An Integrative Way for Studying Neural Basis of Basic Emotions With fMRI

Simeng Gu, Fushun Wang, Caiyun Cao, Erxi Wu, Yi-Yuan Tang, Jason H Huang, Simeng Gu, Fushun Wang, Caiyun Cao, Erxi Wu, Yi-Yuan Tang, Jason H Huang

Abstract

How emotions are represented in the nervous system is a crucial unsolved problem in the affective neuroscience. Many studies are striving to find the localization of basic emotions in the brain but failed. Thus, many psychologists suspect the specific neural loci for basic emotions, but instead, some proposed that there are specific neural structures for the core affects, such as arousal and hedonic value. The reason for this widespread difference might be that basic emotions used previously can be further divided into more "basic" emotions. Here we review brain imaging data and neuropsychological data, and try to address this question with an integrative model. In this model, we argue that basic emotions are not contrary to the dimensional studies of emotions (core affects). We propose that basic emotion should locate on the axis in the dimensions of emotion, and only represent one typical core affect (arousal or valence). Therefore, we propose four basic emotions: joy-on positive axis of hedonic dimension, sadness-on negative axis of hedonic dimension, fear, and anger-on the top of vertical dimensions. This new model about basic emotions and construction model of emotions is promising to improve and reformulate neurobiological models of basic emotions.

Keywords: basic emotions; core affects; dimensional studies; fMRI; monoamine.

Figures

FIGURE 1
FIGURE 1
Basic emotion and circumplex. (A) Schlosberg proposed two-dimension of facial expression in a roughly circular surface, whose axes are pleasantness–unpleasantness and attention–rejection. The four basic emotions have different levels of activation, for example, fear and anger can reach higher levels of activation. (B) Circumplex model of emotion proposed that all emotions locate specially on a circle of the circumplex, means that different emotions have different arousal or hedonic parameters. Two core affects of emotions, which are represented on the horizontal dimension and vertical dimension, are induced by two features of a stimulus: the safety value of the stimulus and the hedonic value of the stimulus.
FIGURE 2
FIGURE 2
Integrative model for basic emotions and construction approach (dimension theory). Integrative model of emotion proposed that the basic emotions are on the specific locations in the circle of the circumplex; and they are typical emotions which have only one features of core affects: Fear and anger are only related to the safety value of the stimulus, while sadness and joy are only related to the hedonic value of a stimulus; or the “basic emotion” fear and anger have no hedonic value and happiness and sadness have no safety value (Zheng et al., 2016).
FIGURE 3
FIGURE 3
Two dimensions of emotion reflect the directions of behaviors or agitation of autonomous nervous system. The horizontal dimension represents the direction of the behavior, including the approaching/avoidance of the behavior. The emotion happiness and sadness and their behaviors prey or fleeing are on the opposite directions, happiness or joy induce approaching behavior, and sadness and disgust induce avoidance behavior. The vertical dimension represents the energy of the action (agitated or rest). Fear and anger or fight or flight might have same level of agitation, but they are twin emotions, standing back-to-back on the top of vertical axis, facing opposite direction (approaching or avoidance). The zero point of the vertical dimension means normal waking state, and negative axis means sleepy or tired, or the vertical dimensions above zero means sympathetic nervous system, and the dimensions below zero means para-sympathetic nervous system.
FIGURE 4
FIGURE 4
Fear and anger are twin emotions. At a surprise or uncertain situation, we humans usually have a safety check with the situation, which is unconscious, similar to Lazarus’s primary appraisal. Then the individual will consciously compare the situation with his own ability to see if he can cope with the situation. If the individual feels he has insufficient resources, he would flight away; or he will be angry and fight. Fear and anger occur in a tandem, with fear occurring first, then anger coming immediately afterward. Afterward, the individual will reflect upon the situation, which might be called reappraisal. If he coped successfully with the situation, he will be happy; or he will be sad. Therefore, we humans have four basic emotions. Just like Izard proposed: people need the emotion fear to explain flight for safety; anger to explain tendency to cope with the unexpected situation; joy or happiness to express the pride of achievement, and sadness to express the acceptance of failure (Izard, 2007).

