Associations between Fasting Duration, Timing of First and Last Meal, and Cardiometabolic Endpoints in the National Health and Nutrition Examination Survey

Michael D Wirth, Longgang Zhao, Gabrielle M Turner-McGrievy, Andrew Ortaglia, Michael D Wirth, Longgang Zhao, Gabrielle M Turner-McGrievy, Andrew Ortaglia

Abstract

Background: Research indicates potential cardiometabolic benefits of energy consumption earlier in the day. This study examined the association between fasting duration, timing of first and last meals, and cardiometabolic endpoints using data from the National Health and Nutrition Examination Survey (NHANES).

Methods: Cross-sectional data from NHANES (2005-2016) were utilized. Diet was obtained from one to two 24-h dietary recalls to characterize nighttime fasting duration and timing of first and last meal. Blood samples were obtained for characterization of C-reactive protein (CRP); glycosylated hemoglobin (HbA1c %); insulin; glucose; and high-density lipoprotein (HDL), low-density lipoprotein (LDL), and total cholesterol. Survey design procedures for adjusted linear and logistic regression were performed.

Results: Every one-hour increase in nighttime fasting duration was associated with a significantly higher insulin and CRP, and lower HDL. Every one-hour increase in timing of the last meal of the day was statistically significantly associated with higher HbA1c and lower LDL. Every one-hour increase in first mealtime was associated with higher CRP (β = 0.044, p = 0.0106), insulin (β = 0.429, p < 0.01), and glucose (β = 0.662, p < 0.01), and lower HDL (β = -0.377, p < 0.01).

Conclusion: In this large public health dataset, evidence for the beneficial effect of starting energy consumption earlier in the day on cardiometabolic endpoints was observed.

