Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge

Chao-Qiang Lai, Mary K Wojczynski, Laurence D Parnell, Bertha A Hidalgo, Marguerite Ryan Irvin, Stella Aslibekyan, Michael A Province, Devin M Absher, Donna K Arnett, José M Ordovás, Chao-Qiang Lai, Mary K Wojczynski, Laurence D Parnell, Bertha A Hidalgo, Marguerite Ryan Irvin, Stella Aslibekyan, Michael A Province, Devin M Absher, Donna K Arnett, José M Ordovás

Abstract

Postprandial lipemia (PPL), the increased plasma TG concentration after consuming a high-fat meal, is an independent risk factor for CVD. Individual responses to a meal high in fat vary greatly, depending on genetic and lifestyle factors. However, only a few loci have been associated with TG-PPL response. Heritable epigenomic changes may be significant contributors to the unexplained inter-individual PPL variability. We conducted an epigenome-wide association study on 979 subjects with DNA methylation measured from CD4+ T cells, who were challenged with a high-fat meal as a part of the Genetics of Lipid Lowering Drugs and Diet Network study. Eight methylation sites encompassing five genes, LPP, CPT1A, APOA5, SREBF1, and ABCG1, were significantly associated with PPL response at an epigenome-wide level (P < 1.1 × 10-7), but no methylation site reached epigenome-wide significance after adjusting for baseline TG levels. Higher methylation at LPP, APOA5, SREBF1, and ABCG1, and lower methylation at CPT1A methylation were correlated with an increased TG-PPL response. These PPL-associated methylation sites, also correlated with fasting TG, account for a substantially greater amount of phenotypic variance (14.9%) in PPL and fasting TG (16.3%) when compared with the genetic contribution of loci identified by our previous genome-wide association study (4.5%). In summary, the epigenome is a large contributor to the variation in PPL, and this has the potential to be used to modulate PPL and reduce CVD.

Keywords: DNA methylation; apolipoproteins; atherosclerosis; diet and dietary lipids; dietary fat; lipoproteins; postprandial lipemia; triglycerides.

Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

Figures

Fig. 1.
Fig. 1.
Distribution of P values [−log10(P value)] from the epigenome-wide association analysis with AUC phenotype (n = 979). Eight CpG sites reached epigenome-wide significance P < 1.1 × 10−7 (above the dashed line).
Fig. 2.
Fig. 2.
Integrated regional overlap of EWAS signals (open squares) and GWAS signals (solid circles) at the APOA5. The x-axis displays the physical position of CpG sites and SNPs within 50 kb upstream and downstream of the EWAS signal of cg12556569 at APOA5; the y-axis displays −log10(P value) of the association.

