Phenolics and Carbohydrates in Buckwheat Honey Regulate the Human Intestinal Microbiota

Li Jiang, Minhao Xie, Guijie Chen, Jiangtao Qiao, Hongcheng Zhang, Xiaoxiong Zeng, Li Jiang, Minhao Xie, Guijie Chen, Jiangtao Qiao, Hongcheng Zhang, Xiaoxiong Zeng

Abstract

Intestinal microbiota plays an important role in human health. The aim of this paper is to determine the impact of the phenolics and carbohydrate in buckwheat honey on human intestinal microbiota. We investigated the phenolics and carbohydrate compositions of eight buckwheat honey samples using high-performance liquid chromatography and ion chromatography. The human intestinal microbes were cultured in a medium supplemented with eight buckwheat honey samples or the same concentration of fructooligosaccharides. The bacterial 16S rDNA V4 region sequence of DNA extraction was determined by the Illumina MiSeq platform. 12 phenolics and 4 oligosaccharides were identified in almost all buckwheat honey samples, namely, protocatechuic acid, 4-hydroxy benzoic acid, vanillin, gallic acid, p-coumaric acid, benzoic acid, isoferulic acid, methyl syringate, trans,trans-abscisic acid, cis,trans-abscisic acid, ferulic acid, 4-hydroxybenzaldehyde, kestose, isomaltose, isomaltotriose, and panose. Most notably, this is the first study to reveal the presence of 4-hydroxybenzaldehyde in buckwheat honey. 4-Hydroxybenzaldehyde seems to be a land marker of buckwheat honey. Our results indicate that buckwheat honey can provide health benefits to the human gut by selectively supporting the growth of indigenous Bifidobacteria and restraining the pathogenic bacterium in the gut tract. We infer that buckwheat honey may be a type of natural intestinal-health products.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Copyright © 2020 Li Jiang et al.

Figures

Figure 1
Figure 1
Flow diagram of anaerobic fermentation in vitro and DNA extraction.
Figure 2
Figure 2
HPLC profile of buckwheat honey samples. Note. (1) protocatechuic acid, (2) 4-hydroxy benzoic acid, (3) 4-hydroxybenzaldehyde, (4) vanillin, (5) gallic acid, (6) p-coumaric acid, (7) benzoic acid, (8) ferulic acid, (9) isoferulic acid, (10) methyl syringate, (11) trans,trans-abscisic acid,(12) cis,trans-abscisic acid. (a) Sample 1, (b) sample 2, (c) sample 3, (d) sample 4, (e) sample 5, (f) sample 6, (g) sample 7, (h) sample 8.
Figure 3
Figure 3
The PCA (a), NMDS (b), and RDA (c) analysis. Note: In (a) and (b), S1A, S1B, and S1C represent the fermentation triplicate of buckwheat honey sample S1. FOSA, FOSB, and FOSC represent the fermentation triplicate of positive control fructooligosaccharides. BLKA, BLKB, and BLKC represent the fermentation triplicate of blank control. ORIA, ORIB, and ORIC represent the fermentation triplicate of the human original microbes. (c): 1. protocatechuic acid; 2. 4-hydroxy benzoic acid; 3. 4-hydroxybenzaldehyde; 4. vanilin; 5. gallic acid; 6. p-coumaric acid; 7. benzoic acid; 8. ferulic acid; 9. isoferulic acid; 10. methyl syringate; 11. trans,trans-abscisic acid; 12. cis,trans-abscisic acid. a. fructose; b. glucose; c. kestose; d. isomaltose; e. isomaltotriose; f. panose.
Figure 4
Figure 4
The heatmap of major gut microbiota relative abundance in genus level. Note. S1A, S1B, and S1C represent the fermentation triplicate of buckwheat honey sample S1. FOSA, FOSB, and FOSC represent the fermentation triplicate of positive control fructooligosaccharides. BLKA, BLKB, and BLKC represent the fermentation triplicate of blank control. ORIA, ORIB, and ORIC represent the fermentation triplicate of the human original microbes.

