Immunological Aspect of Radiation-Induced Pneumonitis, Current Treatment Strategies, and Future Prospects

Anup Kainthola, Teena Haritwal, Mrinialini Tiwari, Noopur Gupta, Suhel Parvez, Manisha Tiwari, Hrideysh Prakash, Paban K Agrawala, Anup Kainthola, Teena Haritwal, Mrinialini Tiwari, Noopur Gupta, Suhel Parvez, Manisha Tiwari, Hrideysh Prakash, Paban K Agrawala

Abstract

Delivery of high doses of radiation to thoracic region, particularly with non-small cell lung cancer patients, becomes difficult due to subsequent complications arising in the lungs of the patient. Radiation-induced pneumonitis is an early event evident in most radiation exposed patients observed within 2-4 months of treatment and leading to fibrosis later. Several cytokines and inflammatory molecules interplay in the vicinity of the tissue developing radiation injury leading to pneumonitis and fibrosis. While certain cytokines may be exploited as biomarkers, they also appear to be a potent target of intervention at transcriptional level. Initiation and progression of pneumonitis and fibrosis thus are dynamic processes arising after few months to year after irradiation of the lung tissue. Currently, available treatment strategies are challenged by the major dose limiting complications that curtails success of the treatment as well as well being of the patient's future life. Several approaches have been in practice while many other are still being explored to overcome such complications. The current review gives a brief account of the immunological aspects, existing management practices, and suggests possible futuristic approaches.

Keywords: HDAC inhibitor; fibrosis; inflammation; lungs; radiation pneumonitis.

Figures

Figure 1
Figure 1
Schematic diagram showing major signaling pathways involved in radiation pneumonitis.
Figure 2
Figure 2
Schematic diagram depicting broad categories of predictors for radiation-induced lung toxicity like pneumonitis and fibrosis.

References

    1. Wands JM, Roark CL, Aydintug MK, Jin N, Hahn YS, Cook L, et al. Distribution and leukocyte contacts of gammadelta T cells in the lung. J Leukoc Biol (2005) 78(5):1086–96.10.1189/jlb.0505244
    1. Born WK, Jin N, Aydintug MK, Wands JM, French JD, Roark CL, et al. Gammadelta T lymphocytes-selectable cells within the innate system? J Clin Immunol (2007) 27(2):133–44.10.1007/s10875-007-9077-z
    1. Nanno M, Shiohara T, Yamamoto H, Kawakami K, Ishikawa H. Gammadelta T cells: fire fighters or fire boosters in the front lines of inflammatory responses. Immunol Rev (2007) 215:103–13.10.1111/j.1600-065X.2006.00474.x
    1. Provatopoulou X, Athanasiou E, Gounaris A. Predictive markers of radiation pneumonitis. Anticancer Res (2008) 28:2421–32.
    1. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov (2011) 1:54–67.10.1158/-10-0028
    1. Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM. Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci U S A (2010) 107:8363–8.10.1073/pnas.0911378107
    1. Crittenden MR, Cottam B, Savage T, Nguyen C, Newell P, Gough MJ. Expression of NF-kappaB p50 in tumor stroma limits the control of tumors by radiation therapy. PLoS One (2012) 7(6):e39295.10.1371/journal.pone.0039295
    1. Simonian PL, Wehrmann F, Roark CL, Born WK, O’Brien RL, Fontenot AP.Gammadelta T cells protect against lung fibrosis via IL-22. J Exp Med (2010) 207(10):2239–53.10.1084/jem.20100061
    1. Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA, et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med (2008) 14(3):275–81.10.1038/nm1710