Keywords: NHANES; chrononutrition; fasting; inflammation; metabolism.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Ahluwalia N., Andreeva V.A., Kesse-Guyot E., Hercberg S. Dietary patterns, inflammation and the metabolic syndrome. Diabetes Metab. 2013;39:99–110. doi: 10.1016/j.diabet.2012.08.007.
    1. Ruiz-Canela M., Bes-Rastrollo M., Martinez-Gonzalez M.A. The Role of Dietary Inflammatory Index in Cardiovascular Disease, Metabolic Syndrome and Mortality. Int. J. Mol. Sci. 2016;17:1256. doi: 10.3390/ijms17081265.
    1. Nettleton J.A., Hivert M.F., Lemaitre R.N., McKeown N.M., Mozaffarian D., Tanaka T., Wojczynski M.K., Hruby A., Djousse L., Ngwa J.S., et al. Meta-analysis investigating associations between healthy diet and fasting glucose and insulin levels and modification by loci associated with glucose homeostasis in data from 15 cohorts. Am. J. Epidemiol. 2013;177:103–115. doi: 10.1093/aje/kws297.
    1. Mensah G.A., Brown A.G.M., Pratt C.A. Nutrition Disparities and Cardiovascular Health. Curr. Atheroscler. Rep. 2020;22:15. doi: 10.1007/s11883-020-0833-3.
    1. Wing R.R., Phelan S. Long-term weight loss maintenance. Am. J. Clin. Nutr. 2005;82:222S–225S. doi: 10.1093/ajcn/82.1.222S.
    1. Wing R.R., Hill J.O. Successful weight loss maintenance. Annu. Rev. Nutr. 2001;21:323–341. doi: 10.1146/annurev.nutr.21.1.323.
    1. Hales C.M., Fryar C.D., Carroll M.D., Freedman D.S., Ogden C.L. Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007–2008 to 2015–2016. JAMA. 2018;319:1723–1725. doi: 10.1001/jama.2018.3060.
    1. Gruss S.M., Nhim K., Gregg E., Bell M., Luman E., Albright A. Public Health Approaches to Type 2 Diabetes Prevention: The US National Diabetes Prevention Program and Beyond. Curr. Diabetes Rep. 2019;19:78. doi: 10.1007/s11892-019-1200-z.
    1. USDA HEI Scores for Americans. [(accessed on 17 May 2021)]; Available online: .
    1. Bowen D.J., Beresford S.A. Dietary interventions to prevent disease. Annu. Rev. Public Health. 2002;23:255–286. doi: 10.1146/annurev.publhealth.23.100901.140555.
    1. Artinian N.T., Fletcher G.F., Mozaffarian D., Kris-Etherton P., Van Horn L., Lichtenstein A.H., Kumanyika S., Kraus W.E., Fleg J.L., Redeker N.S. Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults. A scientific statement from the American Heart Association. Circulation. 2010;122:406–441. doi: 10.1161/CIR.0b013e3181e8edf1.
    1. Rolls B.J., Ello-Martin J.A., Tohill B.C. What can intervention studies tell us about the relationship between fruit and vegetable consumption and weight management? Nutr. Rev. 2004;62:1–17. doi: 10.1111/j.1753-4887.2004.tb00001.x.
    1. Most J., Tosti V., Redman L.M., Fontana L. Calorie restriction in humans: An update. Ageing Res. Rev. 2017;39:36–45. doi: 10.1016/j.arr.2016.08.005.
    1. Curioni C., Lourenco P. Long-term weight loss after diet and exercise: A systematic review. Int. J. Obes. 2005;29:1168. doi: 10.1038/sj.ijo.0803015.
    1. Wadden T.A. Treatment of obesity by moderate and severe caloric restriction: Results of clinical research trials. Ann. Intern. Med. 1993;119:688–693. doi: 10.7326/0003-4819-119-7_Part_2-199310011-00012.
    1. Sumithran P., Prendergast L.A., Delbridge E., Purcell K., Shulkes A., Kriketos A., Proietto J. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 2011;365:1597–1604. doi: 10.1056/NEJMoa1105816.
    1. Chaput J.P., Drapeau V., Hetherington M., Lemieux S., Provencher V., Tremblay A. Psychobiological effects observed in obese men experiencing body weight loss plateau. Depress. Anxiety. 2007;24:518–521. doi: 10.1002/da.20264.
    1. Doucet E., Imbeault P., St-Pierre S., Almeras N., Mauriege P., Richard D., Tremblay A. Appetite after weight loss by energy restriction and a low-fat diet-exercise follow-up. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2000;24:906–914. doi: 10.1038/sj.ijo.0801251.
    1. Patterson R.E., Sears D.D. Metabolic Effects of Intermittent Fasting. Annu. Rev. Nutr. 2017;37:371–393. doi: 10.1146/annurev-nutr-071816-064634.
    1. Arble D.M., Bass J., Laposky A.D., Vitaterna M.H., Turek F.W. Circadian timing of food intake contributes to weight gain. Obesity. 2009;17:2100–2102. doi: 10.1038/oby.2009.264.
    1. Turek F.W., Joshu C., Kohsaka A., Lin E., Ivanova G., McDearmon E., Laposky A., Losee-Olson S., Easton A., Jensen D.R. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308:1043–1045. doi: 10.1126/science.1108750.
