment. In: Luckey HA, Kubli F, editors. Titanium Alloys in Surgical Implants. ASTM STP 796, ASTM Internationla; West Conshohoden, PA, USA: 1983. pp. 241–54.
    1. Engelhard G, Zaharias R, Keller JC.Effects of CP Ti surface roughness on osteoblast mineralization J Dent Res 199574189(Abstract No. 1424).
    1. Chung FH, McAlarney ME.Effects of variations in surface treatment on titanium topography J Dent Res 199574112(Abstract No. 802).
    1. Petronis S, Gretzer C, Kasemo B, Gold J. Model porous surfaces for systematic studies of material-cell interactions. J. BioMed. Mater. Res. A. 2003;66:707–721.
    1. Xiaoxiong M, Shizhong H. The states of bromide on titanium surface prior to pit initiation. J. Chin. Soc. Corr. Protec. 1989;9:29–35.
    1. Ungersboeck A, Pohler OEM, Perren SM. Evaluation of soft tissue reactions at the interface of titanium limited contact dynamic compression plate implants with different surface treatments: An experimental sheep study. Biomaterials. 1996;17:797–806.
    1. Larsson C, Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE. Bone response to surface-modified titanium implants: Studies on the early tissue response to machined and electropolished implants with different oxide thickness. Biomaterials. 1996;17:605–616.
    1. Thelen S, Barthelat F, Brinson LC. Mechanics considerations for microporous titanium as an orthopedic implant material. J. BioMed. Mater. Res. A. 2004;69:601–610.
    1. Oshida Y. Requirements for successful, biofunctional implants. In: Yahia LH, editor. International Advanced Biomaterials. Montréal, Canada: 2000. p. 5.
    1. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials. 2005;26:6014–6023.
    1. Duocel Foam Metal: A New Basic Design Material; Energy Research & Generation, Inc.: Oakland, CA, USA, 1998
    1. Adell R, Lekholm U, Rockler B, Brånemark P-I. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int. J. Oral Surg. 1981;10:387–416.
    1. Adell R. Clinical results of osseointegrated implants supporting fixed prostheses in edentulous jaws. J. Prosthet. Dent. 1983;50:251–254.
    1. Björk A, Skieller V. Growth of the maxilla in three dimensions as revealed radiographically by the implant method. Br. J. Orthod. 1977;4:53–64.
    1. Björk A. Variations of the growth pattern of the human mandible: A longitudinal radiographic study by the implant method. J. Dent. Res. 1963;42:400–411.
    1. Skieller V, Björk A, Linde-Hansen T. Prediction of mandibular growth rotation evaluated from a longitudinal implant sample. Am. J. Orthod. 1984;86:359–370.
    1. Enlow DH. Facial Growth. 3rd ed. Saunders Publishers; Philedelphia, PA, USA: 1990. pp. 282–284.
    1. Kramer F, Baethge C, Tschernitschek H. Implants in children ith ectodermal dysplasia: A case report and literature review. Clin Oral Impl. Res. 2007;18:140–146.
    1. Oesterle LJ. Implant considerations in the growing child. In: Huguchi KW, editor. Orthodontic Application sof Osseointegrated Implants. Quintessence Publishing Co.; Chicago, IL, USA: 2000. pp. 133–159.
    1. Bergendal B, Bergendal T, Hallonsten A-L, Koch G, Kurol J, Kvint S. A multidisciplinary approach to oral rehabilitation with osseointegrated implants in children and adolescents with multiple aplasia. Eur. J. Orthod. 1996;18:119–129.
    1. Dietschi D, Schatz JP. Current restorative modalities for young patients with missing anterior teeth. Quintessence Int. 1997;28:231–240.
    1. Thilander B, Odman J, Gröndahl K, Friberg B. Osseointagrated implants in adolescents. An alterative in replacing missing teeth? Eur. J. Orthod. 1994;16:84–95.
    1. Iseri H, Solow B. Continued eruption of maxillary incisors and first molars in girls from 9 to 25 years, studied by the implant method. Eur. J. Orthod. 1996;18:245–256.
    1. Perrott DH. Restoration and maintenance of maxillary position. Atlas Oral Maxillofac. Surg Clin North Am. 1993;1:31–55.
    1. Guckes AD, Brahim JS, McCarthy GR, Rudy SF, Cooper LF. Using endosseous implants for patients with ectodermal dysplasia. J. Am. Dent. Assoc. 1991;122:59–62.
    1. Cronin R, Osterle L, Ranly D. Mandibular implants and the growing patient. Int. J. Oral Maxillofac. Implants. 1994;9:55–62.
    1. Oesterle LJ, Cronin RJ, Jr, Ranly DM. Maxillary implants and the growing patient. Int. J. Oral Maxillofac. Implants. 1993;8:377–387.
    1. Odman J, Gröndahl K, Lekholm U, Thilander B. The effect of osseointegrated implants on the dento-alveolar development. A clinical and radiographic study in growing pigs. Eur. J. Orthod. 1991;13:279–286.