    1. Boyden AW, Legge KL, Waldschmidt TJ. Pulmonary infection with influenza A virus induces site-specific germinal center and T follicular helper cell responses. PLoS One (2012) 7(7):e40733.10.1371/journal.pone.0040733
    1. Ying X, Su Z, Bie Q, Zhang P, Yang H, Wu Y, et al. Synergistically increased ILC2 and Th9 cells in lung tissue jointly promote the pathological process of asthma in mice. Mol Med Rep (2016) 13(6):5230–40.10.3892/mmr.2016.5174
    1. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science (2003) 300(5622):1155–9.10.1126/science.1082504
    1. Abid SH, Malhotra V, Perry MC. Radiation-induced and chemotherapy-induced pulmonary injury. Curr Opin Oncol (2001) 13(4):242–8.10.1097/00001622-200107000-00006
    1. Büttner C, Skupin A, Reimann T, Rieber EP, Unteregger G, Geyer P, et al. Local production of interleukin-4 during radiation-induced pneumonitis and pulmonary fibrosis in rats: macrophages as a prominent source of interleukin-4. Am J Respir Cell Mol Biol (1997) 17:315–25.10.1165/ajrcmb.17.3.2279
    1. Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol (2010) 97:149–61.10.1016/j.radonc.2010.09.002
    1. Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta (1). J Exp Med (2001) 194:809–21.10.1084/jem.194.6.809
    1. Anscher MS, Murase T, Prescott DM, Marks LB, Reisenbichler H, Bentel GC, et al. Changes in plasma TGF beta levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis. Int J Radiat Oncol Biol Phys (1994) 30(3):671–6.10.1016/0360-3016(92)90954-G
    1. Anscher MS, Kong FM, Marks LB, Bentel GC, Jirtle RL. Changes in plasma transforming growth factor beta during radiotherapy and the risk of symptomatic radiation-induced pneumonitis. Int J Radiat Oncol Biol Phys (1997) 370:253–8.
    1. Zhao L, Wang L, Ji W, Wang X, Zhu X, Hayman JA, et al. Elevation of plasma TGF-β1 during radiation therapy predicts radiation-induced lung toxicity in patients with non-small-cell lung cancer: a combined analysis from Beijing and Michigan. Int J Radiat Oncol Biol Phys (2009) 74:1385–90.10.1016/j.ijrobp.2008.10.065
    1. Chen Y, Philip R, Williams J, Hernady E, Smudzin T, Okunieff P. Circulating Il-6 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys (2001) 49:641–8.10.1016/S0360-3016(00)01445-0
    1. Rübe CE, Palm J, Erren M, Fleckenstein J, König J, Remberger K, et al. Cytokine plasma levels: reliable predictors for radiation pneumonitis? PLoS One (2008) 3:e2898.10.1371/journal.pone.0002898
    1. Oikonomou N, Harokopos V, Zalevsky J, Valavanis C, Kotanidou A, Szymkowski DE, et al. Soluble TNF mediates the transition from pulmonary inflammation to fibrosis. PLoS One (2006) 1:e108.10.1371/journal.pone.0000108
    1. Gordon JR, Galli SJ. Release of both preformed and newly synthesized tumor necrosis factor alpha (TNF-alpha)/cachectin by mouse mast cells stimulated via the Fc epsilon RI. A mechanism for the sustained action of mast cell-derived TNF-alpha during IgE-dependent biological responses. J Exp Med (1991) 174(1):103–7.
    1. Beil WJ, Login GR, Gali SJ, Dvorak AM. Ultrastructural immunogold localization of tumor necrosis factor-alpha to the cytoplasmic granules of rat peritoneal mast cells with rapid microwave fixation. J Allergy Clin Immunol (1994) 3:531–6.10.1016/0091-6749(94)90210-0
    1. Liu W, Ding I, Chen K, Olschowka J, Xu J, Hu D, et al. Interleukin 1beta (IL1B) signaling is a critical component of radiation-induced skin fibrosis. Radiat Res (2006) 165:181–91.10.1667/RR3478.1
    1. Arpin D, Perol D, Blay J-Y, Falchero L, Claude L, Vuillermoz-Blas S, et al. Early variations of circulating interleukin-6 and interleukin-10 levels during thoracic radiotherapy are predictive for radiation pneumonitis. J Clin Oncol (2005) 230:8748–56.10.1200/JCO.2005.01.7145