    1. Kohsaka A., Laposky A.D., Ramsey K.M., Estrada C., Joshu C., Kobayashi Y., Turek F.W., Bass J. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6:414–421. doi: 10.1016/j.cmet.2007.09.006.
    1. de Cabo R., Mattson M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019;381:2541–2551. doi: 10.1056/NEJMra1905136.
    1. Crupi A.N., Haase J., Brandhorst S., Longo V.D. Periodic and Intermittent Fasting in Diabetes and Cardiovascular Disease. Curr. Diabetes Rep. 2020;20:83. doi: 10.1007/s11892-020-01362-4.
    1. Fanti M., Mishra A., Longo V.D., Brandhorst S. Time-Restricted Eating, Intermittent Fasting, and Fasting-Mimicking Diets in Weight Loss. Curr. Obes. Rep. 2021;10:70–80. doi: 10.1007/s13679-021-00424-2.
    1. Pellegrini M., Cioffi I., Evangelista A., Ponzo V., Goitre I., Ciccone G., Ghigo E., Bo S. Effects of time-restricted feeding on body weight and metabolism. A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2020;21:17–33. doi: 10.1007/s11154-019-09524-w.
    1. Harder-Lauridsen N.M., Rosenberg A., Benatti F.B., Damm J.A., Thomsen C., Mortensen E.L., Pedersen B.K., Krogh-Madsen R. Ramadan model of intermittent fasting for 28 d had no major effect on body composition, glucose metabolism, or cognitive functions in healthy lean men. Nutrition. 2017;37:92–103. doi: 10.1016/j.nut.2016.12.015.
    1. Aliasghari F., Izadi A., Gargari B.P., Ebrahimi S. The Effects of Ramadan Fasting on Body Composition, Blood Pressure, Glucose Metabolism, and Markers of Inflammation in NAFLD Patients: An Observational Trial. J. Am. Coll. Nutr. 2017;36:640–645. doi: 10.1080/07315724.2017.1339644.
    1. Morgan L.M., Aspostolakou F., Wright J., Gama R. Diurnal variations in peripheral insulin resistance and plasma non-esterified fatty acid concentrations: A possible link? Ann. Clin. Biochem. 1999;36:447–450. doi: 10.1177/000456329903600407.
    1. Saad A., Dalla Man C., Nandy D.K., Levine J.A., Bharucha A.E., Rizza R.A., Basu R., Carter R.E., Cobelli C., Kudva Y.C., et al. Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes. 2012;61:2691–2700. doi: 10.2337/db11-1478.
    1. Marinac C.R., Nelson S.H., Breen C.I., Hartman S.J., Natarajan L., Pierce J.P., Flatt S.W., Sears D.D., Patterson R.E. Prolonged Nightly Fasting and Breast Cancer Prognosis. JAMA Oncol. 2016;2:1049–1055. doi: 10.1001/jamaoncol.2016.0164.
    1. Mindikoglu A.L., Abdulsada M.M., Jain A., Choi J.M., Jalal P.K., Devaraj S., Mezzari M.P., Petrosino J.F., Opekun A.R., Jung S.Y. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J. Proteom. 2020;217:103645. doi: 10.1016/j.jprot.2020.103645.
    1. McAllister M.J., Pigg B.L., Renteria L.I., Waldman H.S. Time-restricted feeding improves markers of cardiometabolic health in physically active college-age men: A 4-week randomized pre-post pilot study. Nutr. Res. 2020;75:32–43. doi: 10.1016/j.nutres.2019.12.001.
    1. Wilkinson M.J., Manoogian E.N.C., Zadourian A., Lo H., Fakhouri S., Shoghi A., Wang X., Fleischer J.G., Navlakha S., Panda S., et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020;31:92–104. doi: 10.1016/j.cmet.2019.11.004.
    1. Stekovic S., Hofer S.J., Tripolt N., Aon M.A., Royer P., Pein L., Stadler J.T., Pendl T., Prietl B., Url J., et al. Alternate Day Fasting Improves Physiological and Molecular Markers of Aging in Healthy, Non-obese Humans. Cell Metab. 2020;31:878–881. doi: 10.1016/j.cmet.2020.02.011.
    1. Welton S., Minty R., O’Driscoll T., Willms H., Poirier D., Madden S., Kelly L. Intermittent fasting and weight loss: Systematic review. Can. Fam. Physician. 2020;66:117–125.
    1. O’Connor S.G., Boyd P., Bailey C.P., Shams-White M.M., Agurs-Collins T., Hall K., Reedy J., Sauter E.R., Czajkowski S.M. Perspective: Time-Restricted Eating Compared with Caloric Restriction: Potential Facilitators and Barriers of Long-Term Weight Loss Maintenance. Adv. Nutr. 2021 doi: 10.1093/advances/nmaa168.
    1. Gill S., Panda S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab. 2015;22:789–798. doi: 10.1016/j.cmet.2015.09.005.
    1. Rynders C.A., Thomas E.A., Zaman A., Pan Z., Catenacci V.A., Melanson E.L. Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss. Nutrients. 2019;11:2442. doi: 10.3390/nu11102442.
    1. Templeman I., Smith H.A., Chowdhury E., Chen Y.C., Carroll H., Johnson-Bonson D., Hengist A., Smith R., Creighton J., Clayton D., et al. A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults. Sci. Transl. Med. 2021;13 doi: 10.1126/scitranslmed.abd8034.