    1. Thilander B, Odman J, Gröndahl K, Lekholm U. Aspects on osseointegrated implants on the dento-alveolar development. A clinical and radiographic study in growing opigs. Eur. J. Orthod. 1992;14:99–109.
    1. Brugnolo E, Mazzocco C, Cordioll G, Majzoub Z. Clinical and radiographic findings following placement of single-tooth implants in young patinets – case reports. Int. J. Periodontics Restorative Dent. 1996;16:421–433.
    1. Westwood RM, Duncan JM. Implants in adolescents: A literature review and case reports. Int. J. Oral Maxillofac. Implants. 1996;11:750–755.
    1. Cronin RJ, Oesterle LJ. Implant use in growing patients. Treatment planning concerns. Dent. Clin North Am. 1998;42:1–34.
    1. Sennerby L, Odman J, Lekholm U, Thilander B. Tissue reactions towards titanium implants inserted in growing jaws. A histological study in the pig. Clin Oral Implants Res. 1993;4:65–75.
    1. Kawanami M, Andreasen JO, Borum MK, Schou S, Hjørting-Hansen E, Kato H. Infraposition of ankylosed permanent maxillary incisors after replantation related to age and sex. Endod Dent. Traumatol. 1999;15:50–56.
    1. Björk A. Prediction of mandibular growth rotation. Am. J. Orthod. 1969;55:585–599.
    1. Oesterle LJ, Cronin RJ. Adult growth, aging, and the single-tooth implant. Int. J. Oral Maxillofac. Implants. 2000;15:252–260.
    1. Kearns G, Sharma A, Perrott D, Schmidt B, Kaban L, Vargervik K. Placement of endosseous implants in children and adolescents with hereditary ectodermal dysplasia. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999;88:5–10.
    1. Bergendal B, Eckerdal O, Hallonsten A-L, Koch G, Kurol J, Kvint S. Osseointegrated implants in the oral rehabilitation of a boy with ectodermal dysplasia: A case report. Int. Dent. J. 1991;41:149–156.
    1. Bergendal B. Prosthetic rehabilitation of a young patient with hypodidrotic ectodermal dysplasia and oligodontia: A case report of 20-year of treatment. Int. J. Prosthodont. 2001;14:471–479.
    1. Kargul B, Alcan T, Kabalay U, Atasu M. Hypohidrotic ectodermal dysplasia: Dental, clinical, genetic and dermatoglyphic findings of three cases. J. Clin Pediatr. Dent. 2001;26:5–12.
    1. Hickey AJ, Vergo TJ., Jr Prosthetic treatments for patients with ectodermal dysplasia. J. Prosthet. Dent. 2001;86:364–368.
    1. Behnoush RB. Prosthodontic treatment with implant fixed prosthesis for a patient with ectodermal dysplasia: A clinical report. J. Prosthodont. 2003;12:198–201.
    1. Kraut RA. Dental implants for children: Creating smiles for children without teeth. Pract Periodontics Aesthet. Dent. 1996;8:909–913.
    1. Dhanrajani PJ, Jiffry AO. Management of ectodermal dysplasia: A literatute review. Dent. Update. 1998;25:73–75.
    1. Nunn JH, Carter NE, Gillgrass TJ, Hobson RS, Jepson NJ, Meechan JG, Nohl FS. The interdisciplinary management of hypodontia: Background and role of paediatric dentistry. Br. Dent. J. 2002;194:245–251.
    1. Akça K, Iplikcioglu H. One-year follow-up of an implant with early radiographic signs of loss of osseointegration: Case report. Clin Impl. Dent. Relat. Res. 2002;4:43–46.
    1. Högberg G, Lagerheim B, Sennerstam R. The 9-year crisis reflected at a rehabilitation center, at a child health care center and at a child and adolescent psychiatric center. Lakartidningen. 1986;83:2038–2042.
    1. Nussbaum B, Carrel R. The behavior modification of a dentally disabled child. ASDC J. Dent. Child. 1976;43:255–261.
    1. Guckes AD, Roberts MW, McCarthy GR. Pattern of permanent teeth present in individuals with ectodermal dysplasia and severe hypodontia suggests treatment with dental implants. Pediatr. Dent. 1998;20:278–280.
    1. Lederman D. Oral medicine: It’s basic dentistry. NY State Dent. J. 1993;59:35–37.
    1. Smith RA, Vargervik K, Kearns G, Bosch C, Koumjian J. Placement of an endoesseous implant in a growing child with ectodermal dysplasia. Oral Surg. Oral Med. Oral Pathol. 1993;75:669–673.
    1. Oesterle LJ, Wood LW. Raising the root: A look at orthodontic extrusion. J. Am. Dent. Assoc. 1991;122:193–198.
    1. Mackie IC, Quayle AA. Alternative management of a crown root fractured tooth in a child. Br. Dent. J. 1992;173:60–62.
    1. Mehrali MC, Baraoidan M, Cranin AN. Use of endosseous implants in treatment of adolescent trauma patients. NY State Dent. J. 1994;60:25–29.
