The microcirculation is the motor of sepsis

Can Ince, Can Ince

Abstract

Regional tissue distress caused by microcirculatory dysfunction and mitochondrial depression underlies the condition in sepsis and shock where, despite correction of systemic oxygen delivery variables, regional hypoxia and oxygen extraction deficit persist. We have termed this condition microcirculatory and mitochondrial distress syndrome (MMDS). Orthogonal polarization spectral imaging allowed the first clinical observation of the microcirculation in human internal organs, and has identified the pivotal role of microcirculatory abnormalities in defining the severity of sepsis, a condition not revealed by systemic hemodynamic or oxygen-derived variables. Recently, sublingual sidestream dark-field (SDF) imaging has been introduced, allowing observation of the microcirculation in even greater detail. Microcirculatory recruitment is needed to ensure adequate microcirculatory perfusion and the oxygenation of tissue cells that follows. In sepsis, where inflammation-induced autoregulatory dysfunction persists and oxygen need is not matched by supply, the microcirculation can be recruited by reducing pathological shunting, promoting microcirculatory perfusion, supporting pump function, and controlling hemorheology and coagulation. Resuscitation following MMDS must include focused recruitment of hypoxic-shunted microcirculatory units and/or resuscitation of the mitochondria. A combination of agents is required for successful rescue of the microcirculation. Single compounds such as activated protein C, which acts on multiple pathways, can be expected to be beneficial in rescuing the microcirculation in sepsis.

Figures

Figure 1
Figure 1
The microcirculation is the motor of sepsis. Circulatory failure as a result of sepsis can be initiated by various insults such as trauma, infection, and shock. Its treatment is initially based on correction of systemic variables. Microcirculatory distress can persist and remain undetected, a condition termed microcirculatory and mitochondrial distress syndrome (MMDS). Here, time and therapy contribute to its definition and nature. Left uncorrected, the different cellular and inflammatory components of the distressed microcirculation interact and increase in severity, fueling the respiratory distress of the parenchymal cells and ultimately leading to organ failure.
Figure 2
Figure 2
Sidestream dark-field (SDF) imaging. This imaging technique is an improved method of observing the human microcirculation at the bedside. (a) SDF imaging consists of a light guide surrounded by green light-emitting diodes (LEDs; wavelength 530 nm) whose light penetrates the tissue and illuminates the microcirculation. The light is absorbed by hemoglobin of the red blood cells and scattered by leukocytes. A magnifying lens projects the image onto a video camera. Placed on organ surfaces, SDF imaging provides crisp images of the red blood cells and leukocytes flowing through the microcirculation (for real-time films, see http://www.sdfimaging.net). (b) As an example of the improved image quality provided by SDF imaging, the sublingual microcirculation of a volunteer is shown, with a magnified inset showing several leukocytes.