    1. Crohns M, Saarelainen S, Laine S, Poussa T, Alho H, Kellokumpu-Lehtinen P. Cytokines in bronchoalveolar lavage fluid and serum of lung cancer patients during radiotherapy – association of interleukin-8 and VEGF with survival. Cytokine (2010) 50:30–6.10.1016/j.cyto.2009.11.017
    1. Wilson MS, Madala SK, Ramalingamet TR, Gochuico BR, Rosas IO, Cheever AW, et al. Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med (2010) 207:535–52.10.1084/jem.20092121
    1. Haiping Z, Takayama K, Uchino J, Harada A, Adachi Y, Kura S, et al. Prevention of radiation-induced pneumonitis by recombinant adenovirus-mediated transferring of soluble TGF-b type II receptor gene. Cancer Gene Ther (2006) 13:864–72.10.1038/sj.cgt.7700959
    1. Brickey WJ, Neuringer I, Walton W, Hua X, Wang EY, Chen Y, et al. Circulating IL-6 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys (2001) 49:641–8.10.1016/S0360-3016(00)01445-0
    1. Brickey WJ, Neuringer IP, Walton W, Hua X, Wang EY, Jha S, et al. MyD88 provides a protective role in long-term radiation-induced lung injury. Int J Radiat Biol (2012) 88(4):335–47.10.3109/09553002.2012.652723
    1. Skerrett SJ, Liggitt HD, Hajjar AM, Wilson CB. Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J Immunol (2004) 172:3377–81.10.4049/jimmunol.172.6.3377
    1. Bretz C, Gersuk G, Knoblaugh S, Chaudhary N, Randolph-Habecker J, Hackman RC, et al. MyD88 signaling contributes to early pulmonary responses to Aspergillus fumigatus. Infect Immun (2008) 76:952–8.10.1128/IAI.00927-07
    1. Wang LP, Wang YW, Wang BZ, Sun GM, Wang XY, Xu JL. Expression of interleukin-17A in lung tissues of irradiated mice and the influence of dexamethasone. ScientificWorldJournal (2014) 2014:251067.10.1155/2014/251067
    1. Smith E, Prasad KM, Butcher M, Dobrian A, Kolls JK, Ley K, et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation (2010) 121:1746–55.10.1161/CIRCULATIONAHA.109.924886
    1. Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1-dependent and -independent mechanisms. J Immunol (2011) 187(6):3003–14.10.4049/jimmunol.1004081
    1. Siva S, MacManus M, Kron T, Best N, Smith J, Lobachevsky P, et al. A pattern of early radiation-induced inflammatory cytokine expression is associated with lung toxicity in patients with non-small cell lung cancer. PLoS One (2014) 9(10):e109560.10.1371/journal.pone.0109560
    1. Zucker S, Hymowitz M, Conner C, Zarrabi HM, Hurewitz AN, Matrisian L, et al. Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Ann N Y Acad Sci (1999) 878:212–27.10.1111/j.1749-6632.1999.tb07687.x
    1. Susskind H, Hymowitz MH, Lau YH, Atkins HL, Hurewitz AN, Valentine ES, et al. Increased plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in lung and breast cancer are altered during chest radiotherapy. Int J Radiat Oncol Biol Phys (2003) 56:1161–9.10.1016/S0360-3016(03)00161-5
    1. Araya J, Maruyama M, Sassa K, Fujita T, Hayashi R, Matsui S, et al. Ionizing radiation enhances matrix metalloproteinase-2 production in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol (2001) 280:30–8.
    1. Piguet P-F. Cytokines involved in pulmonary fibrosis. Int Rev Exp Pathol (1993) 34:173–81.10.1016/B978-0-12-364935-5.50017-1
    1. Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruoka S, Horie T. Transforming growth factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway. Am J Respir Crit Care Med (2001) 163:152–7.10.1164/ajrccm.163.1.2005069
    1. Fine A, Goldstein RH. The effect of transforming growth factor-beta on cell proliferation and collagen formation by lung fibroblasts. J Biol Chem (1987) 262:3897–902.