    1. Centers for Disease Control and Prevention . National Health and Nutrition Examinations Survey Data. National Center for Health Statistics; Hyattsville, MD, USA: 2018.
    1. Moon J.H., Koo B.K., Moon M.K. Optimal high-density lipoprotein cholesterol cutoff for predicting cardiovascular disease: Comparison of the Korean and US National Health and Nutrition Examination Surveys. J. Clin. Lipidol. 2015;9:334–342. doi: 10.1016/j.jacl.2015.01.009.
    1. Nantsupawat N., Booncharoen A., Wisetborisut A., Jiraporncharoen W., Pinyopornpanish K., Chutarattanakul L., Angkurawaranon C. Appropriate Total cholesterol cut-offs for detection of abnormal LDL cholesterol and non-HDL cholesterol among low cardiovascular risk population. Lipids Health Dis. 2019;18:28. doi: 10.1186/s12944-019-0975-x.
    1. Salazar J., Martinez M.S., Chavez M., Toledo A., Anez R., Torres Y., Apruzzese V., Silva C., Rojas J., Bermudez V. C-reactive protein: Clinical and epidemiological perspectives. Cardiol. Res. Pract. 2014;2014:605810. doi: 10.1155/2014/605810.
    1. International Expert C. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009;32:1327–1334. doi: 10.2337/dc09-9033.
    1. Lee S., Choi S., Kim H.J., Chung Y.S., Lee K.W., Lee H.C., Huh K.B., Kim D.J. Cutoff values of surrogate measures of insulin resistance for metabolic syndrome in Korean non-diabetic adults. J. Korean Med. Sci. 2006;21:695–700. doi: 10.3346/jkms.2006.21.4.695.
    1. Moebus S., Gores L., Losch C., Jockel K.H. Impact of time since last caloric intake on blood glucose levels. Eur. J. Epidemiol. 2011;26:719–728. doi: 10.1007/s10654-011-9608-z.
    1. Hebert J.R., Shivappa N., Wirth M.D., Hussey J.R., Hurley T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019;10:185–195. doi: 10.1093/advances/nmy071.
    1. Kant A.K. Eating patterns of US adults: Meals, snacks, and time of eating. Physiol. Behav. 2018;193:270–278. doi: 10.1016/j.physbeh.2018.03.022.
    1. Marinac C.R., Sears D.D., Natarajan L., Gallo L.C., Breen C.I., Patterson R.E. Frequency and Circadian Timing of Eating May Influence Biomarkers of Inflammation and Insulin Resistance Associated with Breast Cancer Risk. PLoS ONE. 2015;10:e0136240. doi: 10.1371/journal.pone.0136240.
    1. Faris M.A., Kacimi S., Al-Kurd R.A., Fararjeh M.A., Bustanji Y.K., Mohammad M.K., Salem M.L. Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects. Nutr. Res. 2012;32:947–955. doi: 10.1016/j.nutres.2012.06.021.
    1. Jamshed H., Beyl R.A., Della Manna D.L., Yang E.S., Ravussin E., Peterson C.M. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients. 2019;11:1234. doi: 10.3390/nu11061234.
    1. Titan S.M., Bingham S., Welch A., Luben R., Oakes S., Day N., Khaw K.T. Frequency of eating and concentrations of serum cholesterol in the Norfolk population of the European prospective investigation into cancer (EPIC-Norfolk): Cross sectional study. BMJ. 2001;323:1286–1288. doi: 10.1136/bmj.323.7324.1286.
    1. Guinter M.A., Campbell P.T., Patel A.V., McCullough M.L. Irregularity in breakfast consumption and daily meal timing patterns in association with body weight status and inflammation. Br. J. Nutr. 2019;122:1192–1200. doi: 10.1017/S0007114519002125.
    1. Zhu S., Cui L., Zhang X., Shu R., VanEvery H., Tucker K.L., Wu S., Gao X. Habitually skipping breakfast was associated with chronic inflammation: A cross-sectional study. Public Health Nutr. 2020:1–8. doi: 10.1017/S1368980020001214.
    1. Maki K.C., Phillips-Eakley A.K., Smith K.N. The Effects of Breakfast Consumption and Composition on Metabolic Wellness with a Focus on Carbohydrate Metabolism. Adv. Nutr. 2016;7:613S–621S. doi: 10.3945/an.115.010314.
    1. Sutton E.F., Beyl R., Early K.S., Cefalu W.T., Ravussin E., Peterson C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018;27:1212–1221. doi: 10.1016/j.cmet.2018.04.010.
    1. Sonnier T., Rood J., Gimble J.M., Peterson C.M. Glycemic control is impaired in the evening in prediabetes through multiple diurnal rhythms. J. Diabetes Complicat. 2014;28:836–843. doi: 10.1016/j.jdiacomp.2014.04.001.
    1. Stafeev I.S., Vorotnikov A.V., Ratner E.I., Menshikov M.Y., Parfyonova Y.V. Latent Inflammation and Insulin Resistance in Adipose Tissue. Int. J. Endocrinol. 2017;2017:5076732. doi: 10.1155/2017/5076732.

Source: PubMed

Подписаться