Health status deterioration in subjects with mild to moderate airflow obstruction, a six years observational study

Fernanda Machado Rodrigues, Heleen Demeyer, Matthias Loeckx, Miek Hornikx, Hans Van Remoortel, Wim Janssens, Thierry Troosters, Fernanda Machado Rodrigues, Heleen Demeyer, Matthias Loeckx, Miek Hornikx, Hans Van Remoortel, Wim Janssens, Thierry Troosters

Abstract

Background: Patients with COPD need to cope with a disabling disease, which leads to health status impairment.

Aim: To investigate the long term change of health status in subjects with mild to moderate airflow obstruction and to compare this to subjects without airflow obstruction, with and without a smoking history. Second, to investigate the factors potentially associated to rapid health status decline in our total cohort.

Methods: Two hundred and one subjects were included. Generic [Short form 36 health survey (SF36) and EuroQol - 5 dimensions (EQ-5D)] and disease specific [Clinical COPD questionnaire (CCQ) and COPD Assessment Test (CAT)] health status questionnaires were regularly repeated over a six years period. Other functional outcomes comprised measures of lung function, physical fitness, physical activity and emotional state.

Results: On average, health status decline did not differ between groups with the exception of the EQ-5D index, which deteriorated faster in subjects with airflow obstruction compared to the never smoking control group [- 0.018(0.008) versus 0.00006(0.003), p = 0.03]. Subjects presenting at least one exacerbation had faster rate of deterioration measured with CAT [0.91(0.21) versus - 0.26(0.25), p < 0.01]. Characteristics of the fast declining group were older age, worse lung function, physical fitness, physical activity and disease specific baseline health status. Subjects with airflow obstruction had a 2.5 (95% CI 1.36-4.71) higher risk of presenting fast overall health status decline. Fast overall decline was associated with the presence of acute exacerbation(s) (44% of the subjects with exacerbation(s) versus 17% of subjects without exacerbation, p = 0.03). Changes in fat free mass, functional exercise capacity and in symptoms of anxiety and depression correlated weakly to changes in health status measured with all questionnaires.

Conclusion: Subjects with mild airflow obstruction present a significant deterioration of health status, which is generally not much faster compared to smoking and never smoking controls. Subjects with fast decline in overall health status are older and more likely to have airflow obstruction, acute respiratory exacerbation(s), reduced physical fitness, physical activity and impaired COPD specific health status at baseline.

Trial registration: NCT01314807 - retrospectively registered on March 2011.

Keywords: Aging; Airflow obstruction; Chronic obstructive pulmonary disease; Health status; Longitudinal studies.

Conflict of interest statement

The authors declare that they have no competing interests

Figures

Fig. 1
Fig. 1
CONSORT type flow chart of inclusions and follow up. Drop outs are indicated immediately after the last attended visit. In case of decease, this is also indicated after the last attended visit by the subject, even if the decease occurred at a later stage. The number of deceases between two visits are included in the number of drop outs and are specified within brackets
Fig. 2
Fig. 2
Visual representation of the changes in health status obtained with the mixed model. Data as average and standard error. Panel a) Short form 36 health survey physical component summary (SF36 PCS); b) Short form 36 health survey mental component summary (SF36 MCS); c) Generic EuroQol 5 dimensions utility index (EQ-5D index); d) Generic EuroQol 5 dimensions visual analog scale (EQ-5D VAS); e) Clinical COPD Questionnaire (CCQ); f) COPD assessment test (CAT). The airflow obstruction group (AO) is represented by circles and solid black line, the smoking control group (SC) by squares and solid dark grey line and the never smoking control group (NSC) by triangles and dashed light grey line. AO n=, SC n= and NSC n = refer to the number of valid of measurements in the three groups, in each time-point, for each instrument