    1. Finkelstein JN, Johnson CJ, Baggs R, Rubin P. Early alterations in extracellular matrix and transforming growth factor α gene expression in mouse lung indicative of late radiation fibrosis. Int J Radiat Oncol Biol Phys (1994) 28:621–31.10.1016/0360-3016(94)90187-2
    1. Rube CE, Uthe D, Schmid KW, Richter KD, Wessel J, Schuck A, et al. Dose-dependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int J Radiat Oncol Biol Phys (2000) 47:1033–42.10.1016/S0360-3016(00)00482-X
    1. Kong FM, Washington MK, Jirtle RL, Anscher MS. Plasma transforming growth factor-beta 1 reflects disease status in patients with lung cancer after radiotherapy: a possible tumor marker. Lung Cancer (1996) 16:47–59.10.1016/S0169-5002(96)00611-3
    1. Anscher MS, Kong FM. In regard to De Jaeger et al.: significance of plasma transforming growth factor-beta levels in radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys (2005) 61:1276–7.10.1016/j.ijrobp.2004.12.010
    1. Assoian RK, Fleurdelys BE, Stevenson HC, Miller PJ, Madtes DK, Raines EW, et al. Expression and secretion of transforming growth factor by activated human macrophages. Proc Natl Acad Sci U S A (1987) 84:6020–4.10.1073/pnas.84.17.6020
    1. Sacco O, Romberger D, Rizzino A, Beckmann JD, Rennard SI, Spurzem JR. Spontaneous production of transforming growth factor-beta 2 by primary cultures of bronchial epithelial cells. J Clin Invest (1992) 90:1379–85.10.1172/JCI116004
    1. Barcellos-Hoff MH. Redox mechanisms for activation of latent transforming growth factor-beta 1. Mol Endocrinol (1996) 10:1077–83.10.1210/me.10.9.1077
    1. Nishioka A, Ogawa Y, Mima T, Jin YJ, Sonobe H, Kariya S, et al. Histopathologic amelioration of fibroproliferative change in rat irradiated lung using soluble transforming growth factor-beta (TGF-beta) receptor mediated by adenoviral vector. Int J Radiat Oncol Biol Phys (2004) 58(4):1235–41.10.1016/j.ijrobp.2003.11.006
    1. Novakova-Jiresovaa A, van Gameren MM, Coppes RP, Kampinga HH, Groen HJ. Transforming growth factor-b plasma dynamics and post-irradiation lung injury in lung cancer patients. Radiother Oncol (2004) 71:183–9.10.1016/j.radonc.2004.01.019
    1. Anscher MS, Peters WP, Reisenbichler H, Petros WP, Jirtle RL. Transforming growth factor beta as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. N Engl J Med (1993) 328:1592–8.10.1056/NEJM199306033282203
    1. Rube CE, Rodemann HP, Rube C. The relevance of cytokines in the radiation-induced lung reaction. Experimental basis and clinical significance. Strahlenther Onkol (2004) 180(9):541–9.10.1007/s00066-004-1279-1
    1. Luo Y, Wang M, Pang Z, Jiang F, Chen J, Zhang J. Locally instilled tumor necrosis factor alpha antisense oligonucleotide contributes to inhibition of TH 2-driven pulmonary fibrosis via induced CD4+ CD25+ Foxp3+ regulatory T cells. J Gene Med (2013) 15(11–12):441–52.10.1002/jgm.2750
    1. Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine (2014) 70:11–20.10.1016/j.cyto.2014.05.024
    1. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta (2011) 1813(5):878–88.10.1016/j.bbamcr.2011.01.034
    1. Chen Y, Williams J, Ding I, Hernady E, Liu W, Smudzin T, et al. Radiation pneumonitis and early circulatory cytokine markers. Semin Radiat Oncol (2002) 12(1 Suppl 1):22–33.10.1053/srao.2002.31360
    1. Li B, Chen SH, Lu HJ, Tan Y. Predictive values of TNF-α, IL-6, IL-10 for radiation pneumonitis. Int J Radiat Res (2016) 14(3):173–9.10.18869/acadpub.ijrr.14.3.173
    1. Abdollahi A, Li M, Huber PE. Inhibition of platelet-derived growth factor signalling attenuates pulmonary fibrosis. J Exp Med (2005) 201(6):925–35.10.1084/jem.20041393
