Perturbation training to promote safe independent mobility post-stroke: study protocol for a randomized controlled trial

Avril Mansfield, Anthony Aqui, Andrew Centen, Cynthia J Danells, Vincent G DePaul, Svetlana Knorr, Alison Schinkel-Ivy, Dina Brooks, Elizabeth L Inness, William E McIlroy, George Mochizuki, Avril Mansfield, Anthony Aqui, Andrew Centen, Cynthia J Danells, Vincent G DePaul, Svetlana Knorr, Alison Schinkel-Ivy, Dina Brooks, Elizabeth L Inness, William E McIlroy, George Mochizuki

Abstract

Background: Falls are one of the most common medical complications post-stroke. Physical exercise, particularly exercise that challenges balance, reduces the risk of falls among healthy and frail older adults. However, exercise has not proven effective for preventing falls post-stroke. Falls ultimately occur when an individual fails to recover from a loss of balance. Thus, training to specifically improve reactive balance control could prevent falls. Perturbation training aims to improve reactive balance control by repeatedly exposing participants to postural perturbations. There is emerging evidence that perturbation training reduces fall rates among individuals with neurological conditions, such as Parkinson disease. The primary aim of this work is to determine if perturbation-based balance training can reduce occurrence of falls in daily life among individuals with chronic stroke. Secondary objectives are to determine the effect of perturbation training on balance confidence and activity restriction, and functional balance and mobility.

Methods/design: Individuals with chronic stroke will be recruited. Participants will be randomly assigned to one of two groups: 1) perturbation training, or 2) 'traditional' balance training. Perturbation training will involve both manual perturbations (e.g., a push or pull from a physiotherapist), and rapid voluntary movements to cause a loss of balance. Training will occur twice per week for 6 weeks. Participants will record falls and activity for 12 months following completion of the training program. Standardized clinical tools will be used to assess functional balance and mobility, and balance confidence before and after training.

Discussion: Falls are a significant problem for those with stroke. Despite the large body of work demonstrating effective interventions, such as exercise, for preventing falls in other populations, there is little evidence for interventions that prevent falls post-stroke. The proposed study will investigate a novel and promising intervention: perturbation training. If effective, this training has the potential to not only prevent falls, but to also improve safe independent mobility and engagement in daily activities for those with stroke.

Trial registration: Current Controlled Trials: ISRCTN05434601 .

Figures

Fig. 1
Fig. 1
Study design flowchart. Following initial screening and consent, participants will undergo an initial assessment to confirm eligibility and facilitate group allocation. Eligible participants will be randomly assigned to either perturbation training or the control group. Immediately following completion of the training period, participants will repeat assessment of functional balance and mobility and balance confidence. Participants will then complete 12 months of regular falls and activity reporting. Participants will receive ‘booster’ training sessions 3 and 9 months after the initial training period. An interim follow-up assessment and final follow-up assessment will occur 6 and 12 months following the initial training period
Fig. 2
Fig. 2
Lean-and-release postural perturbation. The participant leans forward so that approximately 10 % of body weight is supported by a cable attached to her back. At an unexpected time, the cable is released, causing the participant to start falling forward; a reactive step is required to regain stability. The research assistant stands close to provide assistance if the participant is unable to regain stability by stepping. A safety harness attached to an overhead support frame is worn, which prevents a fall to the floor. Panel a shows the ‘usual response’ condition where the participant is free to respond naturally. Panel b shows the ‘encouraged use’ condition; the preferred stepping limb (typically the non-paretic limb) is blocked, preventing step initiation with that limb and forcing use of the opposite limb to regain stability. (The individual shown is not a research participant. Consent was obtained for publication of the picture in this manuscript)