References

    1. World Health Organization . Constitution of the World Health Organization. 48. Geneva: Basic documents of the World Health Organization; 2014.
    1. Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017. 2019. Available from: . Accessed 8 May 2019.
    1. Rossi A, Butorac-Petanjek B, Chilosi M, Cosio BG, Flezar M, Koulouris N, et al. Chronic obstructive pulmonary disease with mild airflow limitation: current knowledge and proposal for future research - a consensus document from six scientific societies. Int J Chron Obstruct Pulmon Dis. 2017;12:2593–2610. doi: 10.2147/COPD.S132236.
    1. Miravitlles M, Soriano JB, Garcia-Rio F, Munoz L, Duran-Tauleria E, Sanchez G, et al. Prevalence of COPD in Spain: impact of undiagnosed COPD on quality of life and daily life activities. Thorax. 2009;64(10):863–868. doi: 10.1136/thx.2009.115725.
    1. Soriano JB, Zielinski J, Price D. Screening for and early detection of chronic obstructive pulmonary disease. Lancet. 2009;374(9691):721–732. doi: 10.1016/S0140-6736(09)61290-3.
    1. Osman IM, Godden DJ, Friend JA, Legge JS, Douglas JG. Quality of life and hospital re-admission in patients with chronic obstructive pulmonary disease. Thorax. 1997;52(1):67–71. doi: 10.1136/thx.52.1.67.
    1. Jones PW, Anderson JA, Calverley PM, Celli BR, Ferguson GT, Jenkins C, et al. Health status in the TORCH study of COPD: treatment efficacy and other determinants of change. Respir Res. 2011;12:71. doi: 10.1186/1465-9921-12-71.
    1. Spencer S, Calverley PM, Sherwood BP, Jones PW. Health status deterioration in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(1):122–128. doi: 10.1164/ajrccm.163.1.2005009.
    1. Decramer M, Celli B, Kesten S, Lystig T, Mehra S, Tashkin DP. Effect of tiotropium on outcomes in patients with moderate chronic obstructive pulmonary disease (UPLIFT): a prespecified subgroup analysis of a randomised controlled trial. Lancet. 2009;374(9696):1171–1178. doi: 10.1016/S0140-6736(09)61298-8.
    1. Oga T, Nishimura K, Tsukino M, Sato S, Hajiro T, Mishima M. Longitudinal deteriorations in patient reported outcomes in patients with COPD. Respir Med. 2007;101(1):146–153. doi: 10.1016/j.rmed.2006.04.001.
    1. Habraken JM, van der Wal WM, Ter Riet G, Weersink EJ, Toben F, Bindels PJ. Health-related quality of life and functional status in end-stage COPD: a longitudinal study. Eur Respir J. 2011;37(2):280–288. doi: 10.1183/09031936.00149309.
    1. Wilke S, Jones PW, Mullerova H, Vestbo J, Tal-Singer R, Franssen FM, et al. One-year change in health status and subsequent outcomes in COPD. Thorax. 2015;70(5):420–425. doi: 10.1136/thoraxjnl-2014-205697.
    1. Roche N, Dalmay F, Perez T, Kuntz C, Vergnenegre A, Neukirch F, et al. Impact of chronic airflow obstruction in a working population. Eur Respir J. 2008;31(6):1227–1233. doi: 10.1183/09031936.00089607.
    1. Coultas DB, Mapel D, Gagnon R, Lydick E. The health impact of undiagnosed airflow obstruction in a national sample of United States adults. Am J Respir Crit Care Med. 2001;164(3):372–377. doi: 10.1164/ajrccm.164.3.2004029.
    1. Van Remoortel H, Hornikx M, Langer D, Burtin C, Everaerts S, Verhamme P, et al. Risk factors and comorbidities in the preclinical stages of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189(1):30–38.
    1. Rodrigues FM, Loeckx M, Hornikx M, Van Remoortel H, Louvaris Z, Demeyer H, et al. Six years progression of exercise capacity in subjects with mild to moderate airflow obstruction, smoking and never smoking controls. PLoS One. 2018;13(12):e0208841. doi: 10.1371/journal.pone.0208841.
    1. Ware JE., Jr SF-36 health survey update. Spine (Phila Pa 1976) 2000;25(24):3130–3139. doi: 10.1097/00007632-200012150-00008.
    1. Cleemput I. A social preference valuations set for EQ-5D health states in Flanders, Belgium. Eur J Health Econ. 2010;11(2):205–213. doi: 10.1007/s10198-009-0167-0.
    1. Canavan JL, Dilaver D, Clark AL, Jones SE, Nolan CM, Kon SS, et al. Clinical COPD questionnaire in patients with chronic respiratory disease. Respirology. 2014;19(7):1006–1012. doi: 10.1111/resp.12350.
    1. Jones PW, Harding G, Berry P, Wiklund I, Chen WH, Kline LN. Development and first validation of the COPD assessment test. Eur Respir J. 2009;34(3):648–654. doi: 10.1183/09031936.00102509.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi: 10.1183/09031936.05.00034805.