References

    1. Abler B., Walter H., Erk S. (2005). Neural correlates of frustration. Neuroreport 16 669–672. 10.1097/00001756-200505120-00003
    1. Acevedo B. P., Aron A., Fisher H. E., Brown L. L. (2012). Neural correlates of long-term intense romantic love. Soc. Cogn. Affect. Neurosci. 7 145–159. 10.1093/scan/nsq092
    1. Aldwin C. M. (1994). Stress, Coping, and Development. New York, NY: The Guildford Press.
    1. An S., Ji L., Marks M., Zhang Z. (2017). Two sides of emotion: exploring positivity and negativity in six basic emotions across cultures. Front. Psychol. 8:610 10.3389/fpsyg.2017.00610
    1. Anthony T., Dee N., Bernard A., Lerchner W., Heintz N., Anderson D. J., et al. (2014). Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156 522–536. 10.1016/j.cell.2013.12.040
    1. Arnott G., Elwood R. (2009). Probing aggressive motivation in a cichilid fish. Biol. Lett. 5 762–764. 10.1098/rsbl.2009.0526
    1. Barrett L., Russell J. (2015). They Psychological Construction of Emotion. New York, NY: Guildofrd press.
    1. Barrett L., Satpute A. (2013). Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr. Opin. Neurobiol. 23 361–372. 10.1016/j.conb.2012.12.012
    1. Bartra O., McGuire J. T., Kable J. W. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76 412–427. 10.1016/j.neuroimage.2013.02.063
    1. Beer J. S., Heerey E. A., Keltner D., Scabini D., Knight R. T. (2003). The regulatory function of self-conscious emotion: insights from patients with orbitofrontal damage. J. Pers. Soc. Psychol. 85 594–604. 10.1037/0022-3514.85.4.594
    1. Behrens T. E., Woolrich M. W., Walton M. E., Rushworth M. F. (2009). Learning the value of information in an uncertain world. Nat. Neurosci. 10 1214–1221. 10.1038/nn1954
    1. Berridge K. C., Kringelbach M. L. (2011). Building a neuroscience of pleasure and well-being. Psychol. Well Being 1 1–3.
    1. Bertsch K., Krauch M., Roelofs K., Cackowski S., Herpertz S. C., Volman I., et al. (2018). Out of control? Acting out anger is associated with deficient prefrontal emotional action control in male patients with borderline personality disorder. Neuropharmacology .
    1. Bestelmeyer P. E. G., Kotz S. A., Belin P. (2017). Effects of emotional valence and arousal on the voice perception network. Soc. Cogn. Affect. Neurosci. 12 1351–1358. 10.1093/scan/nsx059
    1. Blackford J. U., Avery S. N., Cowan R. L., Shelton R. C., Zald D. H. (2011). Sustained amygdala response to both novel and newly familiar faces characterizes inhibited temperament. Soc. Cogn. Affect. Neurosci. 6 621–629. 10.1093/scan/nsq073
    1. Blackford J. U., Buckholtz J. W., Avery S. N., Zald D. H. (2010). A unique role for the human amygdala in novelty detection. Neuroimage 50 1188–1193. 10.1016/j.neuroimage.2009.12.083
    1. Blanchard D. C., Blanchard R. J. (1972). Innate and conditioned reactions to threat in rats with amygdaloid lesions. J. Comp. Physiol. Psychol. 81 281–290. 10.1037/h0033521
    1. Boll S., Gamer M., Gluth S., Finsterbusch J., Buchel C. (2013). Separate amygdala subregions signal surprise and predictiveness during associative fear learning in humans. Eur. J. Neurosci. 37 758–767. 10.1111/ejn.12094
    1. Burke K. A., Franz T. M., Miller D. N., Schoenbaum G. (2007). Conditioned reinforcement can be mediated by either outcome-specific or general affective representations. Front. Integr. Neurosci. 1:2 10.3389/neuro.07.002.2007
    1. Burke K. A., Franz T. M., Miller D. N., Schoenbaum G. (2008). The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature 454 340–344. 10.1038/nature06993
    1. Burke K. A., Takahashi Y. K., Correll J., Brown P. L., Schoenbaum G. (2009). Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with ’disinhibition’ of responding for previously unrewarded cues. Eur. J. Neurosci. 30 1941–1946. 10.1111/j.1460-9568.2009.06992.x
    1. Cahill L., Babinsky R., Markowitsch H. J., McGaugh J. L. (1995). The amygdala and emotional memory. Nature 377 295–296.
    1. Celeghin A., Diano M., Bagnis A., Viola M., Tamietto M. (2017). Basic emotions in human neuroscience: neuroimaging and beyond. Front. Psychol. 8:1432 10.3389/fpsyg.2017.01432
    1. Certel S. J., Leung A., Lin C. Y., Perez P., Chiang A. S., Kravitz E. A., et al. (2010). Octopamine neuromodulatory effects on a social behavior decision-making network in Drosophila males. PLoS One 5:e13248 10.1371/journal.pone.0013248
    1. Clark-Polner E., Johnson T. D., Barrett L. F. (2017). Multivoxel pattern analysis does not provide evidence to support the existence of basic emotions. Cereb. Cortex 27 1944–1948.