References

    1. Langhorne P, Stott DJ, Robertson L, MacDonald J, Jones JL, McAlpine C, et al. Medical complications after stroke: a multicenter study. Stroke. 2000;31:1223–9. doi: 10.1161/01.STR.31.6.1223.
    1. Weerdesteyn V, de Niet M, van Duijhoven HJR, Geurts ACH. Falls in individuals with stroke. J Rehabil Res Dev. 2008;45:1195–213. doi: 10.1682/JRRD.2007.09.0145.
    1. Batchelor FA, Mackintosh SF, Said CM, Hill KD. Falls after stroke. Int J Stroke. 2012;7:482–90.
    1. Greenlund KJ, Giles WH, Keenan NL, Croft JB, Mensah GA. Physician advice, patient actions, and health-related quality of life in secondary prevention of stroke through diet and exercise. Stroke. 2002;33:565–70. doi: 10.1161/hs0202.102882.
    1. Keenan MA, Perry J, Jordan C. Factors affecting balance and ambulation following stroke. Clin Orthop Relat Res. 1984;182:165–71.
    1. Forster A, Young J. Incidence and consequences of falls due to stroke: a systematic inquiry. BMJ. 1995;311:83–6. doi: 10.1136/bmj.311.6997.83.
    1. Andersson ÅG, Kamwendo K, Apperlros P. Fear of falling in stroke patients: relationship with previous falls and functional characteristics. Int J Rehabil Res. 2008;31:261–4. doi: 10.1097/MRR.0b013e3282fba390.
    1. Schmid AA, Van Puymbroeck M, Altenburger PA, Dierks TA, Miller KK, Damush TM, et al. Balance and balance self-efficacy are associated with activity and participation after stroke: a cross-sectional study in people with chronic stroke. Arch Phys Med Rehabil. 2012;93:1101–7. doi: 10.1016/j.apmr.2012.01.020.
    1. Maki BE, McIlroy WE. The role of limb movements in maintaining upright stance: the “change-in-support” strategy. Phys Ther. 1997;77:488–507.
    1. Robinovitch SN, Feldman F, Yang Y, Schonnop R, Leung PM, Sarraf T, et al. Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet. 2013;381:47–54. doi: 10.1016/S0140-6736(12)61263-X.
    1. Shumway-Cook A, Wollacott M. Motor control: theory and practical applications. Baltimore: Williams & Wilkins; 1995.
    1. McIlroy WE, Maki BE. Task constraints on foot movement and the incidence of compensatory stepping following perturbation of upright stance. Brain Res. 1993;616:30–8. doi: 10.1016/0006-8993(93)90188-S.
    1. Holliday PJ, Fernie GR, Gryfe CI, Griggs GT. Video recording of spontaneous falls of the elderly. In: Gray BE, editor. Slips, stumbles, and falls: pedestrian footwear and surfaces. Philadelphia: American Society for Testing and Materials; 1990. pp. 7–16.
    1. Hyndman D, Ashburn A, Stack E. Fall events among people with stroke living in the community: circumstances of falls and characteristics of fallers. Arch Phys Med Rehabil. 2002;83:165–70. doi: 10.1053/apmr.2002.28030.
    1. Jensen JJ, Brown LA, Woollacott MH. Compensatory stepping: the biomechanics of a preferred response among older adults. Exp Aging Res. 2001;27:361–76. doi: 10.1080/03610730109342354.
    1. McIlroy WE, Maki BE. Influence of destabilization on the temporal characteristics of ‘volitional’ stepping. J Mot Behav. 1996;28:28–34. doi: 10.1080/00222895.1996.9941730.
    1. Gage WH, Zabjek KF, Hill SW, McIlroy WE. Parallels in control of voluntary and perturbation-evoked reach-to-grasp movements: EMG and kinematics. Exp Brain Res. 2007;181:627–37. doi: 10.1007/s00221-007-0959-3.
    1. Zettel JL, McIlroy WE, Maki BE. Can stabilizing features of rapid triggered stepping reactions be modulated to meet environmental constraints? Exp Brain Res. 2002;145:297–308. doi: 10.1007/s00221-002-1083-z.
    1. Scovil CY, Zettel JL, Maki BE. Stepping to recover balance in complex environments: is online visual control of foot motion necessary or sufficient? Neurosci Lett. 2008;445:108–12. doi: 10.1016/j.neulet.2008.08.062.
    1. Harburn KL, Hill KM, Kramer JF, Noh S, Vandervoort AA, Teasell R. Clinical applicability and test-retest reliability of an external perturbation test of balance in stroke subjects. Arch Phys Med Rehabil. 1995;76:317–23. doi: 10.1016/S0003-9993(95)80656-3.
