Effects of early extubation followed by noninvasive ventilation versus standard extubation on the duration of invasive mechanical ventilation in hypoxemic non-hypercapnic patients: a systematic review and individual patient data meta-analysis of randomized controlled trials

Rosanna Vaschetto, Alessandro Pecere, Gavin D Perkins, Dipesh Mistry, Gianmaria Cammarota, Federico Longhini, Miguel Ferrer, Renata Pletsch-Assunção, Michele Carron, Francesca Moretto, Haibo Qiu, Francesco Della Corte, Francesco Barone-Adesi, Paolo Navalesi, Rosanna Vaschetto, Alessandro Pecere, Gavin D Perkins, Dipesh Mistry, Gianmaria Cammarota, Federico Longhini, Miguel Ferrer, Renata Pletsch-Assunção, Michele Carron, Francesca Moretto, Haibo Qiu, Francesco Della Corte, Francesco Barone-Adesi, Paolo Navalesi

Abstract

Background: Usefulness of noninvasive ventilation (NIV) in weaning patients with non-hypercapnic hypoxemic acute respiratory failure (hARF) is unclear. The study aims to assess in patients with non-hypercapnic hARF, the efficacy of NIV after early extubation, compared to standard weaning.

Methods: In this individual patient data meta-analysis, we searched EMBASE, Medline and Cochrane Central Register of Controlled Trials to identify potentially eligible randomized controlled trials published from database inception to October 2020. To be eligible, studies had to include patients treated with NIV after early extubation and compared to conventional weaning in adult non-hypercapnic hARF patients. Anonymized individual patient data from eligible studies were provided by study investigators. Using one-step and two-step meta-analysis models we tested the difference in total days spent on invasive ventilation.

Results: We screened 1605 records. Six studies were included in quantitative synthesis. Overall, 459 participants (mean [SD] age, 62 [15] years; 269 [59%] males) recovering from hARF were included in the analysis (233 in the intervention group and 226 controls). Participants receiving NIV had a shorter duration of invasive mechanical ventilation compared to control group (mean difference, - 3.43; 95% CI - 5.17 to - 1.69 days, p < 0.001), a shorter duration of total days spent on mechanical ventilation (mean difference, - 2.04; 95% CI - 3.82 to - 0.27 days, p = 0.024), a reduced risk of ventilatory associated pneumonia (odds ratio, 0.24; 95% CI 0.08 to 0.71, p = 0.014), a reduction of time spent in ICU (time ratio, 0.81; 95% CI 0.68 to 0.96, p = 0.015) and in-hospital (time ratio, 0.81; 95% CI 0.69 to 0.95, p = 0.010), with no difference in ICU mortality.

Conclusions: Although primary studies are limited, using an individual patient data metanalysis approach, NIV after early extubation appears useful in reducing total days spent on invasive mechanical ventilation.

Trial registration: The protocol was registered to PROSPERO database on 12/06/2019 and available at PROSPERO website inserting the study code i.e., CRD42019133837.

Keywords: Hypoxemic acute respiratory failure; Noninvasive ventilation; Weaning.

Conflict of interest statement

PN reports, outside the submitted work, non-financial support from Draeger and Intersurgical SpA, personal fees from, Resmed, Philips, Novartis, MSD, Getinge and, Draeger. In addition, PN has a patent 102020000008305 pending to Università di Padova, and a patent 102016000114357 with royalties paid from Intersurgical S.p.A. GDP is supported as a NIHR Senior Investigator and by NIHR Applied Research Collaboration (ARC) West Midlands. FL contributed to the development of a new device (European Patent number EP3320941). RV, AP, DM, GC, MF, RPA, MC, FM, HQ, FDC, FBA declare no competing interests.

Figures

Fig. 1
Fig. 1
PRISMA-IPD flow diagram. The following flow diagram summarizes the selection process of the randomized control trials included in the systematic review, from the identification to the final phase of data analysis. IPD individual patient data, PICO patient intervention comparison outcome
Fig. 2
Fig. 2
Results of 2-stage IPD-MA. a Mean i-MV time (p value = 0.006); b mean total ventilation time (p value = 0.13); c occurrence of VAP (p value = 0.03); d time to ICU discharge (p value = 0.09); e time to ICU death (p value = 0.222), f time to hospital discharge (p value = 0.009). CI confidence interval, ICU intensive care unit, i-MV invasive mechanical ventilation, IPD-MA individual patient data meta-analysis, VAP ventilator associated pneumonia