References

    1. Spronk PE, Zandstra DF, Ince C. Bench-to-bedside review: Sepsis is a disease of the microcirculation. Crit Care. 2004;8:462–468. doi: 10.1186/cc2894.
    1. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–1831. doi: 10.1097/01.CCM.0000138558.16257.3F.
    1. Meakins JL, Marshall JC. The gastrointestinal tract: the 'motor' of MOF. Arch Surg. 1986;121:197–204.
    1. Vallet B. Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med. 2002;30(suppl 5):S229–S234. doi: 10.1097/00003246-200205001-00010.
    1. Lidington D, Tyml K, Ouellette Y. Lipopolysaccharide-induced reductions in cellular coupling correlate with tyrosine phosphorylation of connexin. J Cell Physiol. 2002;193:373–379. doi: 10.1002/jcp.10179.
    1. Bateman RM, Sharpe MD, Ellis CG. Bench-to-bedside review: Microvascular dysfunction in sepsis – hemodynamics, oxygen transport, and nitric oxide. Crit Care. 2003;7:359–373. doi: 10.1186/cc2353.
    1. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104. doi: 10.1164/rccm.200109-016OC.
    1. Lam C, Tyml K, Martin C, Sibbald W. Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest. 1994;94:2077–2083.
    1. Nakijima Y, Baudry N, Durante J, Vicaut E. Microcirculation in intestinal villi: a comparison between hemorrhagic and endotoxin shock. Am J Respir Crit Care Med. 2001;164:1526–1530.
    1. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF. Nitroglycerin promotes microvascular recruitment in septic shock after intravascular volume resuscitation. Lancet. 2002;360:1395–1396. doi: 10.1016/S0140-6736(02)11393-6.
    1. Goldman D, Bateman RM, Ellis CG. Effect of sepsis on skeletal muscle oxygen consumption and tissue oxygenation: interpreting capillary oxygen transport data using a mathematical model. Am J Physiol Heart Circ Physiol. 2004;287:H2535–H2544. doi: 10.1152/ajpheart.00889.2003.
    1. Ince C, Sinaappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med. 1999;27:1369–1377. doi: 10.1097/00003246-199907000-00031.
    1. Sinaasappel M, van Iterson M, Ince C. Microvascular oxygen pressure measurements in the intestine during hemorrhagic shock and resuscitation. J Physiol (Lond) 1999;514:245–253. doi: 10.1111/j.1469-7793.1999.245af.x.
    1. Schwarte LA, Fournell A, van Bommel J, Ince C. Redistribution of intestinal microcirculatory oxygenation during acute hemodilution in pigs. J Appl Physiol. 2005;98:1070–1075. doi: 10.1152/japplphysiol.00861.2004.
    1. Morin MJ, Unno N, Hodin RA, Fink MP. Differential expression of inducible nitric oxide synthase messenger RNA along the longitudinal and crypt-villus axes of the intestine in endotoxemic rats. Crit Care Med. 1998;26:1258–1264. doi: 10.1097/00003246-199807000-00031.
    1. Revelly JP, Ayuse T, Brienza N, Fessler HE, Robotham JL. Endotoxic shock alters distribution of blood flow within the intestinal wall. Crit Care Med. 1996;24:1345–1351. doi: 10.1097/00003246-199608000-00013.
    1. Baker CH, Wilmoth FR. Microvascular responses to E. coli endotoxin with altered adrenergic activity. Circ Shock. 1984;12:165–176.
    1. Price SA, Spain DA, Wilson MA, Harris PD, Garrison RN. Subacute sepsis impairs vascular smooth muscle contractile machinery and alters vasoconstrictor and dilator mechanisms. J Surg Res. 1999;83:75–80. doi: 10.1006/jsre.1998.5568.
    1. Baskurt OK, Temiz A, Meiselman HJ. Red blood cell aggregation in experimental sepsis. J Lab Clin Med. 1997;130:183–190. doi: 10.1016/S0022-2143(97)90094-9.
    1. Piagnerelli M, Boudjeltia KZ, Vanhaeverbeek M, Vincent JL. Red blood cell rheology in sepsis. Intensive Care Med. 2003;29:1052–1061. doi: 10.1007/s00134-003-1783-2.