    1. Lakhani B, Mansfield A, Inness EL, McIlroy WE. Compensatory stepping responses in individuals with stroke: a pilot study. Physiother Theory Pract. 2011;27:299–309. doi: 10.3109/09593985.2010.501848.
    1. Mansfield A, Inness EL, Komar J, Biasin L, Brunton K, Lakhani B, et al. Training rapid stepping responses in an individual with stroke. Phys Ther. 2011;91:958–69. doi: 10.2522/ptj.20100212.
    1. Mansfield A, Inness EL, Lakhani B, McIlroy WE. Determinants of limb preference for initiating compensatory stepping post-stroke. Arch Phys Med Rehabil. 2012;93:1179–84. doi: 10.1016/j.apmr.2012.02.006.
    1. Mansfield A, Inness EL, Wong JS, Fraser JE, McIlroy WE. Is impaired control of reactive stepping related to falls during inpatient stroke rehabilitation? Neurorehabil Neural Repair. 2013;27:526–33. doi: 10.1177/1545968313478486.
    1. Inness EL, Mansfield A, Lakhani B, Biasin L, Brunton K, Fraser JE, et al. Prevalence of impaired compensatory stepping responses at discharge from stroke rehab. Stroke. 2011;42:e612.
    1. Wong JS, Inness EL, Biasin L, Brunton K, Fraser JE, Bayley M, et al. Impaired control of balance and gait predict fall risk post-discharge from in-patient stroke rehabilitation. Stroke. 2013;44:e223.
    1. Mansfield A, Wong JS, McIlroy WE, Biasin L, Brunton K, Bayley M, Inness EL. Do measures of reactive balance control predict falls in people with stroke returning to the community? Physiotherapy. 2015. doi:10.1016/j.physio.2015.01.009
    1. Sherrington C, Whitney JC, Lord SR, Herbert RD, Cumming RG, Close JCT. Effective exercise for the prevention of falls: a systematic review and meta-analysis. J Am Geriatr Soc. 2008;56:2234–43. doi: 10.1111/j.1532-5415.2008.02014.x.
    1. Batchelor F, Hill K, Mackintosh S, Said C. What works in falls prevention after stroke? a systematic review and meta-analysis. Stroke. 2010;41:1715–22. doi: 10.1161/STROKEAHA.109.570390.
    1. Verheyden GS, Weerdesteyn V, Pickering RM, Kunkel D, Lennon S, Geurts AC, et al. Interventions for preventing falls in people after stroke. Cochrane Database Syst Rev. 2013;31:CD008728.
    1. Mansfield A, Peters AL, Liu BA, Maki BE. A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial. BMC Geriatr. 2007;7:12. doi: 10.1186/1471-2318-7-12.
    1. Mansfield A, Peters AL, Liu BA, Maki BE. Effect of a perturbation-based balance-training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial. Phys Ther. 2010;90:476–91. doi: 10.2522/ptj.20090070.
    1. Rogers MW, Johnson ME, Martinez KM, Mille M-L, Hedman LD. Step training improves the speed of voluntary step initiation in aging. J Gerontol A Biol Sci Med Sci. 2003;58A:46–51. doi: 10.1093/gerona/58.1.M46.
    1. Mansfield A, Peters AL, Liu BA, Maki BE. Training stepping and grasping reaction time as part of a falls prevention program. Med Sci Sports Exerc. 2005;37:S74.
    1. Mansfield A, Wong JS, Bryce J, Knorr S, Patterson KK. Does perturbation-based balance training prevent falls? A review and meta-analysis of preliminary randomized controlled trials. Phys Ther. 2014. doi:10.2522/ptj.20140090
    1. Thomas S, Reading J, Shephard RI. Revision of the Physical Activity Readiness Questionnaire (PAR-Q) Can J Sport Sci. 1992;174:338–45.
    1. Inness EL, Mansfield A, Biasin L, Brunton K, Bayley M, McIlroy WE. Clinical implementation of a reactive balance control assessment in a sub-acute stroke patient population using a ‘lean-and-release’ methodology. Gait Posture. 2015;41:529–34. doi: 10.1016/j.gaitpost.2014.12.005.
    1. Kernan WN, Viscoli CM, Makuch RW, Brass LM, Horwitz RI. Stratified randomization for clinical trials. J Clin Epidemiol. 1999;52:19–26. doi: 10.1016/S0895-4356(98)00138-3.
    1. McEntegart DJ. The pursuit of balance using stratified and dynamic randomization techniques: an overview. Drug Inf J. 2003;37:293–308. doi: 10.1177/009286150303700305.