    1. Graham BL, Brusasco V, Burgos F, Cooper BG, Jensen R, Kendrick A, et al. Executive summary: 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J. 2017;49(1):1600016.
    1. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Eur Respir J. 1993;6(Suppl 16):5–40. doi: 10.1183/09041950.005s1693.
    1. Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S. Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil. 1985;66(2):69–74.
    1. Machado Rodrigues Fernanda, Demeyer Heleen, Hornikx Miek, Camillo Carlos Augusto, Calik-Kutukcu Ebru, Burtin Chris, Janssens Wim, Troosters Thierry, Osadnik Christian. Validity and reliability of strain gauge measurement of volitional quadriceps force in patients with COPD. Chronic Respiratory Disease. 2017;14(3):289–297. doi: 10.1177/1479972316687210.
    1. Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med. 1996;153(3):976–980. doi: 10.1164/ajrccm.153.3.8630582.
    1. Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–1446. doi: 10.1183/09031936.00150314.
    1. Jones NL, Makrides L, Hitchcock C, Chypchar T, McCartney N. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis. 1985;131(5):700–708.
    1. Demeyer H, Burtin C, Van Remoortel H, Hornikx M, Langer D, Decramer M, et al. Standardizing the analysis of physical activity in patients with COPD following a pulmonary rehabilitation program. Chest. 2014;146(2):318–327. doi: 10.1378/chest.13-1968.
    1. Spinhoven P, Ormel J, Sloekers PP, Kempen GI, Speckens AE, Van Hemert AM. A validation study of the hospital anxiety and depression scale (HADS) in different groups of Dutch subjects. Psychol Med. 1997;27(2):363–370. doi: 10.1017/S0033291796004382.
    1. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Spencer S, Calverley PM, Burge PS, Jones PW. Impact of preventing exacerbations on deterioration of health status in COPD. Eur Respir J. 2004;23(5):698–702. doi: 10.1183/09031936.04.00121404.
    1. Miravitlles M, Ferrer M, Pont A, Zalacain R, Alvarez-Sala JL, Masa F, et al. Effect of exacerbations on quality of life in patients with chronic obstructive pulmonary disease: a 2 year follow up study. Thorax. 2004;59(5):387–395. doi: 10.1136/thx.2003.008730.
    1. Jo YS, Yoon HI, Kim DK, Yoo CG, Lee CH. Comparison of COPD assessment test and clinical COPD questionnaire to predict the risk of exacerbation. Int J Chron Obstruct Pulmon Dis. 2018;13:101–107. doi: 10.2147/COPD.S149805.
    1. Jones PW, Brusselle G, Dal Negro RW, Ferrer M, Kardos P, Levy ML, et al. Properties of the COPD assessment test in a cross-sectional European study. Eur Respir J. 2011;38(1):29–35. doi: 10.1183/09031936.00177210.
    1. Kon SS, Dilaver D, Mittal M, Nolan CM, Clark AL, Canavan JL, et al. The clinical COPD questionnaire: response to pulmonary rehabilitation and minimal clinically important difference. Thorax. 2014;69(9):793–798. doi: 10.1136/thoraxjnl-2013-204119.
    1. Kon SS, Canavan JL, Jones SE, Nolan CM, Clark AL, Dickson MJ, et al. Minimum clinically important difference for the COPD assessment test: a prospective analysis. Lancet Respir Med. 2014;2(3):195–203. doi: 10.1016/S2213-2600(14)70001-3.
    1. Wilke S, Spruit MA, Wouters EF, Schols JM, Franssen FM, Janssen DJ. Determinants of 1-year changes in disease-specific health status in patients with advanced chronic obstructive pulmonary disease: a 1-year observational study. Int J Nurs Pract. 2015;21(3):239–248. doi: 10.1111/ijn.12265.
    1. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al. The physical activity guidelines for Americans. JAMA. 2018;320(19):2020–2028. doi: 10.1001/jama.2018.14854.
    1. Han WJ, Shibusawa T. Trajectory of physical health, cognitive status, and psychological well-being among Chinese elderly. Arch Gerontol Geriatr. 2015;60(1):168–177. doi: 10.1016/j.archger.2014.09.001.
    1. Ludt S, Wensing M, Szecsenyi J, van LJ, Rochon J, Freund T, et al. Predictors of health-related quality of life in patients at risk for cardiovascular disease in European primary care. PLoS One. 2011;6(12):e29334. doi: 10.1371/journal.pone.0029334.
    1. Martinelli LM, Mizutani BM, Mutti A, D'elia MP, Coltro RS, Matsubara BB. Quality of life and its association with cardiovascular risk factors in a community health care program population. Clinics (Sao Paulo) 2008;63(6):783–788. doi: 10.1590/S1807-59322008000600013.
    1. Gao Y, Hou Q, Wang H. Assessment of health status in patients with newly diagnosed chronic obstructive pulmonary disease. PLoS One. 2013;8(12):e82782. doi: 10.1371/journal.pone.0082782.

Source: PubMed

Подписаться