    1. Siegemund M, Hardeman MR, van Bommel J, Stegenga ME, Lind A, Ince C. Red blood cell deformability in two different doses of LPS in a porcine model of endotoxemia. Intensive Care Med. 1999;25:S21. doi: 10.1007/s001340051011.
    1. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X. et al.Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–1505. doi: 10.1038/nm954.
    1. Singel DJ, Stamler JS. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol. 2005;67:99–145. doi: 10.1146/annurev.physiol.67.060603.090918.
    1. Cerwinka WH, Cooper D, Krieglstein CF, Ross CR, McCord JM, Granger DN. Superoxide mediates endotoxin-induced platelet–endothelial cell adhesion in intestinal venules. Am J Physiol Heart Circ Physiol. 2003;284:H535–H541.
    1. Martins PS, Kallas EG, Neto MC, Dalboni MA, Blecher S, Salomao R. Upregulation of reactive oxygen species generation and phagocytosis, and increased apoptosis in human neutrophils during severe sepsis and septic shock. Shock. 2003;20:208–212. doi: 10.1097/01.shk.0000079425.52617.db.
    1. Victor VM, Rocha M, De la Fuente M. Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol. 2004;4:327–347. doi: 10.1016/j.intimp.2004.01.020.
    1. Fink MP. Intestinal epithelial hyperpermeability: update on the pathogenesis of gut mucosal barrier dysfunction in critical illness. Curr Opin Crit Care. 2003;9:143–151. doi: 10.1097/00075198-200304000-00011.
    1. van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circ Res. 2003;92:592–594. doi: 10.1161/01.RES.0000065917.53950.75.
    1. Fink MP. Cytopathic hypoxia in sepsis. Acta Anaesthesiol Scand Suppl. 1997;110:87–95.
    1. Ince C. Microcirculatory weak units: an alternative explanation. Crit Care Med. 2000;28:3127–3129.
    1. Avontuur JAM, Bruining HA, Ince C. Inhibition of nitric oxide synthesis causes myocardial ischemia in endotoxemic rats. Circ Res. 1995;76:418–425.
    1. Eerbeek O, Milstein DMJ, Ince C. Microcirculatory dysfunction in Langendorff endotoxemic rat hearts. Shock. 2004;21:81.
    1. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–223. doi: 10.1016/S0140-6736(02)09459-X.
    1. Dubois MJ, de Backer D, Creteur J, Anane S, Vincent JL. Effect of vasopressin on sublingual microcirculation in a patient with distributive shock. Intensive Care Med. 2003;29:1020–1023.
    1. Spronk PE, Kanoore-Edul VS, Ince C. In: Functional Hemodynamic Monitoring. Pinsky MR, Payen D, editor. Berlin: Springer-Verlag; Microcirculatory and mitochondrial distress syndrome (MMDS): a new look at sepsis. Update in Intensive Care Emergency Medicine 2004, 42:47-69.
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. EarlyGoal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Siegemund M, van Bommel J, Ince C. Assessment of regional tissue oxygenation. Intensive Care Med. 1999;25:1044–1060. doi: 10.1007/s001340051011.
    1. Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL. Determinant of sublingual pCO2 in patients with septic shock. Crit Care Med Suppl. 2004;31:419.
    1. Guzman JA, Dikin MS, Kruse JA. Lingual, splanchnic, and systemic hemodynamic and carbon dioxide tension changes during endotoxic shock and resuscitation. J Appl Physiol. 2005;98:108–113. doi: 10.1152/japplphysiol.00243.2004.
    1. Venkatesh B, Morgan TJ, Hall J, Willgoss EZ. Subcutaneous gas tensions closely track ileal mucosal gas tensions in a model of endotoxemia without anaerobism. Intensive Care Med. 2005;31:447–454. doi: 10.1007/s00134-005-2558-8.
    1. Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R, Grayman G, Bisera J. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med. 1999;27:1225–1229. doi: 10.1097/00003246-199907000-00001.