    1. Kong FM, Ten Haken R, Eisbruch A, Lawrence TS. Non-small cell lung cancer therapy-related pulmonary toxicity: an update on radiation pneumonitis and fibrosis. Semin Oncol (2005) 32(2 Suppl 3):S42–54.10.1053/j.seminoncol.2005.03.009
    1. Kong FM, Ten Haken RK, Schipper MJ, Sullivan MA, Chen M, Lopez C, et al. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys (2005) 63:324–33.10.1016/j.ijrobp.2005.02.010
    1. Kong FM, Pan C, Eisbruch A, Ten Haken RK. Physical models and simpler dosimetric descriptors of radiation late toxicity. Semin Radiat Oncol (2007) 17:108–20.10.1016/j.semradonc.2006.11.007
    1. Kong FM, Hayman JA, Griffith KA, Kalemkerian GP, Arenberg D, Lyons S, et al. Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys (2006) 65:1075–86.10.1016/j.ijrobp.2006.01.051
    1. Robnett TJ, Machtay M, Vines EF, McKenna MG, Algazy KM, McKenna WG. Factors predicting severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys (2000) 48:89–94.10.1016/S0360-3016(00)00648-9
    1. Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys (1999) 45(2):323–9.10.1016/S0360-3016(99)00183-2
    1. Billiet C, Peeters S, De Ruysscher D. Focus on treatment complications and optimal management: radiation oncology. Transl Lung Cancer Res (2014) 3(3):187–91.10.3978/j.issn.2218-6751.2014.06.08
    1. Fu XL, Huang H, Bentel G, Clough R, Jirtle RL, Kong FM, et al. Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta. Int J Radiat Oncol Biol Phys (2001) 50:899–908.10.1016/S0360-3016(01)01524-3
    1. Dehing-Oberije C, De Ruysscher D, van Baardwijk A, Yu S, Rao B, Lambin P. The importance of patient characteristics for the prediction of radiation-induced lung toxicity. Radiother Oncol (2009) 91:421–6.10.1016/j.radonc.2008.12.002
    1. Fay M, Tan A, Fisher R, Mac Manus M, Wirth A, Ball D. Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys (2005) 61:1355–63.10.1016/j.ijrobp.2004.08.025
    1. Wang S, Liao Z, Wei X, Liu HH, Tucker SL, Hu CS, et al. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys (2006) 66:1399–407.10.1016/j.ijrobp.2006.07.1337
    1. Jenkins P, Watts J. An improved model for predicting radiation pneumonitis incorporating clinical and dosimetric variables. Int J Radiat Oncol Biol Phys (2011) 80(4):1023–9.10.1016/j.ijrobp.2010.03.058
    1. Yorke ED, Jackson A, Rosenzweig KE, Braban L, Leibel SA, Ling CC. Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys (2005) 63:672–82.10.1016/j.ijrobp.2005.03.026
    1. Paun A, Haston CK. Genomic and genome-wide association of susceptibility to radiation-induced fibrotic lung disease in mice. Radiother Oncol (2012) 105:350–7.10.1016/j.radonc.2012.08.004
    1. Kobayashi J, Kitramura S. KL-6: a serum marker for interstitial pneumonia. Chest (1995) 108(2):311–5.10.1378/chest.108.2.311
    1. Goto K, Kodama T, Sekine I, Kakinuma R, Kubota K, Hojo F, et al. Serum levels of KL-6 are useful biomarkers for severe radiation pneumonitis. Lung Cancer (2001) 34:141–8.10.1016/S0169-5002(01)00215-X
    1. Marsh JC, Wendt JA, Walker A, Turian JV, Kiel K. Clinical predictive factors for radiation pneumonitis and pulmonary fibrosis during split course concurrent chemoirradiation for locally advanced non-small cell lung cancer. J Cancer Ther Res (2012) 1:6.10.7243/2049-7962-1-6
    1. Marks LB, Munley MT, Bentel GC, Zhou SM, Hollis D, Scarfone C, et al. Physical and biological predictors of changes in wholelung function following thoracic irradiation. Int J Radiat Oncol Biol Phys (1997) 39(3):563–70.10.1016/S0360-3016(97)00343-X
    1. Jagannath KP, Lokesh V, Thejaswini B, Ajay GV, Ashalatha D, Bhaumik S, et al. Study of early radiation pneumonitis in carcinoma breast and lung treated with radiotherapy. Nat J Med Res (2013) 3(3):236–40.