References

    1. Patsch W., Esterbauer H., Foger B., and Patsch J. R.. 2000. Postprandial lipemia and coronary risk. Curr. Atheroscler. Rep. 2: 232–242.
    1. Zilversmit D. B. 1979. Atherogenesis: a postprandial phenomenon. Circulation. 60: 473–485.
    1. Pirillo A., Norata G. D., and Catapano A. L.. 2014. Postprandial lipemia as a cardiometabolic risk factor. Curr. Med. Res. Opin. 30: 1489–1503.
    1. Sarwar N., Danesh J., Eiriksdottir G., Sigurdsson G., Wareham N., Bingham S., Boekholdt S. M., Khaw K. T., and Gudnason V.. 2007. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. 115: 450–458.
    1. Nordestgaard B. G., Benn M., Schnohr P., and Tybjaerg-Hansen A.. 2007. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 298: 299–308.
    1. Bansal S., Buring J. E., Rifai N., Mora S., Sacks F. M., and Ridker P. M.. 2007. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 298: 309–316.
    1. Stalenhoef A. F., and de Graaf J.. 2008. Association of fasting and nonfasting serum triglycerides with cardiovascular disease and the role of remnant-like lipoproteins and small dense LDL. Curr. Opin. Lipidol. 19: 355–361.
    1. Teslovich T. M., Musunuru K., Smith A. V., Edmondson A. C., Stylianou I. M., Koseki M., Pirruccello J. P., Ripatti S., Chasman D. I., Willer C. J., et al. . 2010. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 466: 707–713.
    1. Lewis G. F., Xiao C., and Hegele R. A.. 2015. Hypertriglyceridemia in the genomic era: a new paradigm. Endocr. Rev. 36: 131–147.
    1. Wojczynski M. K., Parnell L. D., Pollin T. I., Lai C. Q., Feitosa M. F., O’Connell J. R., Frazier-Wood A. C., Gibson Q., Aslibekyan S., Ryan K. A., et al. . 2015. Genome-wide association study of triglyceride response to a high-fat meal among participants of the NHLBI Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). Metabolism. 64: 1359–1371.
    1. Pollin T. I., Damcott C. M., Shen H., Ott S. H., Shelton J., Horenstein R. B., Post W., McLenithan J. C., Bielak L. F., Peyser P. A., et al. . 2008. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science. 322: 1702–1705.
    1. Lai C. Q., Arnett D. K., Corella D., Straka R. J., Tsai M. Y., Peacock J. M., Adiconis X., Parnell L. D., Hixson J. E., Province M. A., et al. . 2007. Fenofibrate effect on triglyceride and postprandial response of apolipoprotein A5 variants: the GOLDN study. Arterioscler. Thromb. Vasc. Biol. 27: 1417–1425.
    1. Ordovas J. M. 2001. Genetics, postprandial lipemia and obesity. Nutr. Metab. Cardiovasc. Dis. 11: 118–133.
    1. Tammen S. A., Friso S., and Choi S. W.. 2013. Epigenetics: the link between nature and nurture. Mol. Aspects Med. 34: 753–764.
    1. Huypens P., Sass S., Wu M., Dyckhoff D., Tschop M., Theis F., Marschall S., de Angelis M. H., and Beckers J.. 2016. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat. Genet. 48: 497–499.
    1. Sabet J. A., Park L. K., Iyer L. K., Tai A. K., Koh G. Y., Pfalzer A. C., Parnell L. D., Mason J. B., Liu Z., Byun A. J., et al. . 2016. Paternal B vitamin intake is a determinant of growth, hepatic lipid metabolism and intestinal tumor volume in female Apc1638N mouse offspring. PLoS One. 11: e0151579.
    1. Ling C., and Groop L.. 2009. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes. 58: 2718–2725.
    1. Anderson O. S., Sant K. E., and Dolinoy D. C.. 2012. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 23: 853–859.
    1. Smith C. E., Arnett D. K., Tsai M. Y., Lai C. Q., Parnell L. D., Shen J., Laclaustra M., Junyent M., and Ordovas J. M.. 2009. Physical inactivity interacts with an endothelial lipase polymorphism to modulate high density lipoprotein cholesterol in the GOLDN study. Atherosclerosis. 206: 500–504.
    1. Cohn J. S. 2006. Postprandial lipemia and remnant lipoproteins. Clin. Lab. Med. 26: 773–786.
    1. Aslibekyan S., Demerath E. W., Mendelson M., Zhi D., Guan W., Liang L., Sha J., Pankow J. S., Liu C., Irvin M. R., et al. . 2015. Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring). 23: 1493–1501.
    1. Irvin M. R., Zhi D., Joehanes R., Mendelson M., Aslibekyan S., Claas S. A., Thibeault K. S., Patel N., Day K., Jones L. W., et al. . 2014. Epigenome-wide association study of fasting blood lipids in the Genetics of Lipid-lowering Drugs and Diet Network study. Circulation. 130: 565–572.
    1. Absher D. M., Li X., Waite L. L., Gibson A., Roberts K., Edberg J., Chatham W. W., and Kimberly R. P.. 2013. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet. 9: e1003678.