References

    1. Tuzen M., Silici S., Mendil D., Soylak M. Trace element levels in honeys from different regions of Turkey. Food Chemistry. 2007;103(2):325–330. doi: 10.1016/j.foodchem.2006.07.053.
    1. Consonni R., Cagliani L. R. Recent developments in honey characterization. RSC Advances. 2015;5(73):59696–59714. doi: 10.1039/c5ra05828g.
    1. Hammond E. N.-A., Duster M., Musuuza J. S., Safdar N. Effect of United States buckwheat honey on antibiotic-resistant hospital acquired pathogens. Pan African Medical Journal. 2016;25 doi: 10.11604/pamj.2016.25.212.10414.
    1. Preys S., Mazerolles G., Courcoux P., et al. Relationship between polyphenolic composition and some sensory properties in red wines using multiway analyses. Analytica Chimica Acta. 2006;563(1-2):126–136. doi: 10.1016/j.aca.2005.10.082.
    1. Pyrzynska K., Biesaga M. Analysis of phenolic acids and flavonoids in honey. TrAC Trends in Analytical Chemistry. 2009;28(7):893–902. doi: 10.1016/j.trac.2009.03.015.
    1. Pasini F., Gardini S., Marcazzan G. L., Caboni M. F. Buckwheat honeys: screening of composition and properties. Food Chemistry. 2013;141(3):2802–2811. doi: 10.1016/j.foodchem.2013.05.102.
    1. Gou X.-F., Cao W., Suo Z.-R. Determination of seven pharmacologically active phenolic acids and its antioxidant activity in buckwheat honey. Food Science. 2004;10:p. 70.
    1. Manyi-Loh C. E., Ndip R. N., Clarke A. M. Volatile compounds in honey: a review on their involvement in aroma, botanical origin determination and potential biomedical activities. International Journal of Molecular Sciences. 2011;12(12):9514–9532. doi: 10.3390/ijms12129514.
    1. Björkholm B., Bok C. M., Lundin A., Rafter J., Hibberd M. L., Pettersson S. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One. 2009;4(9) doi: 10.1371/journal.pone.0006958.e6958
    1. Heijtz R. D., Wang S., Anuar F., et al. Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences. 2011;108(7):3047–3052. doi: 10.1073/pnas.1010529108.
    1. O’Hara A. M., Shanahan F. The gut flora as a forgotten organ. EMBO Reports. 2006;7(7):688–693. doi: 10.1038/sj.embor.7400731.
    1. Qin J., Li Y., Cai Z., et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. doi: 10.1038/nature11450.
    1. Parkar S. G., Stevenson D. E., Skinner M. A. The potential influence of fruit polyphenols on colonic microflora and human gut health. International Journal of Food Microbiology. 2008;124(3):295–298. doi: 10.1016/j.ijfoodmicro.2008.03.017.
    1. Shin H.-S., Ustunol Z. Carbohydrate composition of honey from different floral sources and their influence on growth of selected intestinal bacteria: an in vitro comparison. Food Research International. 2005;38(6):721–728. doi: 10.1016/j.foodres.2005.01.007.
    1. Blasa M., Candiracci M., Accorsi A., Piacentini M. P., Albertini M. C., Piatti E. Raw Millefiori honey is packed full of antioxidants. Food Chemistry. 2006;97(2):217–222. doi: 10.1016/j.foodchem.2005.03.039.
    1. Sun C., Tan H., Zhang Y., Zhang H. Phenolics and abscisic acid identified in acacia honey comparing different SPE cartridges coupled with HPLC-PDA. Journal of Food Composition and Analysis. 2016;53:91–101. doi: 10.1016/j.jfca.2016.08.006.
    1. Cole J. R., Wang Q., Chai B., Tiedje J. M. Handbook of Molecular Microbial Ecology I. D1. Vol. 42. Hoboken, NJ, USA: Wiley Online Library; 2011. The ribosomal database project: sequences and software for high-throughput rRNA analysis; pp. 313–324.
    1. Edgar R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods. 2013;10(10):996–998. doi: 10.1038/nmeth.2604.