    1. Clore G. L., Ortony A. (2013). Psychological construction in the OCC model of emotion. Emot. Rev. 5 335–343. 10.1177/1754073913489751
    1. Coccaro E. F., McCloskey M. S., Fitzgerald D. A., Phan K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol. Psychiatry 62 168–178. 10.1016/j.biopsych.2006.08.024
    1. Colibazzi T., Posner J., Wang Z., Gorman D., Gerber A., Yu S., et al. (2010). Neural systems subserving valence and arousal during the experience of induced emotions. Emotion 10 377–389. 10.1037/a0018484
    1. Colmbetti G. (2014). The Feeling Body: Affective Science Meets the Enactive Mind. Cambridge, MA: MIT press.
    1. Colombetti G. (2014). The Feeding Body: Affective Science Meet the Enactive Mind. Cambfidge, MA: MIT press.
    1. Cowen A. S., Keltner D. (2018). Clarifying the conceptualization, dimensionality, and structure of emotion: response to barrett and colleagues. Trends Cogn. Sci. 22 274–276. 10.1016/j.tics.2018.02.003
    1. Damasio A., Carvalho G. B. (2013). The nature of feelings: evolutionary and neurobiological origins. Nat. Rev. Neurosci. 14 143–152. 10.1038/nrn3403
    1. Davis M. (1992). The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15 353–375. 10.1146/annurev.neuro.15.1.353
    1. Ekman P. (1992). An arugment for basic emotions. Cognit. Emot. 6 169–200.
    1. Etkin A., Buchel C., Gross J. J. (2015). The neural bases of emotion regulation. Nat. Rev. Neurosci. 16 693–700. 10.1038/nrn4044
    1. Etkin A., Buchel C., Gross J. J. (2016). Emotion regulation involves both model-based and model-free processes. Nat. Rev. Neurosci. 17:532 10.1038/nrn.2016.79
    1. Farinelli M., Panksepp J., Gestieri L., Maffei M., Agati R., Cevolani D., et al. (2015). Do brain lesions in stroke affect basic emotions and attachment? J. Clin. Exp. Neuropsychol. 37 595–613. 10.1080/13803395.2014.991279
    1. Fehr B., Russell J. A. (1984). Concept of emotion viewed from a prototype perspective. J. Exp. Psychol. Gen. 113 464–486. 10.1037//0096-3445.113.3.464
    1. Feinstein J. S., Adolphs R., Damasio A., Tranel D. (2011). The human amygdala and the induction and experience of fear. Curr. Biol. 21 34–38. 10.1016/j.cub.2010.11.042
    1. Felmingham K., Kemp A. H., Williams L., Falconer E., Olivieri G., Peduto A., et al. (2008). Dissociative responses to conscious and non-conscious fear impact underlying brain function in post-traumatic stress disorder. Psychol. Med. 38 1771–1780. 10.1017/s0033291708002742
    1. Fiorillo C. D. (2013). Two dimensions of value: dopamine neurons represent reward but not aversiveness. Science 341 546–549. 10.1126/science.1238699 10.1126/science.1238699 10.1126/science.1238699
    1. Fiorillo C. D., Song M. R., Yun S. R. (2013a). Multiphasic temporal dynamics in responses of midbrain dopamine neurons to appetitive and aversive stimuli. J. Neurosci. 33 4710–4725. 10.1523/jneurosci.3883-12.2013
    1. Fiorillo C. D., Yun S. R., Song M. R. (2013b). Diversity and homogeneity in responses of midbrain dopamine neurons. J. Neurosci. 33 4693–4709. 10.1523/jneurosci.3886-12.2013
    1. Fouragnan E., Retzler C., Philiastides M. G. (2018). Separate neural representations of prediction error valence and surprise: evidence from an fMRI meta-analysis. Hum. Brain Mapp. 39 2887–2906. 10.1002/hbm.24047
    1. Fulwiler C. E., King J. A., Zhang N. (2012). Amygdala-orbitofrontal resting-state functional connectivity is associated with trait anger. Neuroreport 23 606–610. 10.1097/00001756-201207110-00006
    1. Godlewska B. R., Browning M., Norbury R., Igoumenou A., Cowen P. J., Harmer C. J., et al. (2018). Predicting treatment response in depression: the role of anterior cingulate cortex. Int. J. Neuropsychopharmacol. 21 988–996. 10.1093/ijnp/pyy069
    1. Grabenhorst F., Rolls E. T. (2011). Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn. Sci. 15 56–67. 10.1016/j.tics.2010.12.004
    1. Gross J. J. (2002). Emotion regulation: affective, cognitive, and social consequences. Psychophysiology 39 281–291. 10.1017/s0048577201393198
    1. Gu S., Mengdan G., Yaoyao Y., Fushun W., Huang J. H. (2018). The neural mechanism underlying cognitive and emotional processes in creativity. Front. Psychol. 9:1924 10.3389/fpsyg.2018.01924
    1. Gu S., Wang F., Yuan T., Guo B., Huang H. (2015). Differentiation of primary emotions through neuromodulators: review of literature. Int. J. Neurol. Res. 1 43–50. 10.17554/j.issn.2313-5611.2015.01.19
    1. Gu S., Wang W., Wang F., Huang J. H. (2016). Neuromodulator and emotion biomarker for stress induced mental disorders. Neural Plast. 2016:2609128.