    1. Guckes AD, McCarthy GR, Brahim J. Use of endosseous implants in a 3-year old child with ectodermal dysplasia: Case report and 5 year follow-up. Pediatr Dent. 1997;19:282–285.
    1. Ekstrand K, Thomsson M. Ectodermal dysplasia with partial anodontia: Prosthetic treatment with imaplnt fixed prosthesis. ASDC J. Dent. Child. 1988;55:282–284.
    1. Escobar V, Epker BN. Alveolar bone growth in response to endosteal implants in two patients with ectodermal dysplasia. Int. J. Oral Maxillofac. Surg. 1998;27:445–447.
    1. Alcan T, Basa S, Kargül B. Grwoth analysis of a patient with ectodermal dysplasia treated with endosseous implants: 6-year follow-up. J. Oral Rehabil. 2006;33:175–182.
    1. Balshi TJ, Wolfinger GJ. Treatment of congenital ectodermal dysplasia with zygomatic implants: A case report. Int. J. Oral Maxillofac. Implants. 2002;17:277–281.
    1. Becktor KB, Becktor JP, Keller EE. Growth analysis of a patient with ectodermal dysplasia treated with edosseous implants: A case report. Int. J. Oral Maxillofac. Implants. 2001;16:864–874.
    1. Rad AS, Siadat H, Monzavi A, Mangoli AA. Full mouth rehabilitation of a hypohidrotic ectodermal dysplasia patient with dental implants: A clinical report. J. Prosthodont. 2007;16:209–213.
    1. Isidof F. Loss of osseointegration casued by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res. 1996;7:143–152.
    1. Miyata T, Kobayashi Y, Araki H, Motomura Y, Shin K. The influence of controlled occlucsal overload on peri-implant tissue: A histologoic study in monkeys. Int. J. Oral Maxillofac. Implants. 1998;13:667–683.
    1. Quirynen M, Naert L, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Brånemark system. Clin Oral Implants Res. 1992;3:104–111.
    1. Celleti R, Pamaeijer CH, Brachetti G, Donath K, Persichetti Z, Visani I. Histologic evaluation of osseointagrated implants restored in nonaxial functional occlusion with pre-angled abutments. Int. J. Periodontics Restorative Dent. 1995;15:563–573.
    1. Tonetti M, Schmid J. Pathogenesis of implant failures. Periodontology. 1994;4:127–138.
    1. Loe H, Theilade E, Jensen SB. Experiemntal gingivitis in man. J. Periodontol. 1965;36:177–187.
    1. Quirynen M, Listgarten MA. The distribution of bacterial morphotypes around natural teeth and titanium implants ad modum Branemark. Clin Oral Implants Res. 1990;1:8–12.
    1. Berglundh T, Lindhe J, Marinello C, Ericsson I, Liljenberg B. Soft tissue reactions to de novo plaque formation at implants and teeth. Clin Oral Implants Res. 1992;3:1–8.
    1. Bragger U. Use of radiographs in evaluating success, stability and failure in implant dentistry. Periodontology. 1998;17:77–88.
    1. Hammerie CHF, Fourmousis I, Winkler JR, Weigel C, Bragger U, Lang NP. Successful bone fill in late peri-implant defects using guided tissue regeneration. A short communication. J. Periodontol. 1995;66:303–308.
    1. Jowanovic SA. The management of peri-implant breakdown around functioning osseointegarted dental implants. J. Periodontol. 1993;64:1176–1183.
    1. Persson LG, Berglundh T, Sennerby L, Lindhe J. Reoeesointagratio after treatment of peri-implantitis at different implant surfaces. An experimental study in dog. Clin Oral Implants Res. 2001;12:595–603.
    1. Persson LG, Ericsson I, Berglundh T, Lindhe J. Guided bone regeneration in the treatment of peri-implantitis. Clin Oral Implants Res. 1996;7:366–372.
    1. Bergendal B, Ekman A, Nilsson P. Implant failure in young children with ectodermal dysplasia: A retrospective evaluation of use and outcome of dental implants treatment in children in Sweden. Int. J. Oral Maxillofac. Implants. 2008;23:520–524.
    1. Rossi E, Andreasen JO. Maxillary bone growth and implant positioning in a young patient. A case report. Int. J. Periodontics Restorative Dent. 2003;23:113–119.
    1. Rockman RA, Hall KB, Fiebiger M. Magnetic retention of dental prostheses in a child with ectodermal dysplasia. J. Am. Dent. Assoc. 2007;138:610–615.
    1. Dalkiz M, Beydemirm B. Pedodontic complete dentures. Turk. J. Med. Sci. 2002;32:277–281.
    1. Hench LL. Biomaterials: A forecast for the future. Biomaterials. 1998;19:1419–1423.
    1. Froes FH. The better characterization of titanium alloys. J. Metal. 2005;57:41.
    1. Hartman AD, Gerdeman SJ, Hansen JS. Producing low-cost titanium for automotive applications. J. Metal. 1998;50:16–19.
    1. van Vuuren DS, Engelbrecht AD, Hadley TD. Opportunities in the electro-winning of molten titanium from titanium dioxide. J. Metal. 2005;57:53–55.