    1. Wang H, Liao Z, Zhuang Y, Xu T, Nguyen QN, Levy LB, et al. Do angiotensin-converting enzyme inhibitors reduce the risk of symptomatic radiation pneumonitis in patients with non-small cell lung cancer after definitive radiation therapy? Analysis of a single-institution database. Int J Radiat Oncol Biol Phys (2013) 87(5):1071–7.10.1016/j.ijrobp.2013.08.033
    1. Wang YS, Chang HJ, Chang YC, Huang SC, Ko HL, Chang CC, et al. Serum amuloid as a predictive marker for radiation pneumonitis in lung cancer patients. Int J Radiat Oncol Biol Phys (2013) 85(3):791–7.10.1016/j.ijrobp.2012.06.018
    1. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am J Respir Crit Care Med (2002) 165:277–304.10.1164/ajrccm.165.2.ats01
    1. Bradley J, Movsas B. Radiation pneumonitis and esophagitis in thoracic irradiation. In: Small W, Woloschak GE, editors. Radiation Toxicity: A Pracitical Guide. New York, NY: Springer Science Media Business, Inc. (2006). p. 43–52.
    1. Day RM, Barshishat-Kupper M, Mog SR, McCart EA, Prasanna PG, Davis TA, et al. Genistein protects against biomarkers of delayed lung sequelae in mice surviving high-dose total body irradiation. J Radiat Res (2008) 49:361–72.10.1269/jrr.07121
    1. Ozturk B, Egehan I, Atavci S, Kitapci M. Pentoxifylline in prevention of radiation-induced lung toxicity in patients with breast and lung cancer: a double-blind randomized trial. Int J Radiat Oncol Biol Phys (2004) 58(1):213–9.10.1016/S0360-3016(03)01444-5
    1. Agrawal S. Late effects of cancer treatment in breast cancer survivors. South Asian J Cancer (2014) 3:112–5.10.4103/2278-330X.130445
    1. Keller SM, Adak S, Wagner H, Herskovic A, Komaki R, Brooks BJ, et al. A randomized trial of postoperative adjuvant therapy in patients with completely resected stage II or IIIA non-small-cell lung cancer. Eastern Cooperative Oncology Group. N Engl J Med (2000) 343:1217–22.10.1056/NEJM200010263431703
    1. Bradley JD, Paulus R, Graham MV, Ettinger DS, Johnstone DW, Pilepich MV, et al. Phase II trial of postoperative adjuvant paclitaxel/carboplatin and thoracic radiotherapy in resected stage II and IIIA non-small-cell lung cancer. Promising long-term results of the Radiation Therapy Oncology Group – RTOG 9705. J Clin Oncol (2005) 23:3480–7.10.1200/JCO.2005.12.120
    1. Feigenberg SJ, Hanlon AL, Langer C, Goldberg M, Nicolaou N, Millenson M, et al. A phase II study of concurrent carboplatin and paclitaxel and thoracic radiotherapy for completely nresected stage II and IIIA non-small cell lung cancer. J Thorac Oncol (2007) 2:287–92.10.1097/01.JTO.0000263710.54073.b3
    1. Curran WJ, Jr, Paulus R, Langer CJ, Komaki R, Lee JS, Hauser S, et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst (2011) 103:1452–60.10.1093/jnci/djr325
    1. Onishi H, Kuriyama K, Yamaguchi M, Komiyama T, Tanaka S, Araki T, et al. Concurrent two-dimensional radiotherapy and weekly docetaxel in the treatment of stage III non-small cell lung cancer: a good local response but no good survival due to radiation pneumonitis. Lung Cancer (2003) 40:79–84.10.1016/S0169-5002(02)00532-9
    1. Zheng W, Gao ZH, Wu LN. Clinical observation on treatment of radiative pneumonia in patients with lung cancer by integrative Chinese and Western medicine. Zhongguo Zhong Xi Yi Jie He Za Zhi (2007) 27:1121–3.