    1. Hamann S. (2001). Cognitive and neural mechanisms of emotional memory. Trends Cognit. Sci. 5 394–400. 10.1016/s1364-6613(00)01707-1
    1. Hamann S. (2012). Mapping discrete and dimensional emotions onto the brain: controversies and consensus. Trends Cogn. Sci. 16 458–466. 10.1016/j.tics.2012.07.006
    1. Han W., Tellez L. A., Rangel M. J., Jr., Motta S. C., Zhang X., Perez I. O., et al. (2017). Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 168 311–324.
    1. Hay A. C., Sheppes G., Gross J. J., Gruber J. (2015). Choosing how to feel: emotion regulation choice in bipolar disorder. Emotion 15 139–145. 10.1037/emo0000024
    1. Herry C., Bach D. R., Esposito F., Di Salle F., Perrig W. J., Scheffler K., et al. (2007). Processing of temporal unpredictability in human and animal amygdala. J. Neurosci. 27 5958–5966. 10.1523/jneurosci.5218-06.2007
    1. Holland P. C., Gallagher M. (2006). Different roles for amygdala central nucleus and substantia innominata in the surprise-induced enhancement of learning. J. Neurosci. 26 3791–3797. 10.1523/jneurosci.0390-06.2006
    1. Hu H. (2016). Reward and aversion. Annu. Rev. Neurosci. 39 297–324.
    1. Hutto D. D., Robertson I., Kirchhoff M. D. (2018). A new, better BET: rescuing and revising basic emotion theory. Front. Psychol. 9:1217 10.3389/fpsyg.2018.01217
    1. Iordanova M. D. (2010). Dopamine transmission in the amygdala modulates surprise in an aversive blocking paradigm. Behav. Neurosci. 124 780–788. 10.1037/a0021111
    1. Isosaka T., Matsuo T., Yamaguchi T., Funabiki K., Nakanishi S., Kobayakawa R., et al. (2015). Htr2a-expressing cells in the central amygdala control the hierarchy between innate and learned fear. Cell 163 1153–1164. 10.1016/j.cell.2015.10.047
    1. Izard C. E. (2007). Basic emotions, natural kinds, emotion schemas, and a new paradigm. Perspect. Psychol. Sci. 2 260–280. 10.1111/j.1745-6916.2007.00044.x
    1. Izard C. E. (2009). Emotion theory and research: highlights, unanswered questions, and emerging issues. Annu. Rev. Psychol. 60 1–25. 10.1146/annurev.psych.60.110707.163539
    1. Izquierdo A., Suda R. K., Murray E. A. (2005). Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys. J. Neurosci. 25 8534–8542. 10.1523/jneurosci.1232-05.2005
    1. Jack R., Garrod O., Schyns P. (2014). Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time. Curr. Biol. 24 187–192. 10.1016/j.cub.2013.11.064
    1. Kahnt T., Heinzle J., Park S. Q., Haynes J. D. (2010). The neural code of reward anticipation in human orbitofrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 107 6010–6015. 10.1073/pnas.0912838107
    1. Kamitani Y., Tong F. (2005). Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8 679–685. 10.1038/nn1444
    1. Kim M. J., Mattek A. M., Bennett R. H., Solomon K. M., Shin J., Whalen P. J., et al. (2017). Human amygdala tracks a feature-based valence signal embedded within the facial expression of surprise. J. Neurosci. 37 9510–9518. 10.1523/jneurosci.1375-17.2017
    1. Koritnik B., Azam S., Andrew C. M., Leigh P. N., Williams S. C. (2009). Imaging the brain during sniffing: a pilot fMRI study. Pulm. Pharmacol. Ther. 22 97–101. 10.1016/j.pupt.2008.10.009
    1. Kragel P. A., LaBar K. S. (2016). Decoding the nature of emotion in the brain. Trends Cogn. Sci. 20 444–455. 10.1016/j.tics.2016.03.011
    1. Krauch M., Ueltzhöffer K., Brunner R., Kaess M., Hensel S., Herpertz S. C., et al. (2018). Heightened salience of anger and aggression in female adolescents with borderline personality disorder-a script-based fMRI study. Front. Behav. Neurosci. 12:57 10.3389/fnbeh.2018.00057
    1. Krebs R. M., Heipertz D., Schuetze H., Duzel E. (2011). Novelty increases the mesolimbic functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA) during reward anticipation: evidence from high-resolution fMRI. Neuroimage 58 647–655. 10.1016/j.neuroimage.2011.06.038