References

    1. Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Penuelas O, Abraira V, et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 2013;188:220–230. doi: 10.1164/rccm.201212-2169OC.
    1. Tobin MJ. Basing respiratory management of COVID-19 on physiological principles. Am J Respir Crit Care Med. 2020;201:1319–1320. doi: 10.1164/rccm.202004-1076ED.
    1. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29:1033–1056. doi: 10.1183/09031936.00010206.
    1. Beduneau G, Pham T, Schortgen F, Piquilloud L, Zogheib E, Jonas M, et al. Epidemiology of weaning outcome according to a new definition. The WIND study. Am J Respir Crit Care Med. 2017;195:772–783. doi: 10.1164/rccm.201602-0320OC.
    1. Nava S, Navalesi P, Conti G. Time of non-invasive ventilation. Intensive Care Med. 2006;32:361–370. doi: 10.1007/s00134-005-0050-0.
    1. Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50(2):1602426. doi: 10.1183/13993003.02426-2016.
    1. Burns KE, Meade MO, Premji A, Adhikari NK. Noninvasive ventilation as a weaning strategy for mechanical ventilation in adults with respiratory failure: a Cochrane systematic review. CMAJ. 2014;186:E112–E122. doi: 10.1503/cmaj.130974.
    1. Perkins GD, Mistry D, Gates S, Gao F, Snelson C, Hart N, et al. Effect of protocolized weaning with early extubation to noninvasive ventilation vs invasive weaning on time to liberation from mechanical ventilation among patients with respiratory failure: the breathe randomized clinical trial. JAMA. 2018;320:1881–1888. doi: 10.1001/jama.2018.13763.
    1. Vaschetto R, Longhini F, Persona P, Ori C, Stefani G, Liu S, et al. Early extubation followed by immediate noninvasive ventilation vs. standard extubation in hypoxemic patients: a randomized clinical trial. Intensive Care Med. 2019;45:62–71. doi: 10.1007/s00134-018-5478-0.
    1. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Charra B, Hachimi A, Benslama A, Motaouakkil S. Contribution of noninvasive ventilation in the precocious extubation in the medical ICU. Crit Care. 2009;13(Suppl 1):12. doi: 10.1186/cc7176.
    1. Girault C, Daudenthun I, Chevron V, Tamion F, Leroy J, Bonmarchand G. Noninvasive ventilation as a systematic extubation and weaning technique in acute-on-chronic respiratory failure: a prospective, randomized controlled study. Am J Respir Crit Care Med. 1999;160:86–92. doi: 10.1164/ajrccm.160.1.9802120.
    1. Guo F, Xu S, Liu G, Wang X. An investigation of the efficacy of invasive-noninvasive sequential mechanical ventilation in senile patients with severe community-acquired pneumonia. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2015;27:595–600.
    1. Laiq N, Khan RA, Malik A. Non-Invasive Positive Pressure Ventilation facilitates early extubation in post operative cardiac patients. Postgrad Med Inst. 2013;27:361–365.
    1. Laiq N, Khan S, Islam N, Khan MN. Effectiveness of continuous positive pressure ventilation in reducing the length of stay in post cardiac bypass surgery patients. J Med Sci. 2017;25:257–261.
    1. Tawfeek MM, Elnabtity AMA. Noninvasive proportional assist ventilation may be useful in weaning patients who failed spontaneous breathing trial. Egyptian Journal of Anaesthesia. 2012;28:89–94. doi: 10.1016/j.egja.2011.08.004.
    1. Wang X, Xu S, Liu G, Caikai S. Study of timing of invasive and noninvasive sequential ventilation in patients with acute respiratory distress syndrome. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014;26:330–334.
    1. Carron M, Rossi S, Carollo C, Ori C. Comparison of invasive and noninvasive positive pressure ventilation delivered by means of a helmet for weaning of patients from mechanical ventilation. J Crit Care. 2014;29:580–585. doi: 10.1016/j.jcrc.2014.03.035.
    1. Ferrer M, Esquinas A, Arancibia F, Bauer TT, Gonzalez G, Carrillo A, et al. Noninvasive ventilation during persistent weaning failure: a randomized controlled trial. Am J Respir Crit Care Med. 2003;168:70–76. doi: 10.1164/rccm.200209-1074OC.
    1. Trevisan CE, Vieira SR. Noninvasive mechanical ventilation may be useful in treating patients who fail weaning from invasive mechanical ventilation: a randomized clinical trial. Crit Care. 2008;12:R51. doi: 10.1186/cc6870.
    1. Vaschetto R, Turucz E, Dellapiazza F, Guido S, Colombo D, Cammarota G, et al. Noninvasive ventilation after early extubation in patients recovering from hypoxemic acute respiratory failure: a single-centre feasibility study. Intensive Care Med. 2012;38:1599–1606. doi: 10.1007/s00134-012-2652-7.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–829. doi: 10.1097/00003246-198510000-00009.
    1. Esteban A, Anzueto A, Frutos F, Alia I, Brochard L, Stewart TE, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287:345–355. doi: 10.1001/jama.287.3.345.
    1. Yeung J, Couper K, Ryan EG, Gates S, Hart N, Perkins GD. Non-invasive ventilation as a strategy for weaning from invasive mechanical ventilation: a systematic review and Bayesian meta-analysis. Intensive Care Med. 2018;44:2192–2204. doi: 10.1007/s00134-018-5434-z.
    1. Nava S, Ambrosino N, Clini E, Prato M, Orlando G, Vitacca M, et al. Noninvasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease. A randomized, controlled trial. Ann Intern Med. 1998;128:721–728. doi: 10.7326/0003-4819-128-9-199805010-00004.
    1. Lyman GH, Kuderer NM. The strengths and limitations of meta-analyses based on aggregate data. BMC Med Res Methodol. 2005;5:14. doi: 10.1186/1471-2288-5-14.

Source: PubMed

Подписаться