Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice

Luís Felipe Campesato, Romualdo Barroso-Sousa, Leandro Jimenez, Bruna R Correa, Jorge Sabbaga, Paulo M Hoff, Luiz F L Reis, Pedro Alexandre F Galante, Anamaria A Camargo, Luís Felipe Campesato, Romualdo Barroso-Sousa, Leandro Jimenez, Bruna R Correa, Jorge Sabbaga, Paulo M Hoff, Luiz F L Reis, Pedro Alexandre F Galante, Anamaria A Camargo

Abstract

Cancer gene panels (CGPs) are already used in clinical practice to match tumor's genetic profile with available targeted therapies. We aimed to determine if CGPs could also be applied to estimate tumor mutational load and predict clinical benefit to PD-1 and CTLA-4 checkpoint blockade therapy. Whole-exome sequencing (WES) mutation data obtained from melanoma and non-small cell lung cancer (NSCLC) patients published by Snyder et al. 2014 and Rizvi et al. 2015, respectively, were used to select nonsynonymous somatic mutations occurring in genes included in the Foundation Medicine Panel (FM-CGP) and in our own Institutional Panel (HSL-CGP). CGP-mutational load was calculated for each patient using both panels and was associated with clinical outcomes as defined and reported in the original articles. Higher CGP-mutational load was observed in NSCLC patients presenting durable clinical benefit (DCB) to PD-1 blockade (FM-CGP P=0.03, HSL-CGP P=0.01). We also observed that 69% of patients with high CGP-mutational load experienced DCB to PD-1 blockade, as compared to 20% of patients with low CGP-mutational load (FM-CGP and HSL-CGP P=0.01). Noteworthy, predictive accuracy of CGP-mutational load for DCB was not statistically different from that estimated by WES sequencing (P=0.73). Moreover, a high CGP-mutational load was significantly associated with progression-free survival (PFS) in patients treated with PD-1 blockade (FM-CGP P=0.005, HR 0.27, 95% IC 0.105 to 0.669; HSL-CGP P=0.008, HR 0.29, 95% IC 0.116 to 0.719). Similar associations between CGP-mutational load and clinical benefit to CTLA-4 blockade were not observed. In summary, our data reveals that CGPs can be used to estimate mutational load and to predict clinical benefit to PD-1 blockade, with similar accuracy to that reported using WES.

Keywords: PD-1 blockade; cancer-gene panels; immunotherapy; mutational load; response prediction.

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

Figures

Figure 1. CGPs-mutational load is significantly associated…
Figure 1. CGPs-mutational load is significantly associated with clinical benefit of anti-PD-1 therapy in NSCLCs
A. FM-CGP mutational load in patients with DCB (n = 14) compared to those with NDB (n = 17) (median 9 versus 5, Mann-Whitney P = 0.03). B. HSL-CGP mutational load in patients with DCB (n = 14) compared to those with NDB (n = 17) (median 18.5 versus 8, Mann-Whitney P = 0.01). C. Receiver operation characteristic analysis (ROC) curves using FM-CGP, HSL-CGP and WES as predictors of DCB (P = 0.73). D. PFS in tumors with high CGP-mutational load (n = 16) compared to those with low CGP mutational load (n = 15) in FM-CGP (HR 0.26, 95% CI 0.10-0.67, Log-rank P = 0.005). E. PFS in tumors with high CGP-mutational load (n = 16) compared to those with low CGP mutational load (n = 15) in HSL-CGP (HR 0.29, 95% CI 0.11-0.72, Log-rank P = 0.008). In A. and B., median and interquartile ranges of nonsynonymous mutations for each panel are shown, with individual values for each tumor shown with dots.
Figure 2. CGPs-mutational load is not associated…
Figure 2. CGPs-mutational load is not associated with clinical benefit of anti-CTLA-4 therapy in Melanomas
A. FM-CGP mutational load in patients with DCB (n = 37) compared to those with NDB (n = 27) (median 6, Mann-Whitney P = 0.36). B. HSL-CGP mutational load in patients with DCB (n = 37) compared to those with NDB (n = 27) (median 15 versus 8.5, Mann-Whitney P = 0.23). C. PFS in tumors with high CGP-mutational load (n = 30) compared to those with low nonsynonymous burden (n = 34) in FM-CGP (HR 1.10, 95% CI 0.57-2.11, Log-rank P = 0.76). D. PFS in tumors with higher nonsynonymous mutation burden (n = 29) compared to those with low CGP mutational load (n = 35) in HSL-CGP (HR 1.08, 95% CI 0.57-2.05, Log-rank P = 0.81). In A. and B., median and interquartile ranges of nonsynonymous mutations for each panel are shown as horizontal lines, with individual values for each tumor shown as dots.