    1. Chen C., Grennan K., Badner J., Zhang D., Gershon E., Jin L., and Liu C.. 2011. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS One. 6: e17238.
    1. Hidalgo B., Irvin M. R., Sha J., Zhi D., Aslibekyan S., Absher D., Tiwari H. K., Kabagambe E. K., Ordovas J. M., and Arnett D. K.. 2014. Epigenome-wide association study of fasting measures of glucose, insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network study. Diabetes. 63: 801–807.
    1. Aslibekyan S., Kabagambe E. K., Irvin M. R., Straka R. J., Borecki I. B., Tiwari H. K., Tsai M. Y., Hopkins P. N., Shen J., Lai C. Q., et al. . 2012. A genome-wide association study of inflammatory biomarker changes in response to fenofibrate treatment in the Genetics of Lipid Lowering Drug and Diet Network. Pharmacogenet. Genomics. 22: 191–197.
    1. Kraja A. T., Borecki I. B., Tsai M. Y., Ordovas J. M., Hopkins P. N., Lai C. Q., Frazier-Wood A. C., Straka R. J., Hixson J. E., Province M. A., et al. . 2013. Genetic analysis of 16 NMR-lipoprotein fractions in humans, the GOLDN study. Lipids. 48: 155–165.
    1. Kang H. M., Sul J. H., Service S. K., Zaitlen N. A., Kong S. Y., Freimer N. B., Sabatti C., and Eskin E.. 2010. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42: 348–354.
    1. Wright S. 1922. Coefficients of inbreeding and relationship. Am. Nat. 56: 330–338.
    1. Welter D., MacArthur J., Morales J., Burdett T., Hall P., Junkins H., Klemm A., Flicek P., Manolio T., Hindorff L., et al. . 2014. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42: D1001–D1006.
    1. Parnell L. D., Blokker B. A., Dashti H. S., Nesbeth P. D., Cooper B. E., Ma Y., Lee Y. C., Hou R., Lai C. Q., Richardson K., et al. . 2014. CardioGxE, a catalog of gene-environment interactions for cardiometabolic traits. BioData Min. 7: 21.
    1. Pfeiffer L., Wahl S., Pilling L. C., Reischl E., Sandling J. K., Kunze S., Holdt L. M., Kretschmer A., Schramm K., Adamski J., et al. . 2015. DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc Genet. 8: 334–342.
    1. Frazier-Wood A. C., Aslibekyan S., Absher D. M., Hopkins P. N., Sha J., Tsai M. Y., Tiwari H. K., Waite L. L., Zhi D., and Arnett D. K.. 2014. Methylation at CPT1A locus is associated with lipoprotein subfraction profiles. J. Lipid Res. 55: 1324–1330.
    1. Das M., Sha J., Hidalgo B., Aslibekyan S., Do A. N., Zhi D., Sun D., Zhang T., Li S., Chen W., et al. . 2016. Association of DNA methylation at CPT1A locus with metabolic syndrome in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study. PLoS One. 11: e0145789.
    1. Demerath E. W., Guan W., Grove M. L., Aslibekyan S., Mendelson M., Zhou Y. H., Hedman A. K., Sandling J. K., Li L. A., Irvin M. R., et al. . 2015. Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum. Mol. Genet. 24: 4464–4479.
    1. Zhi D., Aslibekyan S., Irvin M. R., Claas S. A., Borecki I. B., Ordovas J. M., Absher D. M., and Arnett D. K.. 2013. SNPs located at CpG sites modulate genome-epigenome interaction. Epigenetics. 8: 802–806.
    1. Bouchard-Mercier A., Rudkowska I., Lemieux S., Couture P., Perusse L., and Vohl M. C.. 2014. SREBF1 gene variations modulate insulin sensitivity in response to a fish oil supplementation. Lipids Health Dis. 13: 152.
    1. Arner P., Sinha I., Thorell A., Ryden M., Dahlman-Wright K., and Dahlman I.. 2015. The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women. Clin. Epigenetics. 7: 93.
    1. Wong A. T., Chan D. C., Pang J., Watts G. F., and Barrett P. H.. 2014. Plasma apolipoprotein B-48 transport in obese men: a new tracer kinetic study in the postprandial state. J. Clin. Endocrinol. Metab. 99: E122–E126.
    1. Sahade V., Franca S., Badaro R., and Fernando Adan L.. 2012. Obesity and postprandial lipemia in adolescents: risk factors for cardiovascular disease. Endocrinol. Nutr. 59: 131–139.
    1. Lai C. Q., Demissie S., Cupples L. A., Zhu Y., Adiconis X., Parnell L. D., Corella D., and Ordovas J. M.. 2004. Influence of the APOA5 locus on plasma triglyceride, lipoprotein subclasses, and CVD risk in the Framingham Heart Study. J. Lipid Res. 45: 2096–2105.
    1. Palmen J., Smith A. J., Dorfmeister B., Putt W., Humphries S. E., and Talmud P. J.. 2008. The functional interaction on in vitro gene expression of APOA5 SNPs, defining haplotype APOA52, and their paradoxical association with plasma triglyceride but not plasma apoAV levels. Biochim. Biophys. Acta. 1782: 447–452.