    1. Paun A, Fox J, Balloy V, Chignard M, Qureshi ST, Haston CK. Combined Tlr2 and Tlr4 deficiency increases radiation-induced pulmonary fibrosis in mice. Int J Radiat Oncol Biol Phys (2010) 77(4):1198–205.10.1016/j.ijrobp.2009.12.065
    1. Anscher MS, Thrasher B, Zgonjanin L, Rabbani ZN, Corbley MJ, Fu K, et al. Small molecular inhibitor of transforming growth factor-beta protects against development of radiation-induced lung injury. Int J Radiat Oncol Biol Phys (2008) 71:829–37.10.1016/j.ijrobp.2008.02.046
    1. Niu X, Li H, Chen Z, Liu Y, Kan M, Zhou D, et al. A study of ethnic differences in TGFβ1 gene polymorphisms and effects on the risk of radiation pneumonitis in non-small-cell lung cancer. J Thorac Oncol (2012) 7:1668–75.10.1097/JTO.0b013e318267cf5b
    1. Voets AM, Oberije C, Struijk RB, Reymen B, De Ruyck K, Thierens H, et al. No association between TGF-β1 polymorphisms and radiation-induced lung toxicity in a European cohort of lung cancer patients. Radiother Oncol (2012) 105:296–8.10.1016/j.radonc.2012.09.016
    1. Wang Y, Wang X, Wang X, Zhang D, Jiang S. Effect of transforming growth factor-β1 869C/T polymorphism and radiation pneumonitis. Int J Clin Exp Pathol (2015) 8(3):2835–9.
    1. Flechsig P, Dadrich M, Bickelhaupt S, Jenne J, Hauser K, Timke C, et al. LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGFbeta and BMP-associated proinflammatory and proangiogenic signals. Clin Cancer Res (2012) 18:3616–3127.10.1158/1078-0432.CCR-11-2855
    1. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor type 1 gene. EMBO J (1998) 17:3091–100.10.1093/emboj/17.11.3091
    1. Hakenjos L, Bamberg M, Rodemann HP. TGF-beta1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation induced fibrotic phenotype. Int J Radiat Biol (2000) 76:503–9.10.1080/095530000138501
    1. Wang LH, Liu JS, Ning WB, Yuan QJ, Zhang FF, Peng ZZ, et al. Fluorofenidone attenuates diabetic nephropathy and kidney fibrosis in db/db mice. Pharmacology (2011) 88:88–99.10.1159/000329419
    1. Chen LX, Yang K, Sun M, Chen Q, Wang ZH, Hu GY, et al. Fluorofenidone inhibits transforming growth factor-beta1-induced cardiac myofibroblast differentiation. Pharmazie (2012) 67:452–6.10.1691/ph.2012.1748
    1. Giridhar P, Mallick S, Rath GK, Julka PK. Radiation induced lung injury: prediction, assessment and management. Asian Pac J Cancer Prev (2015) 16(7):2613–7.10.7314/APJCP.2015.16.7.2613
    1. Li Y, Song LW, Peng RY, Wang DW, Jin MH, Gao YB, et al. Effects of SB203580 and WP631 on Smad signal transduction pathway in lung fibroblasts after irradiation. Chinese J Cancer (2008) 27:26–9.
    1. Sekine I, Sumi M, Ito Y, Nokihara H, Yamamoto N, Kunitoh H, et al. Retrospective analysis of steroid therapy for radiation-induced lung injury in lung cancer patients. Radiother Oncol (2006) 80:93–7.10.1016/j.radonc.2006.06.007
    1. Fujino N, Kubo H, Suzuki T, He M, Suzuki T, Yamada M, et al. Administration of a specific inhibitor of neutrophil elastase attenuates pulmonary fibrosis after acute lung injury in mice. Exp Lung Res (2012) 38:28–36.10.3109/01902148.2011.633306
    1. McLnerney DP, Bullimore J. Reactivation of radiation pneumonitis by adriamycin. Br J Radiol (1977) 50:224–7.10.1259/0007-1285-50-591-224
    1. Ma LD, Taylor GA, Wharam MD, Wiley JM. “Recall” pneumonitis: adriamycin potentiation of radiation pneumonitis in two children. Radiology (1993) 187:465–7.10.1148/radiology.187.2.8475291
    1. Schweitzer VG, Juillard GJ, Bajada CL, Parker RG. Radiation recall dermatitis and pneumonitis in a patient treated with paclitaxel. Cancer (1995) 76:1069–72.10.1002/1097-0142(19950915)76:6<1069::AID-CNCR2820760623>;2-7
    1. Hill AB, Tattersall SF. Recall of radiation pneumonitis after intrapleural administration of doxorubicin. Med J Aust (1983) 1:39–40.