    1. Buise MP, Ince C, Tilanus HW, Gommers D, van Bommel J. The effect of nitroglycerin on microvascular perfusion and oxygenation during gastric tube reconstruction. Anesth Analg. 2005;100:1107–1111. doi: 10.1213/.
    1. Atasever B, van der Veen A, Goedhart P, de Mo B, Ince C. Sublingual NIRS and reflectance spectrophotometry: new methods to monitor sublingual oxygen availability. Crit Care. 2005;8(suppl 1):P73. doi: 10.1186/cc3136.
    1. Mathura KR, Vollebrecht KC, Boer K, de Graaf JC, Ubbink DT, Ince C. Comparison of OPS imaging to intravital capillarosopy of nail fold microcirculation. J Appl Physiol. 2001;91:74–78.
    1. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau R. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999;5:1209–1212. doi: 10.1038/13529.
    1. Mathura KR, Alic L, Ince C. In: Yearbook of Intensive Care and Emergency Medicine. Vincent JL, editor. Berlin: Springer-Verlag; 2001. Initial clinical experience with OPS imaging; pp. 233–244.
    1. Mathura KR, Bouma GJ, Ince C. Abnormal microcirculation in brain tumours during surgery. Lancet. 2001;358:1698–1699. doi: 10.1016/S0140-6736(01)06722-8.
    1. Pennings F, Bouma GJ, Ince C. Direct observation of the human cerebral microcirculation during aneurysm surgery reveals increased arteriolar contractility. Stroke. 2004;35:1284–1288. doi: 10.1161/01.STR.0000126039.91400.cb.
    1. Ince C. Sidestream dark field (SDF) imaging: an improved technique to observe sublingual microcirculation. Crit Care. 2005;8(suppl 1):P72. doi: 10.1186/cc3135.
    1. Siegmund M, van Bommel J, Schwarte LA, Emons M, Rademacher P, Ince C. Selective blockade of iNOS by 1400W restores the gut oxygenation in a pig model of low-dose endotoxaemia. Intensive Care Med. 2005;31:985–992. doi: 10.1007/s00134-005-2664-7.
    1. Van Iterson, M Siegemund, K Burhop, Ince C. Heart and gut microvascular oxygenation in pigs after resuscitation from hemorrhage by different doses of a hemoglobin based oxygen carrier. J Trauma. 2003;55:1111–1124.
    1. Anning PB, Finney SJ, Singh S, Winlove CP, Evans TW. Fluids reverse the early lipopolysaccharide-induced albumin leakage in rodent mesenteric venules. Intensive Care Med. 2004;30:1944–1949. doi: 10.1007/s00134-004-2385-3.
    1. Raat NJ, Verhoeven AJ, Mik EG, Gouwerok CW, Verhaar R, Goedhart PT, de Korte D, Ince C. The effect of storage time of human red cells on intestinal microcirculatory oxygenation in a rat isovolemic exchange model. Crit Care Med. 2005;33:39–45. doi: 10.1097/01.CCM.0000150655.75519.02.
    1. Van Iterson M, Ince C. In: Yearbook of Intensive Care and Emergency Medicine. Vincent JL, editor. Berlin: Springer-Verlag; 2004. Resuscitation of the microcirculation with haemoglobin based oxygen carriers following hemorrhage; pp. 762–779.
    1. Avontuur JA, Bruining HA, Ince C. Nitric oxide causes dysfunction of coronary autoregulation in endotoxemic rats. Cardiovasc Res. 1997;35:368–376. doi: 10.1016/S0008-6363(97)00132-6.
    1. Groeneveld AB, van Lambalgen AA, van den Bos GC, Bronsveld W, Nauta JJ, Thijs LG. Maldistribution of heterogeneous coronary blood flow during canine endotoxin shock. Cardiovasc Res. 1991;25:80–88.
    1. Hollenberg SM, Broussard M, Osman J, Parillo JE. Increased microvascular reactivity and improved mortality in septic mice lacking inducible nitric oxide synthase. Circ Res. 2000;86:774–779.
    1. Pittner A, Nalos M, Asfar P, Yang Y, Ince C, Georgieff M, Bruckner UB, Radermacher P, Froba G. Mechanisms of inducible nitric oxide synthase (iNOS) inhibition-related improvement of gut mucosal acidosis during hyperdynamic porcine endotoxemia. Intensive Care Med. 2003;29:312–316.