    1. Fuwa A, Takaya S. Producing titanium by reducing TiCl4-MgCl2 mixed salt with magnesium in the molten state. J. Metal. 2005;57:56–60.
    1. Froes FH, Mashl SJ, Moxson VS, Hebeisen JC, Duz VA. The tech-nologies of titanium powder metallurgy. J. Metal. 2004;56:46–48.
    1. Lopez MF, Gutierrez A, Jimémez JA. In vitro corrosion behavior of titanium alloys without vanadium. Electrochimia Acta. 2002;47:1359–1364.
    1. Khan MA, Williams RL, Williams DF. The corrosion behavior of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials. 1999;20:631–637.
    1. Katakura N, Takada Y, Iijima K, Hosotani M, Honma H. Studies in the shape memory alloys for biomaterials (Part II) - Electrochemical behavior of Ti, Pd, Co and TiPd alloys. J. Jpn. Dent. Mater. 1991;10:809–813.
    1. Sohmura T, Kimura HT. Shape recovery in Ti-V-Fe-Al alloy and its application to dental implant. Proceedings of the International Conference on Martensitic Transformation ICOMAT-86; Nara, Japan. 25–30 August, 1986; pp. 1065–1070.
    1. Takemoto S, Hattori M, Yoshinari M, Kawada E, Asami K, Oda Y. Corrosion behavior and surface characterization of Ti-20Cr alloy in a solution containing fluoride. Dent. Mater. J. 2004;23:379–386.
    1. He G, Eckert J, Dai QL, Sui ML, Löser W, Hagiwara M, Ma E. Nanostructured Ti-based multi-component alloys with potential for biomedical applications. Biomaterials. 2003;24:5115–5120.
    1. Hattori M, Takemoto M, Yoshinari M, Kawada E, Oda U. Alloying effect of Pd to Ti-Cu alloy. Proc 19th Meeting, Soc Titanium Alloys in Dentistry; Tokyo, Japan. June, 2005; p. 45.
    1. Koike M, Okabe T. Mechanical properties of Ti-Cu-Si alloys. Proc 19th Meeting, Soc Titanium Alloys in Dentistry; Tokyo, Japan. June, 2005; p. 44.
    1. Takahashi S, Kikuchi S, Okuno O. Machinabilty of Ti-Zr alloy. Proc 19th Meeting, Soc Titanium Alloys in Dentistry; Tokyo, Japan. June, 2005; p. 58.
    1. Kikuchi S, Takahashi M, Satoh H, Komatsu S, Okabe T, Okuno O. Machinability of Ti-Hf alloy. Proc 19th Meeting, Soc Titanium Alloys in Dentistry; Tokyo, Japan. June, 2005; p. 46.
    1. Satoh H, Kikuchi S, Komatsu S, Okuno O, Okabe T. Mechanical properties of Ti-Hf casts. Proc 19th Meeting, Soc Titanium Alloys in Dentistry; Tokyo. June, 2005; p. 57.
    1. Masumoto T. Amorphous Ti-Cu system alloys. Japan Patent Application Laid-Open No7-54086. 1995
    1. Tregilgas J. Amorphous hinge material. Adv. Mater. Proc. 2005;163:46–49.
    1. Inoue A. Synthesis and properties of Ti-based bulk amorphous alloys with a large supercooled liquid region. Mater Sci Forum. 1999;313/314:307–314.
    1. Louzguine DV, Inoue A. Multicomponent metastable phase formed by crystallization of Ti-Ni-Cu-Sn-Zr amorphous alloy. J. Mater. Res. 1999;14:4426–4430.
    1. Zhang T, Inoue K. Preparation of Ti-Cu-Ni-Si-B amorphous alloy with a large supercooled liquid region. Mater. Trans. JIM. 1999;40:301–306.
    1. JETROTi-O coating on Ti-6Al-4V alloy by DC reactive sputtering method, New Technology Japan. No. 94-06-001-01. 1994:22:18, 1994
    1. Bogdanski D, Köller M, Müller D, Muhr G, Bram M, Buchkremer HP, Stöver D, Choi J, Epple M. Easy assessment of the biocompatibility of Ni-Ti alloy by in vitro cell culture experiments on a functionally graded Ni-NiTi-Ti material. Biomaterials. 2002;23:4549–4555.
    1. Kasuga T, Mizuno T, Watanabe M, Nogami M, Niinomi M. Calcium Phosphate invert glass-ceramic coating joined by self-development of compositionally gradient layers on a titanium alloy. Biomaterials. 2001;22:577–582.
    1. Okido M, Kuroda K, Ishikawa M, Ichino R, Takai O. Hydroxyapatite coating on titanium solutions. Solid State Ionics. 2002;151:47–52.
    1. van Dijk K, Gupta V, Yu AK, Jansen JA. Measurement and control of interface strength of RF mahnetron-sputtered Ca-PO coatings on Ti-6Al-4V substrates using a laser spallation technique. J. BioMed. Mater. Res. 1998;41:624–632.