    1. Schloss P. D., Westcott S. L., Ryabin T., et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology. 2009;75(23):7537–7541. doi: 10.1128/aem.01541-09.
    1. Ruiz-Matute A. I., Soria A. C., Martínez-Castro I., Sanz M. L. A new methodology based on GC–MS to detect honey adulteration with commercial syrups. Journal of Agricultural and Food Chemistry. 2007;55(18):7264–7269. doi: 10.1021/jf070559j.
    1. Li Q., Zhang B., He Z., Yang X. Distribution and diversity of bacteria and fungi colonization in stone monuments analyzed by high-throughput sequencing. PLoS One. 2016;11(9) doi: 10.1371/journal.pone.0163287.e0163287
    1. Cani P., Delzenne N. The role of the gut microbiota in energy metabolism and metabolic disease. Current Pharmaceutical Design. 2009;15(13):1546–1558. doi: 10.2174/138161209788168164.
    1. Round J. L., Mazmanian S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology. 2009;9(5):313–323. doi: 10.1038/nri2515.
    1. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. Human gut microbes associated with obesity. Nature. 2006;444(7122):1022–1023. doi: 10.1038/4441022a.
    1. Sartor R. B. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology. 2004;126(6):1620–1633. doi: 10.1053/j.gastro.2004.03.024.
    1. Kau A. L., Ahern P. P., Griffin N. W., Goodman A. L., Gordon J. I. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327–336. doi: 10.1038/nature10213.
    1. Michalkiewicz A., Biesaga M., Pyrzynska K. Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. Journal of Chromatography A. 2008;1187(1-2):18–24. doi: 10.1016/j.chroma.2008.02.001.
    1. Kaškonienė V., Maruška A., Kornyšova O., Charczun N., Ligor M., Buszewski B. Quantitative and qualitative determination of phenolic compounds in honey. Cheminė Technologija. 2018;52(3):74–80.
    1. van den Berg A. J. J., van den Worm E., Quarles van Ufford H. C., Halkes S. B. A., Hoekstra M. J., Beukelman C. J. An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey. Journal of Wound Care. 2008;17(4):172–178. doi: 10.12968/jowc.2008.17.4.28839.
    1. Lin S. M., Molan P. C., Cursons R. T. The post-antibiotic effect of manuka honey on gastrointestinal pathogens. International Journal of Antimicrobial Agents. 2010;36(5):467–468. doi: 10.1016/j.ijantimicag.2010.06.046.
    1. El-Arab A. M. E., Girgis S. M., Hegazy E. M., El-Khalek A. B. A. Effect of dietary honey on intestinal microflora and toxicity of mycotoxins in mice. BMC Complementary and Alternative Medicine. 2006;6(1):p. 6. doi: 10.1186/1472-6882-6-6.
    1. Huang J., Chen L., Xue B., et al. Different flavonoids can shape unique gut microbiota profile in vitro. Journal of Food Science. 2016;81(9):H2273–H2279. doi: 10.1111/1750-3841.13411.
    1. Morais C. A., de Rosso V. V., Estadella D., Pisani L. P. Anthocyanins as inflammatory modulators and the role of the gut microbiota. The Journal of Nutritional Biochemistry. 2016;33:1–7. doi: 10.1016/j.jnutbio.2015.11.008.
    1. Yuan X., Long Y., Ji Z., et al. Green tea liquid consumption alters the human intestinal and oral microbiome. Molecular Nutrition & Food Research. 2018;62 doi: 10.1002/mnfr.201800178.1800178
    1. Zhu W., Lin K., Li K., Deng X., Li C. J. F. Reshaped fecal gut microbiota composition by the intake of high molecular weight persimmon tannin in normal and high-cholesterol diet-fed rats. Food & Function. 2018;9(1):541–551. doi: 10.1039/c7fo00995j.
    1. Sanz M. L., Polemis N., Morales V., et al. In vitro investigation into the potential prebiotic activity of honey oligosaccharides. Journal of Agricultural and Food Chemistry. 2005;53(8):2914–2921. doi: 10.1021/jf0500684.

Source: PubMed

Подписаться