    1. Wang le F, Patel M, Razavi HM, Weicker S, Joseph MG, McCormack DG, Mehta S. Role of inducible nitric oxide synthase in pulmonary microvascular protein leak in murine sepsis. Am J Respir Crit Care Med. 2002;165:1634–1639. doi: 10.1164/rccm.2110017.
    1. Duma D, Silva-Santos JE, Assreuy J. Inhibition of glucocorticoid receptor binding by nitric oxide in endotoxemic rats. Crit Care Med. 2004;32:2304–2310.
    1. Keh D, Sprung CL. Use of corticosteroid therapy in patients with sepsis and septic shock: an evidence-based review. Crit Care Med. 2004;32:S527–S533. doi: 10.1097/01.CCM.0000142983.15421.11.
    1. Buwalda M, Ince C. Opening the microcirculation: can vasodilators be useful in sepsis? Intensive Care Med. 2002;28:1208–1217. doi: 10.1007/s00134-002-1407-2.
    1. Siegemund M, van Bommel J, Vollebrecht K, Dries J, Ince C. Influence of NO donor SIN-1 on the gut oxygenation in a normodynamic, porcine model of low-dose endotoxaemia. Intensive Care Med. 2000;26:S362.
    1. Boerma EC, van der Voort PHJ, Ince C. Sublingual microcirculatory flow is impaired by the vasopressin-analogue terlipressin in a patient with catecholamine-resistant septic shock. Acta Anaesth Scand. 2005. doi: 1011/j/1399-6576.2005.00752.x.
    1. Albert M, Losser MR, Hayon D, Faivre V, Payen D. Systemic and renal macro- and microcirculatory responses to arginine vasopressin in endotoxic rabbits. Crit Care Med. 2004;32:1891–1898. doi: 10.1097/01.CCM.0000139708.10718.E3.
    1. Westphal M, Freise H, Kehe BE, Bone HG, van Aken H, Seilenkamp AW. Argenine vasopressin compromises gut mucosal microcirculation in septic rats. Crit Care Med. 2004;32:194–200. doi: 10.1097/01.CCM.0000104201.62736.12.
    1. Bernard GR, Vincent JL, Laterre P, Larosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ Jr, Recombinant human protein C. Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709. doi: 10.1056/NEJM200103083441001.
    1. Isobe H, Okajima K, Uchiba M, Mizutani A, Harada N, Nagasaki A, Okabe K. Activated protein C prevents endotoxin-induced hypotension in rats by inhibiting excessive production of nitric oxide. Circulation. 2001;104:1171–1175.
    1. Brueckmann M, Hoffmann U, Dvortsak E, Lang S, Kaden JJ, Borggrefe M, Haase KK. Drotrecogin alfa (activated) inhibits NF-kappa B activation and MIP-1-alpha release from isolated mononuclear cells of patients with severe sepsis. Inflamm Res. 2004;53:528–533. doi: 10.1007/s00011-004-1291-z.
    1. Yamaji K, Wang Y, Liu Y, Abeyama K, Hashiguchi T, Uchimura T, Krishna Biswas K, Iwamoto H, Maruyama I. Activated protein C, a natural anticoagulant protein, has antioxidant properties and inhibits lipid peroxidation and advanced glycation end products formation. Thromb Res. 2005;115:319–325. doi: 10.1016/j.thromres.2004.09.011.
    1. Hoffmann JN, Vollmar B, Laschke MW, Inthorn D, Fertmann J, Schildberg FW, Menger MD. Microhemodynamic and cellular mechanisms of activated protein action during endotoxemia. Crit Care Med. 2004;32:1011–1017. doi: 10.1097/01.CCM.0000120058.88975.42.
    1. Iba T, Kidokoro A, Fukunaga M, Nagakari K, Shirahama A, Ida Y. Activated protein C improves the visceral microcirculation by attenuating the leukocyte–endothelial interaction in a rat lipopolysaccharide model. Crit Care Med. 2005;33:368–372. doi: 10.1097/01.CCM.0000153415.04995.88.
    1. Ince C. The microcirculation in distress: a new resuscitation end-point? Crit Care Med. 2004;32:1963–1964. doi: 10.1097/01.CCM.0000139617.88704.B9.

Source: PubMed

Подписаться