    1. Takamura R. The bone response of titanium implant with calcium ion implantation. J Dent Res. 1997;76:1177. (Abstract No. 1123)
    1. Ohtsu N. Evaluation of degradability of CaTiO3 thin films in simulated body fluids. Mater Trans. 2004;45:1778–1781.
    1. Dunn DS, Raghavan S, Volz RG. Gentamicin sulfate attachment and release from anodized Ti-6Al-4V orthopedic materials. J. BioMed. Mater. Res. 1993;27:895–900.
    1. Hill J, Klenerman L, Trustey S, Blowers B. Diffusion of antibiotics from acrylic bone-cement in vitro. J. Bone JoInt. Surg. 1977;59B:197–199.
    1. Petty W, Spanier S, Shuster JJ. Prevention of infection after total joint replacement. J. Bone JoInt. Surg. 1988;70A:536–539.
    1. Dunn DS, Raghavan S, Volz RG. Anodized layers on titanium and titanium alloy orthopedic materials for antimicrobial activity applications. Mater. Manuf. Proc. 1992;7:123–137.
    1. Kato M, Naganuma K, Yamada M, Sonoda T, Kakimi H, Kotake S, Kawai T. On the dental application of titanium-base alloy, Part 5: Anodic oxidation aiming at the clinical use of the material as a carrier for bone morphogenetic protein (BMP) Gov. Ind. Res. Inst. 1991;40:269–280.
    1. Kato M, Naganuma K, Yamada M, Sonoda T, Kotake S, Kakimi H. On the dental application of titanium-base alloy, Part 6: Effect of the composition of electrolytic solutions in anodizing the material. Gov. Ind. Res. Inst. 1991;40:282–290.
    1. Wassell DTH, Embery G. Adsorption of bovine serum albumin on to titanium powder. Biomaterials. 1996;17:859–864.
    1. McAlarney ME, Oshiro MA.Possible role of C3 in competitive protein adsorption onto TiO2 J Dent Res 199473401(Abstract No. 2397).
    1. Klinger A, Steinberg D, Kohavi D, Sela MN.Adsorption of human salivary albumin to titanium-oxide J Dent Res 199675273(Abstract No. 2043).
    1. Hayakawa T, Yoshinari M, Nemoto K. Direct attachment of fibronectin to tresyl chloride-activated titanium. J. BioMed. Mater. Res. A. 2003;67:684–688.
    1. Bierbaum S, Beutner R, Hanke T, Scharnweber D, Hempel U, Worch H. Modification of Ti6Al4V surfaces using collagen I, III, and fibronectin. I. Biochemical and morphological characteristics of the adsorbed matrix. J. BioMed. Mater. Res. A. 2003;67:421–430.
    1. Bierbaum S, Hempel U, Geißler U, Hanke T, Scharnweber D, Wenzel K-W, Worch H. Modification of Ti6AL4V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses. J. BioMed. Mater. Res. A. 2003;67:431–438.
    1. Kim H-W, Li L-H, Lee E-J, Lee S-H, Kim H-E. Fibrillar assembly and stability of collagen coating on titanium for improved osteoblast responses. J. BioMed. Mater. Res. A. 2005;75:629–638.
    1. Wang X-X, Xie L, Wang R. Biological fabrication of nacreous coating on titanium dental implant. Biomaterials. 2005;26:6229–6232.
    1. Frosch K-H, Drengk A, Krause P, Viereck V, Miosge N, Werner C, Schild D, Stürmer EK, Stürmer KM. Stem cell-coated titanium implants for the partial joint resurfacing of the knee. Biomaterials. 2006;27:2542–2549.
    1. Bigi A, Boanini E, Bracci B, Facchini A, Panzavolta S, Segatti F, Sturba L. Nanocrystalline hydroxyapatite coatings on titanium: A new fast biomimetic method. Biomaterials. 2005;26:4085–4089.
    1. Ellingsen JE, Birkeland G.The effect on bone healing of fluoride conditioned titanium implants J Dent Res 199675400(Abstract No. 3060)
    1. Ellingsen JE. Pre-treatment of titanium implants with fluoride improves their retention in bone. J. Mater. Sci.: Mater. Med. 1995;6:749–758.
    1. Ellingsen JE. Increasing biocompatibility by chemical modification of titanium surfaces. In: Ellingsen JE, Lyndstadaas SP, editors. Bioimplant interface. CRC; Boa Raton, FL, USA: 2003. pp. 323–340.
    1. Mazumder J. Laser welding. In: Bass M, editor. Laser Materials Processing. North-Holland Pub.; Amsterdam, Holland: 1983. pp. 115–200.
    1. Bass M, Jau B, Wallace R. Shaping materials with lasers. In: Bass M, editor. Laser Materials Processing. North-Holland Pub; Amsterdam, Holland: 1983. pp. 290–336.