    1. van Duijnhoven HJR, De Kam D, Hellebrand W, Smulders E, Geurts ACH, Weerdesteyn V. Development and process evaluation of a 5-week exercise program to prevent falls in people after stroke: the FALLS program. Stroke Res Treat. 2012;2012:407693.
    1. Bhatt T, Yang F, Pai Y-C. Learning to resist gait-slip falls: long-term retention in community-dwelling older adults. Arch Phys Med Rehabil. 2012;93:557–64. doi: 10.1016/j.apmr.2011.10.027.
    1. Jöbges M, Heuschkel G, Pretzel C, Illhardt C, Renner C, Hummelsheim H. Repetitive training of compensatory steps: a therapeutic approach for postural instability in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75:1682–7. doi: 10.1136/jnnp.2003.016550.
    1. Maki BE, Cheng KC-C, Mansfield A, Scovil CY, Perry SD, Peters AL, et al. Preventing falls in older adults: new interventions to promote more effective change-in-support balance reactions. J Electromyogr Kinesiol. 2008;18:243–54. doi: 10.1016/j.jelekin.2007.06.005.
    1. Community-based exercise for people living with stroke. [].
    1. Dean CM, Richards CL, Malouin F. Task-related circuit training improves performance of locomotor tasks in chronic stroke: a randomized controlled pilot trial. Arch Phys Med Rehabil. 2000;81:409–17. doi: 10.1053/mr.2000.3839.
    1. Eng JJ, Chu KS, Kim CM, Dawson AS, Carswell A, Hepburn KE. A community-based group exericse program for persons with chronic stroke. Med Sci Sports Exerc. 2003;35:1271–8. doi: 10.1249/01.MSS.0000079079.58477.0B.
    1. Salbach NM, Mayo NE, Wood-Dauphinee S, Hanley JA, Richards CL, Côté R. A task-oriented intervention enhances walking distance and speed in the first year post stroke: a randomized controlled trial. Clin Rehabil. 2004;18:509–19. doi: 10.1191/0269215504cr763oa.
    1. Pang MYC, Eng JJ, Dawson AS. Relationship between ambulatory capacity and cardiorespiratory fitness in chronic stroke: influence of stroke-specific impairments. Chest. 2005;127:495–501. doi: 10.1378/chest.127.2.495.
    1. Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice. 3. Philadelphia: Lippincott Williams & Wilkins; 2007.
    1. Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, et al. Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke. 1993;24:58–63. doi: 10.1161/01.STR.24.1.58.
    1. Goldstein LB, Bertels C, Davis JN. Interrater reliability of the NIH stroke scale. Arch Neurol. 1989;46:660–2. doi: 10.1001/archneur.1989.00520420080026.
    1. Kasner SE. Clinical interpretation and use of stroke scales. Lancet Neurol. 2006;5:603–12. doi: 10.1016/S1474-4422(06)70495-1.
    1. Lamb SE, Jørstad-Stein EC, Hauer K, Becker C. Development of a common outcome data set for fall injury prevention trials: The Prevention of Falls Network Europe consensus. J Am Geriatr Soc. 2005;53:1618–22. doi: 10.1111/j.1532-5415.2005.53455.x.
    1. Studenski S, Duncan PW, Chandler J, Samsa G, Prescott B, Hogue C, et al. Predicting falls: the role of mobility and nonphysical factors. J Am Geriatr Soc. 1994;42:297–302. doi: 10.1111/j.1532-5415.1994.tb01755.x.
    1. Kerse N, Parag V, Feigin VL, McNaughton H, Hackett ML, Bennett DA, et al. Falls after stroke: results from the Auckland Regional Community Stroke (ARCOS) study, 2002 to 2003. Stroke. 2008;39:1890–3. doi: 10.1161/STROKEAHA.107.509885.
    1. O’Loughlin JL, Robitaille Y, Boivin J-F, Suissa S. Incidence of and risk factors for falls and injurious falls among the community-dwelling elderly. Am J Epidemiol. 1993;137:342–54.
    1. Myers AH, Baker SP, van Natta ML, Abbey H, Robinson EG. Risk factors associated with falls and injuries among elderly institutionalized persons. Am J Epidemiol. 1991;133:1179–90.
    1. Stegman MR. Falls among elderly hypertensives - are they Iatrogenic? Gerontology. 1983;29:399–406. doi: 10.1159/000213151.
    1. Luukinen H, Koski K, Laippala P, Kivela S-L. Risk factors for recurrent falls in the elderly in long-term institutional care. Public Health. 1995;109:57–65. doi: 10.1016/S0033-3506(95)80076-X.