    1. Guay S. P., Brisson D., Lamarche B., Gaudet D., and Bouchard L.. 2014. Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia. Epigenetics. 9: 718–729.
    1. Yokoyama C., Wang X., Briggs M. R., Admon A., Wu J., Hua X., Goldstein J. L., and Brown M. S.. 1993. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 75: 187–197.
    1. Vickers K. C., Rye K. A., and Tabet F.. 2014. MicroRNAs in the onset and development of cardiovascular disease. Clin. Sci. (Lond.). 126: 183–194.
    1. Smolle E., and Haybaeck J.. 2014. Non-coding RNAs and lipid metabolism. Int. J. Mol. Sci. 15: 13494–13513.
    1. Najafi-Shoushtari S. H., Kristo F., Li Y., Shioda T., Cohen D. E., Gerszten R. E., and Naar A. M.. 2010. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 328: 1566–1569.
    1. Dávalos A., Goedeke L., Smibert P., Ramírez C. M., Warrier N. P., Andreo U., Cirera-Salinas D., Rayner K., Suresh U., Pastor-Pareja J. C., et al. . 2011. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. USA. 108: 9232–9237.
    1. Zhang Z., Gong R. R., Du J., Xiao L. Y., Duan W., Zhou X. D., and Fang D. Z.. 2011. Associations of the SREBP-1c gene polymorphism with gender-specific changes in serum lipids induced by a high-carbohydrate diet in healthy Chinese youth. Appl. Physiol. Nutr. Metab. 36: 226–232.
    1. Marquart T. J., Allen R. M., Ory D. S., and Baldan A.. 2010. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci. USA. 107: 12228–12232.
    1. Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consor­tium; Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; Mexican American Type 2 Diabetes (MAT2D) Consor­tium; Type 2 Diabetes Genetic Exploration by Nex-generation Sequenc­ing in Multi-ethnic Samples (T2D-GENES) Consortium; Mahajan A., Go M. J., Zhang W., Below J. E., Gaulton K. J., et al. . 2014. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46: 234–244.
    1. Palmer N. D., Goodarzi M. O., Langefeld C. D., Wang N., Guo X., Taylor K. D., Fingerlin T. E., Norris J. M., Buchanan T. A., Xiang A. H., et al. . 2015. Genetic variants associated with quantitative glucose homeostasis traits translate to type 2 diabetes in Mexican Americans: The GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium. Diabetes. 64: 1853–1866.
    1. Johansson A., Marroni F., Hayward C., Franklin C. S., Kirichenko A. V., Jonasson I., Hicks A. A., Vitart V., Isaacs A., Axenovich T., et al. . 2010. Linkage and genome-wide association analysis of obesity-related phenotypes: association of weight with the MGAT1 gene. Obesity (Silver Spring). 18: 803–808.
    1. Ali O., Cerjak D., Kent J. W. Jr., James R., Blangero J., Carless M. A., and Zhang Y.. 2015. An epigenetic map of age-associated autosomal loci in northern European families at high risk for the metabolic syndrome. Clin. Epigenetics. 7: 12.
    1. Jiao H., Wang K., Yang F., Grant S. F., Hakonarson H., Price R. A., and Li W. D.. 2015. Pathway-based genome-wide association studies for plasma triglycerides in obese females and normal-weight controls. PLoS One. 10: e0134923.
    1. Parnell L. D., Lee Y. C., and Lai C. Q.. 2010. Adaptive genetic variation and heart disease risk. Curr. Opin. Lipidol. 21: 116–122.
    1. Lewis G. F., O’Meara N. M., Soltys P. A., Blackman J. D., Iverius P. H., Druetzler A. F., Getz G. S., and Polonsky K. S.. 1990. Postprandial lipoprotein metabolism in normal and obese subjects: comparison after the vitamin A fat-loading test. J. Clin. Endocrinol. Metab. 71: 1041–1050.
    1. Tiihonen K., Rautonen N., Alhoniemi E., Ahotupa M., Stowell J., and Vasankari T.. 2015. Postprandial triglyceride response in normolipidemic, hyperlipidemic and obese subjects - the influence of polydextrose, a non-digestible carbohydrate. Nutr. J. 14: 23.
    1. Manolio T. A., Collins F. S., Cox N. J., Goldstein D. B., Hindorff L. A., Hunter D. J., McCarthy M. I., Ramos E. M., Cardon L. R., Chakravarti A., et al. . 2009. Finding the missing heritability of complex diseases. Nature. 461: 747–753.
    1. Dekkers K. F., van Iterson M., Slieker R. C., Moed M. H., Bonder M. J., van Galen M., Mei H., Zhernakova D. V., van den Berg L. H., Deelen J., et al. . 2016. Blood lipids influence DNA methylation in circulating cells. Genome Biol. 17: 138.
    1. Bacos K., Gillberg L., Volkov P., Olsson A. H., Hansen T., Pedersen O., Gjesing A. P., Eiberg H., Tuomi T., Almgren P., et al. . 2016. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat. Commun. 7: 11089.

Source: PubMed

Подписаться