    1. Dahotre NB. Laser surface engineering. Adv. Mater. Proc. 2002;160:35–39.
    1. Kopel A, Reitza W. Laser surface treatment. Adv. Mater. Proc. 1999;157:39–41.
    1. Singh J. The constitution and microstructure of laser- surface-modified metals. J. Metal. 1992;44:8–14.
    1. Draper CW, Poate JM. Laser surface alloying. Int. Metal. Rev. 1985;30:85–108.
    1. Galerie A, Fasasi A, Pons M, Caillet M. Improved high temperature oxidation resistance of Ti-6Al-4V by superficial laser alloying. In: Sudarshan TS, Braza JF, editors. Surface Modification Technologies V. Cambridge University Press; Cambrodge, UK: 1992. pp. 401–411.
    1. Hollander DA, von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, Erli H-J. Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials. 2006;7:955–963.
    1. Weigl P, Kasenbacher A, Werelius K. Dental applications. In: Dausinger F, Lichtner F, Lubatschowski H, editors. Femtosecond Technology for Technical and Medical Applications. Vol. 96. Springer; New York, NY, USA: 2004. pp. 167–187.
    1. Gamaly EG, Rode AV, Luther-Davis B, Tikhonchuk VT. Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas. 2002;9:949–953.
    1. Frentzen M, Winkelstraeter C, van Benthem H, Koort HJ. Bearbeitung der Schmelzorberflachen mit gepulster Laserstrahlung. Dtsch. Zahnaertzl. Z. 1994;49:166–168.
    1. Femtosecond Lasers. Technology Application Programme, Missile Defense Agency; Dexter MI, USA: 1999. Available at: (Accessed on 26 March 2010).
    1. Ringeisen BR, Chrisey DB, Piqué A, Krizman D, Bronks M, Spargo B. Direct write technology and a tool to rapidly prototype patterns of biological and electronic systems. Nanotechnology. 2001;1:414–417.
    1. Finke S, Feenstra K. Solid freedom fabrication by extrusion and deposition of semi-solid alloys. J. Mater Sci. 2002;37:3101–3106.
    1. Klug KL, Ucok I, Gungor MN, Gulu M, Kramer LS, Tack WT, Nastac L, Martin NR, Dong H. The near-net-shape manufacturing of affordable titanium components for the M777 lightweight howitzer. J. Metal. 2004;56:35–42.
    1. MacArthur BD, Oreffo ROC. Bridging the gap. Nature. 2005;433:19.
    1. Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of materials surfaces in regulating bone and cartilage cell response. Biomaterials. 1996;17:137–146.
    1. Baier RE. Conditioning surfaces to suit the biomedical environment: Recent Progress. J. Biomech. Eng. 1982;104:257–271.
    1. Taira M, Araki Y. Scaffolds for tissue engineering – Kinds and clinical application. J. Dental Eng. 2005;152:27–30.
    1. Li H, Chang J. Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. Biomaterials. 2004;25:5473–5480.
    1. Kawase T, Sirringhaus H, Friend RH, Shimoda T. Inkjet printed via-hole interconnection and resistors for all-polymer transistor circuits. Adv. Mater. 2001;13:1601–1605.
    1. Burgess DS. InkJet Technique precludes microvessels and mirolenses. Technology World. 2005;5:213.
    1. Lee M, Dunn JCY, Wu BM. Scaffold fabrication by indirect three-dimensional printing. Biomaterials. 2005;26:4281–4289.
    1. Walboomers XF, Jansen JA. Bone tissue induction, using a COLLOSS®-filled titanium fibre mesh-scaffolding material. Biomaterials. 2005;26:4779–4785.
    1. Hohman MM, Shin M, Rutledge G, Brenner MP. Electrospinning and electrorically fored jets. Phys. Fluids. 2001;13:2201–2220.
    1. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electropun protein fibers as matrices for tissue engineering. Biomaterials. 2005;26:5999–6008.
    1. Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials. 2006;27:724–734.
    1. Liu X, Won Y, Ma PX. Surface modification of interconnected porous scaffolds. J. BioMed. Mater. Res. A. 2005;74:84–91.
    1. MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J. BioMed. Mater. Res. A. 2005;74:489–496.
    1. Funakoshi T, Majima T, Iwasaki N, Yamane S, Masuko T, Minami A, Harada K, Tamura H, Tokura S, Nishimura S-I. Novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering. J. BioMed. Mater. Res. A. 2005;7:338–346.
    1. Ni S, Chang J, Chou L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. J. BioMed. Mater. Res. A. 2006;76:196–205.
    1. Wu L, Jing D, Ding J. A “room-temperature” injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds. Biomaterials. 2006;27:185–191.
    1. Gutwein LG, Webster TJ. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials. 2004;25:4175–4183.
    1. Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25:4731–4739.
    1. Price RL, Ellison K, Haberstroh KM, Webster TJ. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J. BioMed. Mater. Res. A. 2004;70:129–138.
    1. Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008;29:970–983.