    1. Gauter-Fleckenstein B, Fleckenstein K, Owzar K, Jiang C, Rebouças JS, Batinic-Haberle I, et al. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic Biol Med (2010) 48:1034–43.10.1016/j.freeradbiomed.2010.01.020
    1. Para AE, Bezjak A, Yeung IW, Dyk, Hill RP. Effects of genistein following fractionated lung irradiation in mice. Radiother Oncol (2009) 92:500–10.10.1016/j.radonc.2009.04.005
    1. Su Q, Wang D, Yuan B, Liu F, Lei Y, Li S. Effects of proton pump inhibitors on lung cancer precise radiotherapy-induced radiation pneumonitis. Cell Biochem Biophys (2014) 70:1113–7.10.1007/s12013-014-0030-5
    1. Okunieff P, Augustine E, Hicks JE, Cornelison TL, Altemus RM, Naydich BG, et al. Pentoxifylline in the treatment of radiation-induced fibrosis. Clin Oncol (2004) 22:2207–13.10.1200/JCO.2004.09.101
    1. Hunter NR, Valdecanas D, Liao Z, Milas L, Thames HD, Mason KA. Mitigation and treatment of radiation-induced thoracic injury with a cyclooxygenase-2 inhibitor, celecoxib. Int J Radiat Oncol Biol Phys (2013) 85(2):472–6.10.1016/j.ijrobp.2012.04.025
    1. Katoch O, Dwarakanath BS, Agrawala PK. HDAC inhibitors: applications in oncology and beyond. HOAJ Biol (2013) 2(2).10.7243/2050-0874-2-2
    1. Katoch O, Kumar A, Adhikari JS, Dwarakanath BS, Agrawala PK. Sulforaphane mitigates genotoxicity induced by radiation and anticancer drugs in human lymphocytes. Mutat Res (2013) 758:29–34.10.1016/j.mrgentox.2013.08.009
    1. Tiwari M, Dixit B, Parvez S, Agrawala PK. EGCG, a tea polyphenol, as a potential mitigator of hematopoietic radiation injury in mice. Biomed Pharmacother (2017) 88:203–9.10.1016/j.biopha.2016.12.129
    1. Katoch O, Khan G, Dwarakanath B, Agrawala P. Mitigation of hematopoietic radiation-injury by diallyl sulphide. J Environ Pathol Toxicol Oncol (2012) 31(4):357–65.10.1615/JEnvironPatholToxicolOncol.2013005833
    1. Agrawala PK, Katoch O. Radiomitigating potential of sulforaphane, a constituent of broccoli. In: Bernhard J, editor. Broccoli: Cultivation, Nutritional Properties and Effects on Health. New York, NY: Nova Publishers; (2013). p. 145–60.
    1. Park MJ, Sohrabji F. The histone deacetylase inhibitor, sodium butyrate, exhibits neuroprotective effects for ischemic stroke in middle-aged female rats. J Neuroinflammation (2016) 13(1):300.10.1186/s12974-016-0765-6
    1. Losson H, Schnekenburger M, Dicato M, Diederich M. Natural compound histone deacetylase inhibitors (HDACi): synergy with inflammatory signaling pathway modulators and clinical applications in cancer. Molecules (2016) 21(11):1608.10.3390/molecules21111608
    1. Hu L, Yu Y, Huang H, Fan H, Hu L, Yin C, et al. Epigenetic regulation of interleukin 6 by histone acetylation in macrophages and its role in paraquat-induced pulmonary fibrosis. Front Immunol (2017) 7:696.10.3389/fimmu.2016.00696
    1. Sathishkumar C, Prabu P, Balakumar M, Lenin R, Prabhu D, Anjana RM, et al. Augmentation of histone deacetylase 3 (HDAC3) epigenetic signature at the interface of proinflammation and insulin resistance in patients with type 2 diabetes. Clin Epigenetics (2016) 24(8):125.10.1186/s13148-016-0293-3
    1. Li LF, Lee CS, Lin CW, Chen NH, Chuang LP, Hung CY, et al. Trichostatin A attenuates ventilation-augmented epithelial-mesenchymal transition in mice with bleomycin-induced acute lung injury by suppressing the Akt pathway. PLoS One (2017) 12(2):e0172571.10.1371/journal.pone.0172571

Source: PubMed

Подписаться