    1. Kringelbach M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nat. Rev. Neurosci. 6 691–702. 10.1038/nrn1747
    1. Kuppens P., Tuerlinckx F., Russell J. A., Barrett L. F. (2013). The relation between valence and arousal in subjective experience. Psychol. Bull. 139 917–940. 10.1037/a0030811
    1. Lang P. J., Greenwald M. K., Bradley M. M., Hamm A. O. (1993). Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30 261–273. 10.1111/j.1469-8986.1993.tb03352.x
    1. Lazarus R. S. (1999). Stress and Emotion: A New Synthesis. New York: Springer.
    1. Ledoux, Brown R. (2017). A higher-order theory of emotional consciousness. Proc. Natl. Acad. Sci. U.S.A. 114 E2016–E2025.
    1. LeDoux J. (1996). The Emotional Brain: The Mysterous Underpinnings of Emotional Life. New York, NY: Simon & Schuster.
    1. LeDoux J. (1998). Fear and the brain: where have we been, and where are we going? Biol. Psychiatry 44 1229–1238. 10.1016/s0006-3223(98)00282-0
    1. LeDoux J. (2007). The amygdala. Curr. Biol. 17 R868–R874.
    1. Lee H. J., Youn J. M., Gallagher M., Holland P. C. (2008). Temporally limited role of substantia nigra-central amygdala connections in surprise-induced enhancement of learning. Eur. J. Neurosci. 27 3043–3049. 10.1111/j.1460-9568.2008.06272.x
    1. Lee H. J., Youn J. M., O M. J., Gallagher M., Holland P. C. (2006). Role of substantia nigra-amygdala connections in surprise-induced enhancement of attention. J. Neurosci. 26 6077–6081. 10.1523/jneurosci.1316-06.2006
    1. Lewis P. A., Critchley H. D., Rotshtein P., Dolan R. J. (2007). Neural correlates of processing valence and arousal in affective words. Cereb. Cortex 17 742–748. 10.1093/cercor/bhk024
    1. Lindquist K., Barrett L. (2012). A functional architecture of the human brain: emerging insights from the science of emotion. Trends Cogn. Sci. 16 533–540. 10.1016/j.tics.2012.09.005
    1. Lindquist K., Wager T., Kober H., Bliss-Moreau E., Barrett L. (2012). The brain basis of emotion: a meta-analytic review. Behav. Brain Sci. 35 121–143. 10.1017/s0140525x11000446
    1. Lindquist K. A., Gendron M., Oosterwijk S., Barrett L. F. (2013a). Do people essentialize emotions? Individual differences in emotion essentialism and emotional experience. Emotion 13 629–644. 10.1037/a0032283
    1. Lindquist K. A., Siegel E. H., Quigley K. S., Barrett L. F. (2013b). The hundred-year emotion war: are emotions natural kinds or psychological constructions? Comment on Lench, Flores, and Bench (2011). Psychol. Bull. 139 255–263. 10.1037/a0029038
    1. Litt A., Plassmann H., Shiv B., Rangel A. (2011). Dissociating valuation and saliency signals during decision-making. Cereb. Cortex 21 95–102. 10.1093/cercor/bhq065
    1. Lohani S., Poplawsky A. J., Kim S. G., Moghaddam B. (2017). Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI. Mol. Psychiatry 22 585–594. 10.1038/mp.2016.102
    1. Luo Y., Qi S., Chen X., You X., Huang X., Yang Z., et al. (2017). Pleasure attainment or self-realization: the balance between two forms of well-beings are encoded in default mode network. Soc. Cogn. Affect Neurosci. 12 1678–1686. 10.1093/scan/nsx078
    1. Machado C. J., Kazama A. M., Bachevalier J. (2009). Impact of amygdala, orbital frontal, or hippocampal lesions on threat avoidance and emotional reactivity in nonhuman primates. Emotion (Washington, D.C.) 9 147–163. 10.1037/a0014539
    1. Matsumoto M., Hikosaka O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459 837–841. 10.1038/nature08028
    1. Milad M. R., Rauch S. L. (2007). The role of the orbitofrontal cortex in anxiety disorders. Ann. N. Y. Acad. Sci. 1121 546–561. 10.1196/annals.1401.006
    1. Milyavsky M., Webber D., Fernandez J. R., Kruglanski A. W., Goldenberg A., Suri G., et al. (2018). To reappraise or not to reappraise? Emotion regulation choice and cognitive energetics. Emotion .