    1. Taylor J. Nanobiotechnology. Available at: (Accessed on 26 March 2010)
    1. Frosch K-H, Barvencik F, Viereck V, Lohmann CH, Dresing K, Breme J, Brunner E, Stürmer KM. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J. BioMed. Mater. Res. A. 2004;68:325–334.
    1. Macak JM, Tsuchiya H, Taveira L, Ghicov A, Schmuki P. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. J. BioMed. Mater. Res. A. 2005;75:928–933.
    1. Oh S, Finõnes RR, Daraio C, Chen L-H, Jin S. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials. 2005;26:4938–4943.
    1. Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng. 2001;7:91–301.
    1. Kobayashi S, Hamasaki N, Suzuki M, Kimura M, Shirai H, Hanabusa K. Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. J. Am. Chem. Soc. 2002;124:6550–6551.
    1. Michailowski A, AlMawlawi D, Cheng G, Moskovits M. Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem. Phys. Lett. 2001;349:1–5.
    1. Gong D, Grimes CA, Varghese OK, Chen Z, Dickey EC. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001;16:3331–3334.
    1. Oh S, Daraio C, Chen LH, Pisanic TR, Fiñones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J. BioMed. Mater. Res. A. 2006;78:97–103.
    1. Popat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials. 2007;28:3188–3197.
    1. Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007;7:1686–1691.
    1. Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Chien S, Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA. 2009;106:2130–2135.
    1. Köse GT, Ber S, Korkusuz F, Hasirci V. Poly(3-hydroxybutyric acid-co-3- hydroxyvaleric acid) based tissue engineering matrices. J. Mater. Sci.: Mater. Med. 2003;14:121–126.
    1. Bauer S, Park J, Mark KV, Schmuki P. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomater. 2008;4:1576–1582.
    1. Goto K, Tamura J, Shinzato S, Fujibayashi S, Hashimoto M, Kawashita M, Kokubo T, Nakamura T. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials. 2005;26:6496–6505.
    1. Sato M, Sambito MA, Aslani A, Kalkhoran NM, Slamovich EB, Webster TJ. Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Biomaterials. 2006;27:2358–2369.
    1. Tyas MJ. Minimum intervention dentistry – the cutting edge? Available at: (Accessed on 26 March 2010)
    1. Minimally invasive surgery. Available at: (Accessed on 26 March 2010).
    1. Bulard RA, Vance JB. Multi-clinic evaluation using mini-dental implants for long-term denture stabilization: A preliminary biometric evaluation. Compend. Contin. Educ. Dent. 2005;26:892–897.
    1. Lazzarra RJ. Immediate implant placement into extraction sites: Surgical and restorative advantages. Int. J. Periodontics Restorative Dent. 1989;9:333–343.
    1. Parel SK, Triplett RG. Immediate fixture placement: A treatment planning alternative. Int. J. Oral Maxillofac. Implants. 1990;5:337–345.
    1. Werbitt MJ, Goldberg PV. The immediate implant. Bone preservation and bone regeneration. Int. J. Periodontics Restorative Dent. 1992;12:207–217.
    1. Gruder U, Polizzi G, Goebe R, Hatano N, Henry P, Jackson WJ, Kawamura K, Koehler S, Renouard F, Rosenberg R, Triplett G, Werbitt MJ, Lithner B. A 3-year prospective multicenter follow-up report on the immediate and delayed-immediate placement of implants. Int. J. Oral Maxillofac. Implants. 1999;14:210–216.
    1. Kalpakjian S, Schmid S. Manufacturing Engineering and Technology. Pearson Prentice Hall; Upper Saddle River, NJ, USA: 2006. pp. 854–855.
    1. Peckitt NS. Stereoscopic lithography: Customized titanium implants on orofacial reconstruction. Br. J. Oral Maxillofac. Surg. 1999;37:353–369.
    1. Nishimura RD, Chang TL, Perri GR, Beumer J. Restoration of partially edentulous patients using customized implant abutmens. Pract. Period Aesthet. Dent. 1999;11:669–676.
    1. De Putter M, de Lange GL, de Groot K.Permucosla dental implants of dense hydroxyapatite: Fixation in alveolar bone Proc Int Congress on Tissue Integration in Oral and Maxillofacial ReconstructionBrussels, Belgium, May 1985, Current Practice Series #29Excerta Media; Amsterdam, Holland: 1986389–394.
    1. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1 –review focusing on topographic and chemical properties of different surfaces and in vitro responses to them. Int. J. Prosthodont. 2004;17:536–543.
    1. Ellingsen JE. A study on the mechanism of protein adsorption to TiO2. Biomaterials. 1991;12:593–596.
    1. Oshida Y. Bioscience and Bioengineering of Titanium Materials. Elsevier; Amsterdam, Holland: 2007. pp. 406–411.
    1. Masuda T, Yliheikkaila PK, Fleton DA, Cooper LF. Generalizations regarding the process and phenomenon of osseointegration. Part I. In vivo studies. Int. J. Oral Maxillofac. Implants. 1998;13:17–29.
