Dose escalation based on 18F-FDG PET/CT response in definitive chemoradiotherapy of locally advanced esophageal squamous cell carcinoma: a phase III, open-label, randomized, controlled trial (ESO-Shanghai 12)

Hongcheng Zhu, Qiufang Liu, Hao Xu, Miao Mo, Zezhou Wang, Kui Lu, Jialiang Zhou, Junqiang Chen, Xiangpeng Zheng, Jinjun Ye, Xiaolin Ge, Honglei Luo, Qi Liu, Jiaying Deng, Dashan Ai, Shengnan Hao, Junhua Zhang, I Hsuan Tseng, Shaoli Song, Yun Chen, Kuaile Zhao, Hongcheng Zhu, Qiufang Liu, Hao Xu, Miao Mo, Zezhou Wang, Kui Lu, Jialiang Zhou, Junqiang Chen, Xiangpeng Zheng, Jinjun Ye, Xiaolin Ge, Honglei Luo, Qi Liu, Jiaying Deng, Dashan Ai, Shengnan Hao, Junhua Zhang, I Hsuan Tseng, Shaoli Song, Yun Chen, Kuaile Zhao

Abstract

Introduction: Definitive chemoradiotherapy has established the standard non-surgical treatment for locally advanced esophageal cancer. The standard dose of 50-50.4 Gy has been established decades ago and been confirmed in modern trials. The theorical advantage of better local control and technical advances for less toxicity have encouraged clinicians for dose escalation investigation. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) have the potential to tailor therapy for esophageal patients not showing response to CRT and pioneers the PET-based dose escalation.

Methods and analysis: The ESO-Shanghai 12 trial is a prospective multicenter randomized phase 3 study in which patients are randomized to either 61.2 Gy or 50.4 Gy of radiation dose by PET response. Both groups undergo concurrent chemoradiotherapy with paclitaxel/cisplatin regimen for 2 cycles followed by consolidation chemotherapy for 2 cycles. Patients with histologically confirmed ESCC [T1N1-3M0, T2-4NxM0, TxNxM1 (Supraclavicular lymph node metastasis only), (AJCC Cancer Staging Manual, 8th Edition)] and without any prior treatment of chemotherapy, radiotherapy or surgery against esophageal cancer will be eligible. The primary endpoints included overall survival in PET/CT non-responders (SUVmax > 4.0) and overall survival in total population. Patients will be stratified by standardized uptake volume, gross tumor volume and tumor location. The enrollment could be ended, when the number of PET/CT non-responder reached 132 and the total population reached 646 for randomization.

Ethics and dissemination: This trial has been approved by the Fudan University Shanghai Cancer Center Institutional Review Board. Trial results will be disseminated via peer reviewed scientific journals and conference presentations. Trial registration The trial was initiated in 2018 and is currently recruiting patients. Trial registration number NCT03790553.

Conflict of interest statement

The authors declare that they have no financial or non-financial competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Trial diagram of the ESO-Shanghai 12 trial. PET = Positron emission tomography; SUV = Standard uptake value; GTV = Gross tumor volume; PTX = Paclitaxel; DDP = Cisplatin
Fig. 2
Fig. 2
Treatment design of the ESO-Shanghai 12 trial. PET = Positron emission tomography; SUV = Standard uptake value; R = Randomization; RT = Radiation therapy; TP = Paclitaxel + Cisplatin; W = Week