References

    1. Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what's here, what's next? Curr. Opin. Immunol. 2015;33:23–35.
    1. Sunshine J, Taube JM. PD-1/PD-L1 inhibitors. Curr. Opin. Pharmacol. 2015;23:32–38.
    1. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, et al. Safety and Activity of Anti-PD-L1 Antibody in Patients with Advanced Cancer. N. Engl. J. Med. 2012;366:2455–2465.
    1. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 2013;369:122–33.
    1. Noguchi Y, Chen YT, Old LJ. A mouse mutant p53 product recognized by CD4+ and CD8+ T cells. Proc. Natl. Acad. Sci. U. S. A. 1994;91:3171–3175.
    1. Monach PA, Meredith SC, Siegel CT, Schreiber H. A unique tumor antigen produced by a single amino acid substitution. Immunity. 1995;2:45–59.
    1. Dubey P, Hendrickson RC, Meredith SC, Siegel CT, Shabanowitz J, Skipper JC, Engelhard VH, Hunt DF, Schreiber H. The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J. Exp. Med. 1997;185:695–705.
    1. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. N. Engl. J. Med. 2014;371:2189–2199.
    1. Rizvi N a, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira a. L, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (80-.) 2015;348:124–129.
    1. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015;372:2509–20.
    1. Guidoboni M, Gafà R, Viel A, Doglioni C, Russo A, Santini A, Del Tin L, Macrì E, Lanza G, Boiocchi M, Dolcetti R. Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favorable prognosis. Am. J. Pathol. 2001;159:297–304.
    1. Smyrk TC, Watson P, Kaul K, Lynch HT. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer. 2001;91:2417–2422.
    1. Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M, Riley DR, Shukla M, Chesnick B, Kadan M, Papp E, Galens KG, Murphy D, Zhang T, et al. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci. Transl. Med. 2015;7:283ra53–283ra53.
    1. Cheng DT, Mitchell T, Zehir A, Shah RH, Benayed R, Syed A, Chandramohan R, Liu ZY, Won HH, Scott SN, Brannon AR, O'Reilly C, Sadowska J, et al. MSK-IMPACT. A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. J. Mol. Diagn. 2015;17:251–264.
    1. Ku GY, Yuan J, Page DB, Schroeder SEA, Panageas KS, Carvajal RD, Chapman PB, Schwartz GK, Allison JP, Wolchok JD. Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting lymphocyte count after 2 doses correlates with survival. Cancer. 2010;116:1767–1775.
    1. Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell J, Alaparthy S, Berman D, Jure-Kunkel M, Siemers NO, Jackson JR, Shahabi V. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother. 2012;61:1019–1031.
    1. Cha E, Klinger M, Hou Y, Cummings C, Ribas A, Faham M, Fong L. Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci. Transl. Med. 2014;6:238ra70.
    1. Garon EB, Gandhi L, Rizvi N, Hui R, Balmanoukian a S, Patnaik a, Eder JP, Blumenshein GR, Aggarwal C, Soria J-C, Ahn M a, Gubens M a, Ramalingam SS, et al. Lba43Antitumor Activity of Pembrolizumab (Pembro; Mk-3475) and Correlation With Programmed Death Ligand 1 (Pd-L1) Expression in a Pooled Analysis of Patients (Pts) With Advanced Non-Small Cell Lung Carcinoma (Nsclc) Ann. Oncol. 2014;25:3475.
    1. Taube JM, Klein AP, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders R a. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 2014;20:5064–74.
    1. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015;373:23–34.
    1. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845.

Source: PubMed

Подписаться