    1. Leven RM, Virdi AS, Sumner DR. Patterns of gene expression in rat bone marrow stromal cells cultured on titanium alloy discs of different roughness. J. BioMed. Mater. Res. A. 2004;70:391–401.
    1. Jasty M, Bragdon CR, Haire T, Mulroy RO, Harris WH. Comparison of bone ingrowth into cobalt chrome sphere and titanium fiber mesh porous coated cementless canine acetabular components. J BioMed Mater Res. 1993;27:639–644.
    1. Simske SJ, Sachdeva R. Cranial bone apposition and ingrowth in a porous nickel-titanium implant. J. BioMed. Mater. Res. 1995;29:527–533.
    1. Chang Y-S, Oka M, Kobayashi M, Gu H-O, Li Z-L, Nakamura T, Ikada Y. Significance of interstitial bone ingrowth under load-bearing conditions: A comparison between solid and porous implant materials. Biomaterials. 1996;17:1141–1148.
    1. Aziz-Kerrzo M, Conroy KG, Fenelon AM, Farrell AT, Breslin CB. Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials. 2001;22:1531–1539.
    1. Cook SD, Thongpreda N, Anderson RC, Haddad RJ. The effect of post-sintering heat treatments on the fatigue properties of porous coated Ti-6Al-4V alloy. J. BioMed. Mater. Res. 1988;22:287–302.
    1. Kohn DH, Ducheyne P. A parametric study of the factors affecting the fatigue strength of porous coated Ti-6Al-4V implant alloy. J. BioMed. Mater. Res. 1990;24:1483–1501.
    1. Wisbey A, Gregson PJ, Peter LM, Tuke M. Effect of surface treatment on the dissolution of titanium-based implant materials. Biomaterials. 1991;12:470–473.
    1. Sutherland DS, Forshaw PD, Allen GC, Brown IT, Williams KR. Surface analsyis of titanium implants. Biomaterials. 1993;14:893–899.
    1. Lausmaa GJ, Kasemo B. Surface spectroscopic characterization of titanium implant materials. Appl. Surf. Sci. 1990;44:133–146.
    1. Kubaschewski O, Hopkins BE. In: Oxidation of Metals and Alloys. Geissman TA, editor. Butterworths; London, UK: 1962. p. 24.
    1. Tummler H, Thull R. Biological and Biochemical Performance of Biomaterials. Elsevier; Amsterdam, Holland: 1986. Model of the metal/tissue connection of implants made of titanium or tantalum; pp. 403–408.
    1. Eliades T. Passive film growth on titanium alloys: Physiochemical and biologic considerations. Int. J. Oral Maxillofac. Implants. 1997;12:621–627.
    1. Drath DB, Karnovsky ML. Superoxide production by phagocytic leukocytes. J. Exp Med. 1975;144:257–261.
    1. Root BK, Metcalf JA. H2O2 release from human granulocytes during phagocytosis: Relationship to superoxide anion formation and cellular catabolism of H2O2. Studies with normal and cytochalasin B-treated cells. J. Clin Invest. 1977;60:1266–1279.
    1. Jain R, von Recum AF. Fibroblast attachment to smooth and microtextured PET and thin cp-Ti films. J. BioMed. Mater. Res. A. 2004;68:296–304.
    1. Clem WC, Konovalov VK, Chowdhury S, Vohra YK, Catledge SA, Bellis SL. Mesenchymal stem cell adhesion and spreading on microwave plasma-nitrided titanium alloy. J. BioMed. Mater. Res. A. 2006;76:279–287.
    1. McQueen D, Sundgren JE, Ivarsson B, Lundstrom I, Af Ekenstam CB, Svensson A, Brånemark PI, Albrektsson T. Auger electron spectroscopic studies of titanium implants. In: Lee AJC, editor. Clinical Applications of Biomaterials. Wiley; New York, NY, USA: 1982. pp. 179–185.
    1. Parsegian VA. Molecular forces governing tight contact between cellular surfaces and substrates. J. Prosthet. Dent. 1983;49:838–842.
    1. Uo M, Watari F, Yokoyama A, Matsuno H, Kawasaki T. Tissue reaction around metal implant observed by X-ray scanning analytical microscopy. Biomaterials. 2001;22:677–685.
    1. Lu Y-P, Li M-S, Li S-T, Wang Z-G, Zhu R-F. Plasma-sprayed hydroxyapatite + titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials. 2004;25:4393–4403.
    1. Spriano S, Bosetti M, Bronzoni M, Vernè E, Maina G, Bergo V, Cannas M. Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments. Biomaterials. 2005;26:1219–1229.
    1. JETRO. Titanium surface reforming technology. New Technology Japan No. 92-02-100-08. 1992:19:18, 1992
    1. Klinger A, Steinberg D, Kohavi D, Sela MN.Adsorption of human salivary Albumin to titanium-oxide J Dent Res 199675273(Abstract No. 2043).
    1. Pham MT, Reuther H, Maitz MF. Native extracellular matrix coating on Ti surfaces. J. Biomed. Mater. Res. A. 2003;66:310–316.

Source: PubMed

Подписаться