    1. Moons W. G., Eisenberger N. I., Taylor S. E. (2010). Anger and fear responses to stress have different biological profiles. Brain Behav. Immun. 24 215–219. 10.1016/j.bbi.2009.08.009
    1. Moriguchi Y., Negreira A., Weierich M., Dautoff R., Dickerson B. C., Wright C. I., et al. (2011). Differential hemodynamic response in affective circuitry with aging: an FMRI study of novelty, valence, and arousal. J. Cogn. Neurosci. 23 1027–1041. 10.1162/jocn.2010.21527
    1. Morrens J. (2014). Dopamine neurons coding prediction errors in reward space, but not in aversive space: a matter of location? J. Neurophysiol. 112 1021–1024. 10.1152/jn.00751.2013
    1. Motoki K., Sugiura M. (2018). Disgust, sadness, and appraisal: disgusted consumers dislike food more than sad ones. Front. Psychol. 9:76 10.3389/fpsyg.2018.00076
    1. Murphy F. C., Nimmo-Smith I., Lawrence A. D. (2003). Functional neuroanatomy of emotions: a meta-analysis. Cognit. Affect. Behav. Neurosci. 3 207–233. 10.3758/cabn.3.3.207
    1. Oaten M., Stevenson R. J., Tapp C., Case T. I., Cousins A. (2018a). The role of disgust in male sexual decision-making. Front. Psychol. 9:2602 10.3389/fpsyg.2018.02602
    1. Oaten M., Stevenson R. J., Williams M. A., Rich A. N., Butko M., Case T. I., et al. (2018b). Moral violations and the experience of disgust and anger. Front. Behav. Neurosci. 12:179 10.3389/fnbeh.2018.00179
    1. Ochsner K. N., Bunge S. A., Gross J. J., Gabrieli J. D. E. (2002). Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 14 1215–1229. 10.1162/089892902760807212
    1. Ohman A. (2005). The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinology 30 953–958. 10.1016/j.psyneuen.2005.03.019
    1. Papini M. R., Penagos-Corzo J. C., Perez-Acosta A. M. (2018). Avian emotions: comparative perspectives on fear and frustration. Front. Psychol. 9:2707 10.3389/fpsyg.2018.02707
    1. Park S. Q., Kahnt T., Beck A., Cohen M. X., Dolan R. J., Wrase J., et al. (2010). Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence. J. Neurosci. 30 7749–7753. 10.1523/jneurosci.5587-09.2010
    1. Phan K. L., Wager T., Taylor S. F., Liberzon I. (2002). Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16 331–348. 10.1006/nimg.2002.1087
    1. Posner J., Russell J. A., Peterson B. S. (2005). The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17 715–734.
    1. Prather M. D., Lavenex P., Mauldin-Jourdain M. L., Mason W. A., Capitanio J. P., Mendoza S. P., et al. (2001). Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neuroscience 106 653–658. 10.1016/s0306-4522(01)00445-6
    1. Ramirez-Mahaluf J. P., Perramon J., Otal B., Villoslada P., Compte A. (2018a). Author correction: subgenual anterior cingulate cortex controls sadness-induced modulations of cognitive and emotional network hubs. Sci. Rep. 8:11237.
    1. Ramirez-Mahaluf J. P., Perramon J., Otal B., Villoslada P., Compte A. (2018b). Subgenual anterior cingulate cortex controls sadness-induced modulations of cognitive and emotional network hubs. Sci. Rep. 8:8566.