References

    1. Global Burden of Disease 2019 Cancer Collaboration. Kocarnik JM, Compton K, et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer Groups From 2010 to 2019: a systematic analysis for the global burden of disease study 2019. JAMA Oncol. 2021;30:e216987.
    1. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023–1075. doi: 10.1016/S0140-6736(17)33326-3.
    1. GBD 2017 Oesophageal Cancer Collaborators The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet Gastroenterol Hepatol. 2020;5(6):582–597. doi: 10.1016/S2468-1253(20)30007-8.
    1. Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154(2):360–373. doi: 10.1053/j.gastro.2017.08.023.
    1. Cooper JS, Guo MD, Herskovic A, et al. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85–01) Radiat Ther Oncol Gr JAMA. 1999;281(17):1623–1627.
    1. Minsky BD, Pajak TF, Ginsberg RJ, et al. INT 0123 (radiation therapy oncology group 94–05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(5):1167–1174. doi: 10.1200/JCO.2002.20.5.1167.
    1. Conroy T, Galais MP, Raoul JL, et al. Definitive chemoradiotherapy with FOLFOX versus fluorouracil and cisplatin in patients with oesophageal cancer (PRODIGE5/ACCORD17): final results of a randomised, phase 2/3 trial. Lancet Oncol. 2014;15(3):305–314. doi: 10.1016/S1470-2045(14)70028-2.
    1. Crosby T, Hurt CN, Falk S, et al. Chemoradiotherapy with or without cetuximab in patients with oesophageal cancer (SCOPE1): a multicentre, phase 2/3 randomised trial. Lancet Oncol. 2013;14(7):627–637. doi: 10.1016/S1470-2045(13)70136-0.
    1. Suntharalingam M, Winter K, Ilson D, et al. Effect of the addition of cetuximab to paclitaxel, cisplatin, and radiation therapy for patients with esophageal cancer: the NRG oncology RTOG 0436 phase 3 randomized clinical trial. JAMA Oncol. 2017;3(11):1520–1528. doi: 10.1001/jamaoncol.2017.1598.
    1. Crehange G, Mvondo C, Bertaut A, Pereira R, Rio E, Peiffert D, Gnep K, Benezery K, Ronchin P, Noel G, Mineur L, Drouillard A, Blanc J, Rouffiac M, Boustani J. Exclusive chemoradiotherapy with or without radiation dose escalation in esophageal cancer: multicenter phase 2/3 randomized trial CONCORDE (PRODIGE-26) Int J Radiat Oncol Biol Phys. 2021;111(3):S5. doi: 10.1016/j.ijrobp.2021.07.045.
    1. Hulshof MCCM, Geijsen ED, Rozema T, et al. Randomized study on dose escalation in definitive chemoradiation for patients with locally advanced esophageal cancer (ARTDECO Study) J Clin Oncol. 2021;39(25):2816–2824. doi: 10.1200/JCO.20.03697.
    1. Xu YJ, Zhu WG, Liao ZX, et al. A multicenter randomized prospective study of concurrent chemoradiation with 60 Gy versus 50 Gy for inoperable esophageal squamous cell carcinoma. Zhonghua Yi Xue Za Zhi. 2020;100(23):1783–1788.
    1. Brower JV, Chen S, Bassetti MF, et al. Radiation dose escalation in esophageal cancer revisited: a contemporary analysis of the national cancer data base, 2004 to 2012. Int J Radiat Oncol Biol Phys. 2016;96(5):985–993. doi: 10.1016/j.ijrobp.2016.08.016.
    1. Chang CL, Tsai HC, Lin WC, et al. Dose escalation intensity-modulated radiotherapy-based concurrent chemoradiotherapy is effective for advanced-stage thoracic esophageal squamous cell carcinoma. Radiother Oncol. 2017;125(1):73–79. doi: 10.1016/j.radonc.2017.08.025.
    1. Luo HS, Huang HC, Lin LX. Effect of modern high-dose versus standard-dose radiation in definitive concurrent chemo-radiotherapy on outcome of esophageal squamous cell cancer: a meta-analysis. Radiat Oncol. 2019;14(1):178. doi: 10.1186/s13014-019-1386-x.