    1. Ebrahim S, Thompson PW, Baskaran V, Evans K. Randomized placebo-controlled trial of brisk walking in the prevention of postmenopausal osteoporosis. Age Ageing. 1997;26:253–60. doi: 10.1093/ageing/26.4.253.
    1. Yates JS, Lai SM, Duncan PW, Studenski S. Falls in community-dwelling stroke survivors: an accumulated impairments model. J Rehabil Res Dev. 2002;39:385–94.
    1. Melton LJ, Brown RD, Achenbach SJ, O’Fallon WM, Whisnant JP. Long-term fracture risk following ischmic stroke: a population-based study. Osteoporos Int. 2001;12:980–6. doi: 10.1007/s001980170028.
    1. Rubenstein LZ, Josephson KR, Trueblood PR, Loy S, Harker JO, Pietruszka FM, et al. Effects of a group exercise program on strength, mobility, and falls among fall-prone elderly men. J Gerontol A Biol Sci Med Sci. 2000;55A:M317–21. doi: 10.1093/gerona/55.6.M317.
    1. Washburn RA, Zhu W, McAuley E, Frogley M, Figoni SF. The physical activity scale for individuals with physical disabilities: development and evaluation. Arch Phys Med Rehabil. 2002;83:193–200. doi: 10.1053/apmr.2002.27467.
    1. Trigg R, Wood VA. The Subjective Index of Physical and Societl Outcome (SIPSO): a new measure for use with stroke patients. Clin Rehabil. 2000;14:288–99. doi: 10.1191/026921500678119607.
    1. van der Ploeg HP, Streppel KR, van der Beek AJ, van der Woude LH, Vollenbroek-Hutten M, van Mechelen W. The physical activity scale for individuals with physical disabilities: test-retest reliability and comparison with an accelerometer. J Phys Act Health. 2007;4:96–100.
    1. Berg K, Wood-Dauphinée S, Williams JI, Gayton D. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can. 1989;41:304–11. doi: 10.3138/ptc.41.6.304.
    1. Frachignoni F, Horak F, Godi M, Nardone A, Giordani A. Using psychometric techniques to improve the balance evaulation systems test: the mini-BES test. J Rehabil Med. 2010;42:323–31. doi: 10.2340/16501977-0537.
    1. Podsiadlo D, Richardson S. The Timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. Blum L, Korner-Bitensky N. Usefulness of the Berg balance scale in stroke rehabilitation: a systematic review. Phys Ther. 2008;88:559–66. doi: 10.2522/ptj.20070205.
    1. Tsang CSL, Liao L-R, Chung RCK, Pang MYC. Psychometric properties of the mini-Balance Evaluation Systems test (mini-BES test) in community-dwelling individuals with chronic stroke. Phys Ther. 2013;93:1102–15. doi: 10.2522/ptj.20120454.
    1. Shumway-Cook A, Brauer S, Woollacott MH. Predicting the probability for falls in community-dwelling older adults using the timed up & go test. Phys Ther. 2000;80:896–903.
    1. Gunter KB, White KN, Hayes WC, Snow CM. Functional mobility discriminates nonfallers from one-time and frequent fallers. J Gerontol. 2000;55A:M672–6. doi: 10.1093/gerona/55.11.M672.
    1. Whitney JC, Lord SR, Close JCT. Streamlining assessment and intervention in a falls clinic using the timed up and go test and physiological profile assessments. Age Ageing. 2005;34:567–71. doi: 10.1093/ageing/afi178.
    1. Ng SS, Hui-Chan CW. The timed up & go test: it reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke. Arch Phys Med Rehabil. 2005;86:1641–7. doi: 10.1016/j.apmr.2005.01.011.
    1. Powell LE, Myers AM. The Activities-specific Balance Confidence (ABC) Scale. J Gerontol A Biol Sci Med Sci. 1995;50A:M28–34. doi: 10.1093/gerona/50A.1.M28.
    1. Botner EM, Miller WC, Eng JJ. Measurement properties of the Activities-specific Balance Confidence Scale among individuals with stroke. Disabil Rehabil. 2005;27:156–63. doi: 10.1080/09638280400008982.
    1. Tang Y. Sample size estimation for negative binomial regression comparing rates of recurrent events with unequal follow-up time. J Biopharm Stat. 2014. doi:10.1080/10543406.2014.971167
    1. Marigold DS, Eng JJ, Dawson AS, Inglis JT, Harris JE, Gylfadóttir S. Exercise leads to faster postural reflexes, improved balance and mobility, and fewer falls in older persons with chronic stroke. J Am Geriatr Soc. 2005;53:416–23. doi: 10.1111/j.1532-5415.2005.53158.x.

Source: PubMed

Подписаться