    1. Reynaud E., Guedj E., Trousselard M. E., Khoury-Malhame M., Zendjidjian X., Fakra E., et al. (2015). Acute stress disorder modifies cerebral activity of amygdala and prefrontal cortex. Cogn. Neurosci. 6 39–43. 10.1080/17588928.2014.996212
    1. Rolls E. T., Grabenhorst F., Parris B. A. (2008). Warm pleasant feelings in the brain. Neuroimage 41 1504–1513. 10.1016/j.neuroimage.2008.03.005
    1. Roseman I. (1984). Cognitive Determinants of Emotion: A Structural Theory. Beverly Hills, CA: Sage.
    1. Russell J. (2003). Core affect and the psychological construction of emotion. Psychol. Rev. 110 145–172. 10.1037//0033-295x.110.1.145
    1. Russell J. A. (2006). Emotions are not modules. Can. J. Philos. Suppl. 32 53–71. 10.1353/cjp.2007.0037
    1. Ryff C. D. (2014). Psychological well-being revisited: advances in the science and practice of eudaimonia. Psychother. Psychosom. 83 10–28. 10.1159/000353263
    1. Ryff C. D. (2018). Well-being with soul: science in pursuit of human potential. Perspect. Psychol. Sci. 13 242–248. 10.1177/1745691617699836
    1. Saarimaki H., Gotsopoulos A., Jääskeläinen I. P., Lampinen J., Vuilleumier P., Hari R., et al. (2016). Discrete neural signatures of basic emotions. Cereb. Cortex 26 2563–2573. 10.1093/cercor/bhv086
    1. Scarantino A. (2012). Functional specialization does not require a one-to-one mapping between brain regions and emotions. Behav. Brain Sci. 35 161–162. 10.1017/s0140525x11001749
    1. Scarantino A. (2015). Basic Emotions, Psychological Construction and the Problem of Variability. New York, NY: Guildofrd press.
    1. Scarantino A., Griffiths P. (2011). Dont give up on basic emotions. Emot. Rev. 3 444–454. 10.1177/1754073911410745
    1. Schlosberg H. (1952). The description of facial expressions in terms of two dimensions. J. Exp. Psychol. 44 229–237. 10.1037/h0055778
    1. Schlosberg H. (1954). Three dimensions of emotions. Psychol. Rev. 61 81–88.
    1. Schultz W., Dayan P., Montague P. R. (1997). A neural substrate of prediction and reward. Science 275 1593–1599. 10.1126/science.275.5306.1593
    1. Selvaraj S., Walker C., Arnone D., Cao B., Faulkner P., Cowen P. J., et al. (2018). Effect of citalopram on emotion processing in humans: a combined 5-HT1A [(11)C]CUMI-101 PET and functional MRI study. Neuropsychopharmacology 43 655–664. 10.1038/npp.2017.166
    1. Sieger T., Serranová T., Rùžièka F., Vostatek P., Wild J., Štastná D., et al. (2015). Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus. Proc. Natl. Acad. Sci. U.S.A. 112 3116–3121. 10.1073/pnas.1410709112
    1. Siep N., Tonnaer F., van de Ven V., Arntz A., Raine A., Cima M., et al. (2018). Anger provocation increases limbic and decreases medial prefrontal cortex connectivity with the left amygdala in reactive aggressive violent offenders. Brain Imaging Behav.
    1. Song Y., Hakoda Y. (2018). Selective impairment of basic emotion recognition in people with autism: discrimination thresholds for recognition of facial expressions of varying intensities. J. Autism Dev. Disord. 48 1886–1894. 10.1007/s10803-017-3428-2
    1. Sroufe L. (1996). Emotional Development. New York, NY: Cambridge University Press.
    1. Takahashi Y. K., Roesch M. R., Stalnaker T. A., Haney R. Z., Calu D. J., Taylor A. R., et al. (2009). The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62 269–280. 10.1016/j.neuron.2009.03.005
    1. Taylor S. F., Ho S. S., Abagis T., Angstadt M., Maixner D. F., Welsh R. C., et al. (2018). Changes in brain connectivity during a sham-controlled, transcranial magnetic stimulation trial for depression. J. Affect. Disord. 232 143–151. 10.1016/j.jad.2018.02.019
    1. Telzer E. H., Fuligni A. J., Lieberman M. D., Galvan A. (2014). Neural sensitivity to eudaimonic and hedonic rewards differentially predict adolescent depressive symptoms over time. Proc. Natl. Acad. Sci. U.S.A. 111 6600–6605. 10.1073/pnas.1323014111
    1. Thayer R. (1989). The Origion of Everyday Moods: Managing Energy, Tension and Sress. New York, NY: Oxford University Press.