    1. Sun X, Wang L, Wang Y, Kang J, Wei Jiang Y, Men ZH. High vs. low radiation dose of concurrent chemoradiotherapy for esophageal carcinoma with modern radiotherapy techniques: a meta-analysis. Front Oncol. 2020 doi: 10.3389/fonc.2020.01222.
    1. Chen Y, Ye J, Zhu Z, et al. Comparing paclitaxel plus fluorouracil versus cisplatin plus fluorouracil in chemoradiotherapy for locally advanced esophageal squamous cell cancer: a randomized, multicenter, phase III clinical trial. J Clin Oncol. 2019;37(20):1695–1703. doi: 10.1200/JCO.18.02122.
    1. Button MR, Morgan CA, Croydon ES, et al. Study to determine adequate margins in radiotherapy planning for esophageal carcinoma by detailing patterns of recurrence after definitive chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2009;73(3):818–823. doi: 10.1016/j.ijrobp.2008.04.062.
    1. Welsh J, Settle SH, Amini A, et al. Failure patterns in patients with esophageal cancer treated with definitive chemoradiation. Cancer. 2012;118(10):2632–2640. doi: 10.1002/cncr.26586.
    1. Zhu H, Rivin Del Campo E, et al. Involved-field irradiation in definitive chemoradiotherapy for locoregional esophageal squamous cell carcinoma: results from the ESO-Shanghai 1 Trial. Int J Radiat Oncol Biol Phys. 2021;110(5):1396–1406. doi: 10.1016/j.ijrobp.2021.02.053.
    1. Yu W, Cai XW, Liu Q, et al. Safety of dose escalation by simultaneous integrated boosting radiation dose within the primary tumor guided by (18)FDG-PET/CT for esophageal cancer. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology. 2015;114(2):195–200. doi: 10.1016/j.radonc.2014.12.007.
    1. Chen D, Menon H, Verma V, et al. Results of a phase 1/2 trial of chemoradiotherapy with simultaneous integrated boost of radiotherapy dose in unresectable locally advanced esophageal cancer. JAMA Oncol. 2019;5(11):1597–1604. doi: 10.1001/jamaoncol.2019.2809.
    1. Warren S, Partridge M, Carrington R, et al. Radiobiological determination of dose escalation and normal tissue toxicity in definitive chemoradiation therapy for esophageal cancer. Int J Radiat Oncol Biol Phys. 2014;90(2):423–429. doi: 10.1016/j.ijrobp.2014.06.028.
    1. Lordick F, Ott K, Krause BJ, et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol. 2007;8(9):797–805. doi: 10.1016/S1470-2045(07)70244-9.
    1. Noordman BJ, Spaander MCW, Valkema R, et al. Detection of residual disease after neoadjuvant chemoradiotherapy for oesophageal cancer (preSANO): a prospective multicentre, diagnostic cohort study. Lancet Oncol. 2018;19(7):965–974. doi: 10.1016/S1470-2045(18)30201-8.
    1. zum Büschenfelde CM, Herrmann K, Schuster T, et al. (18)F-FDG PET-guided salvage neoadjuvant radiochemotherapy of adenocarcinoma of the esophagogastric junction: the MUNICON II trial. J Nucl Med. 2011;52(8):1189–1196. doi: 10.2967/jnumed.110.085803.
    1. Barbour AP, Walpole ET, Mai GT, et al. Preoperative cisplatin, fluorouracil, and docetaxel with or without radiotherapy after poor early response to cisplatin and fluorouracil for resectable oesophageal adenocarcinoma (AGITG DOCTOR): results from a multicentre, randomised controlled phase II trial. Ann Oncol. 2020;31(2):236–245. doi: 10.1016/j.annonc.2019.10.019.