    1. Troy A. S., Wilhelm F. H., Shallcross A. J., Mauss I. B. (2010). Seeing the silver lining: cognitive reappraisal ability moderates the relationship between stress and depressive symptoms. Emotion 10 783–795. 10.1037/a0020262
    1. Trutti A. C., Mulder M. J., Hommel B., Forstmann B. U. (2019). Functional neuroanatomical review of the ventral tegmental area. Neuroimage 191 258–268. 10.1016/j.neuroimage.2019.01.062
    1. Vetter N. C., Drauschke M., Thieme J., Altgassen M. (2018). Adolescent basic facial emotion recognition is not influenced by puberty or own-age bias. Front. Psychol. 9:956 10.3389/fpsyg.2018.00956
    1. Vrticka P., Lordier L., Bediou B., Sander D. (2014). Human amygdala response to dynamic facial expressions of positive and negative surprise. Emotion 14 161–169. 10.1037/a0034619
    1. Wager T. D., Lindquist M., Kaplan L. (2007). Meta-analysis of functional neuroimaging data: current and future directions. Soc. Cogn. Affect. Neurosci. 2 150–158. 10.1093/scan/nsm015
    1. Wang F. (2018). Emotional Psychoogy. Beijing: Health Press.
    1. Wang F., Pan F., Shapiro L. A., Huang J. H. (2017). Stress induced neuroplasticity and mental disorders. Neural Plast. 2017:9634501.
    1. Wang F., Pan F., Shapiro L. A., Huang J. H. (2018). Stress induced neuroplasticity and mental disorders 2018. Neural Plast. 2018:5382537.
    1. Watson D., Clark L. (1988). Developmental and validation of brief measures of positive and negative affect: the PANAS scale. J. Personal. Soc. Psychol. 54 1063–1070. 10.1037//0022-3514.54.6.1063
    1. Weierich M. R., Wright C. I., Negreira A., Dickerson B. C., Barrett L. F. (2010). Novelty as a dimension in the affective brain. Neuroimage 49 2871–2878. 10.1016/j.neuroimage.2009.09.047
    1. Weiskrantz L. (1956). Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J. Comp. Physiol. Psychol. 49 381–391. 10.1037/h0088009
    1. Wicker B., Keysers C., Plailly J., Royet J. P., Gallese V., Rizzolatti G., et al. (2003). Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust. Neuron 40 655–664. 10.1016/s0896-6273(03)00679-2
    1. Williams L. E., Bargh J. A. (2008). Experiencing physical warmth promotes interpersonal warmth. Science 322 606–607. 10.1126/science.1162548
    1. Williams R. (2017). Anger as a basic emotion and its role in personality building and pathological growth: the neuroscientific, developmental and clinical perspectives. Front. Psychol. 8:1950 10.3389/fpsyg.2017.01950
    1. Wilson-Mendenhall C. D., Barrett L. F., Barsalou L. W. (2013). Neural evidence that human emotions share core affective properties. Psychol. Sci. 24 947–956. 10.1177/0956797612464242
    1. Wise R. A. (2004). Dopamine and food reward: back to the elements. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286 R13.
    1. Wise R. A. (2006). Role of brain dopamine in food reward and reinforcement. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 361 1149–1158. 10.1098/rstb.2006.1854
    1. Wise R. A. (2008). Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox Res. 14 169–183. 10.1007/bf03033808
    1. Wise R. A. (2013). Dual roles of dopamine in food and drug seeking: the drive-reward paradox. Biol. Psychiatry 73 819–826. 10.1016/j.biopsych.2012.09.001
    1. Wise R. A., Rompre P. P. (1989). Brain dopamine and reward. Annu. Rev. Psychol. 40 191–225. 10.1146/annurev.psych.40.1.191
    1. Xu X., Brown L., Aron A., Cao G., Feng T., Acevedo B., et al. (2012). Regional brain activity during early-stage intense romantic love predicted relationship outcomes after 40 months: an fMRI assessment. Neurosci. Lett. 526 33–38. 10.1016/j.neulet.2012.08.004
    1. Yik M., Russell J. A., Steiger J. H. (2011). A 12-point circumplex structure of core affect. Emotion 11 705–731. 10.1037/a0023980
    1. Yokel R. A., Wise R. A. (1975). Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science 187 547–549. 10.1126/science.1114313
    1. Zheng Z., Simeng G., Lei Y., Shanshan L., Wang W., Yang L., et al. (2016). Safety needs mediate stressful events induced mental disorders. Neural Plast. 2016:8058093.

Source: PubMed

Подписаться