    1. Goodman KA, Ou FS, Hall NC, Bekaii-Saab T, Fruth B, Twohy E, Meyers MO, Boffa DJ, Mitchell K, Frankel WL, Niedzwiecki D, Noonan A, Janjigian YY, Thurmes PJ, Venook AP, Meyerhardt JA, O'Reilly EM, Ilson DH. Randomized phase II study of PET response-adapted combined modality therapy for esophageal cancer: mature results of the CALGB 80803 (Alliance) trial. J Clin Oncol. 2021;39(25):2803–2815. doi: 10.1200/JCO.20.03611.
    1. Lorenzen S, Quante M, et al. PET-directed combined modality therapy for gastroesophageal junction cancer: first results of the prospective MEMORI trial. J Clin Oncol. 2019;37(15_suppl):4018. doi: 10.1200/JCO.2019.37.15_suppl.4018.
    1. Aaronson N, Ahmedzai S, Bergman B, et al. The European organization for research and treatment of cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. 1993;85:365–376. doi: 10.1093/jnci/85.5.365.
    1. Blazeby JM, Conroy T, Hammerlid E, et al. Clinical and psychometric validation of an EORTC questionnaire module, the EORTC QLQ-OES18, to assess quality of life in patients with oesophageal cancer. Eur J Cancer. 2003;39(10):1384–1394. doi: 10.1016/S0959-8049(03)00270-3.
    1. US Department of Health and Human Services. Common toxicology criteria (Common Terminology Criteria for Adverse Events [CTCAE] V4.03. 2010. . Accessed 19 May 2013.
    1. Monjazeb AM, Riedlinger G, Aklilu M, Geisinger KR, Mishra G, Isom S, Clark P, Levine EA, William Blackstock A. Outcomes of patients with esophageal cancer staged with [18F] Fluorodeoxyglucose positron emission tomography (FDG-PET): Can postchemoradiotherapy FDG-PET predict the utility of resection? J Clin Oncol. 2010;28(31):4714–4721. doi: 10.1200/JCO.2010.30.7702.
    1. Cuenca X, Hennequin C, Hindié E, et al. Evaluation of early response to concomitant chemoradiotherapy by interim 18F-FDG PET/CT imaging in patients with locally advanced oesophageal carcinomas. Eur J Nucl Med Mol Imaging. 2013;40(4):477–485. doi: 10.1007/s00259-012-2325-3.
    1. Chen Y, Zhang Z, Jiang G, et al. Gross tumor volume is the prognostic factor for squamous cell esophageal cancer patients treated with definitive radiotherapy. J Thorac Dis. 2016;8(6):1155–1161. doi: 10.21037/jtd.2016.04.08.
    1. Lee NY, Zhang Q, Pfister DG, et al. Addition of bevacizumab to standard chemoradiation for locoregionally advanced nasopharyngeal carcinoma (RTOG 0615): a phase 2 multi-institutional trial. Lancet Oncol. 2012;13(2):172–180. doi: 10.1016/S1470-2045(11)70303-5.
    1. Gwynne S, Higgins E, Poon King A, et al. Driving developments in UK oesophageal radiotherapy through the SCOPE trials. Radiat Oncol. 2019;14(1):26. doi: 10.1186/s13014-019-1225-0.
    1. Kelly RJ, Ajani JA, Kuzdzal J, et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N Engl J Med. 2021;384(13):1191–1203. doi: 10.1056/NEJMoa2032125.
    1. Shah MA, Bennouna J, Doi T, Shen L, Kato K, Adenis A, Mamon HJ, Moehler M, Xiaolong F, Cho BC, Bordia S, Bhagia P, Shih C-S, Desai A, Enzinger P. KEYNOTE-975 study design: a phase III study of definitive chemoradiotherapy plus pembrolizumab in patients with esophageal carcinoma. Futur Oncol. 2021;17(10):1143–1153. doi: 10.2217/fon-2020-0969.
    1. Yu R, Wang W, Li T, et al. RATIONALE 311: tislelizumab plus concurrent chemoradiotherapy for localized esophageal squamous cell carcinoma. Futur Oncol. 2021;17(31):4081–4089. doi: 10.2217/fon-2021-0632.
    1. Scott JG, Sedor G, Ellsworth P, et al. Pan-cancer prediction of radiotherapy benefit using genomic-adjusted radiation dose (GARD): a cohort-based pooled analysis. Lancet Oncol. 2021;22(9):1221–1229. doi: 10.1016/S1470-2045(21)00347-8.

Source: PubMed

Подписаться