Evaluation of Red Cell Distribution Width to Lymphocyte Ratio as Potential Biomarker for Detection of Colorectal Cancer

Jiahao Huang, Yang Zhao, Lin Liao, Shun Liu, Shaolong Lu, Changtao Wu, Chuanyi Wei, Shaoqiang Xu, Huage Zhong, Junjie Liu, Yun Guo, Sen Zhang, Feng Gao, Weizhong Tang, Jiahao Huang, Yang Zhao, Lin Liao, Shun Liu, Shaolong Lu, Changtao Wu, Chuanyi Wei, Shaoqiang Xu, Huage Zhong, Junjie Liu, Yun Guo, Sen Zhang, Feng Gao, Weizhong Tang

Abstract

Background and aim: Colorectal cancer (CRC) is the third most lethal cancer globally. This study sought to determine the feasibility of using red cell distribution width-to-lymphocyte ratio (RLR) as a tool to facilitate CRC detection.

Methods: Seventy-eight healthy controls, 162 patients diagnosed with CRC, and 94 patients with colorectal polyps (CP) from June 2017 to October 2018 were retrospectively reviewed. Clinical data were obtained to analyze preoperative RLR level, and receiver operating characteristic (ROC) curve analysis was performed to estimate the potential role of RLR as a CRC biomarker.

Results: RLR was higher in patients with CRC than in healthy participants (P < 0.05). ROC analysis indicated that combined detection of RLR and CEA appears to be a more effective marker to distinguish among controls, CP, and CRC patients, yielding 56% sensitivity and 90% specificity. RLR levels were significantly greater in those who had more advanced TNM stages (P < 0.05) and patients with distant metastasis stages (P < 0.05).

Conclusions: RLR might serve as a potential biomarker for CRC diagnosis.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Figures

Figure 1
Figure 1
The levels of RDW (a), L (b), and RLR (c) were determined by hematology analyzer in CRC patients (N = 162), CP patients (N = 92), and healthy controls (N = 78). Data are presented as means ± SEM. ∗∗P < 0.05.
Figure 2
Figure 2
Receiver operating characteristics (ROC) curve analysis of the diagnostic performance of RLR in comparison to CEA and CA19-9. (a) ROC curves of RLR, CEA, and CA19-9 alone for discriminating CRC patients. (b) ROC curves of CEA + RLR, CA19-9 + RLR, and CEA + CA19-9 for discriminating CRC patients.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68(6):394–424. doi: 10.3322/caac.21492.
    1. Chen W. Q., Sun K. X., Zheng R. S., et al. Cancer incidence and mortality in China, 2014. Chinese Journal of Cancer Research. 2018;30(1):1–12. doi: 10.21147/j.issn.1000-9604.2018.01.01.
    1. Hu D., Ren J., Wang G., et al. Value of red cell distribution width for assessing disease activity in crohn's disease. The American Journal of the Medical Sciences. 2015;349(1):42–45. doi: 10.1097/MAJ.0000000000000334.
    1. Yeşil A., Şenateş E., Bayoğlu İ. V., Erdem E. D., Demirtunç R., Övünç A. O. K. Red cell distribution width: a novel marker of activity in inflammatory bowel disease. Gut and Liver. 2011;5(4):460–467. doi: 10.5009/gnl.2011.5.4.460.
    1. Song Y., Huang Z., Kang Y., et al. Clinical usefulness and prognostic value of red cell distribution width in colorectal cancer. BioMed Research International. 2018;2018:7. doi: 10.1155/2018/9858943.9858943
    1. Yang D., Quan W., Wu J., et al. The value of red blood cell distribution width in diagnosis of patients with colorectal cancer. Clinica Chimica Acta. 2018;479:98–102. doi: 10.1016/j.cca.2018.01.022.
    1. Schisterman E. F., Perkins N. J., Liu A., Bondell H. Optimal cut-point and its corresponding Youden index to discriminate individuals using pooled blood samples. Epidemiology. 2005;16(1):73–81. doi: 10.1097/.
    1. DeLong E. R., DeLong D. M., Clarke-Pearson D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–845. doi: 10.2307/2531595.
    1. House M. G., Ito H., Gönen M., et al. Survival after hepatic resection for metastatic colorectal cancer: trends in outcomes for 1,600 patients during two decades at a single institution. Journal of the American College of Surgeons. 2010;210(5):744–752. doi: 10.1016/j.jamcollsurg.2009.12.040.
    1. Nikfarjam M., Shereef S., Kimchi E. T., et al. Survival outcomes of patients with colorectal liver metastases following hepatic resection or ablation in the era of effective chemotherapy. Annals of Surgical Oncology. 2009;16(7):1860–1867. doi: 10.1245/s10434-008-0225-3.
    1. Pulitanó C., Castillo F., Aldrighetti L., et al. What defines 'cure' after liver resection for colorectal metastases? results after 10 years of follow-up. HPB. 2010;12(4):244–249. doi: 10.1111/j.1477-2574.2010.00155.x.
    1. Tomlinson J. S., Jarnagin W. R., DeMatteo R. P., et al. Actual 10-year survival after resection of colorectal liver metastases defines cure. Journal of Clinical Oncology. 2007;25(29):4575–4580. doi: 10.1200/JCO.2007.11.0833.
    1. Simmonds P. C., Primrose J. N., Colquitt J. L., Garden O. J., Poston G. J., Rees M. Surgical resection of hepatic metastases from colorectal cancer: a systematic review of published studies. British Journal of Cancer. 2006;94(7):982–999. doi: 10.1038/sj.bjc.6603033.
    1. Kuntz K. M., Lansdorp-Vogelaar I., Rutter C. M., et al. A systematic comparison of microsimulation models of colorectal cancer: the role of assumptions about adenoma progression. Medical Decision Making. 2011;31(4):530–539. doi: 10.1177/0272989X11408730.
    1. Strum W. B. Colorectal adenomas. The New England Journal of Medicine. 2016;375(4):389–390.
    1. Bettington M., Walker N., Clouston A., Brown I., Leggett B., Whitehall V. The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology. 2013;62(3):367–386. doi: 10.1111/his.12055.
    1. Weisenberger D. J., Siegmund K. D., Campan M., et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nature Genetics. 2006;38(7):787–793. doi: 10.1038/ng1834.
    1. Jess T., Frisch M., Simonsen J. Trends in overall and cause-specific mortality among patients with inflammatory bowel disease from 1982 to 2010. Clinical Gastroenterology and Hepatology. 2013;11(1):43–48. doi: 10.1016/j.cgh.2012.09.026.
    1. Rossi S., Basso M., Strippoli A., et al. Are Markers of Systemic Inflammation Good Prognostic Indicators in Colorectal Cancer? Clinical Colorectal Cancer. 2017;16(4):264–274. doi: 10.1016/j.clcc.2017.03.015.
    1. Ferradini L., Miescher S., Stoeck M., et al. Cytotoxic potential despite impaired activation pathways in T lymphocytes infiltrating nasopharyngeal carcinoma. International Journal of Cancer. 1991;47(3):362–370. doi: 10.1002/ijc.2910470309.
    1. Tsiatas M. L., Gyftaki R., Liacos C., et al. Study of T lymphocytes infiltrating peritoneal metastases in advanced ovarian cancer: associations with vascular endothelial growth factor levels and prognosis in patients receiving platinum-based chemotherapy. International Journal of Gynecological Cancer. 2009;19(8):1329–1334. doi: 10.1111/IGC.0b013e3181b7a40e.
    1. Booth R. A. Minimally invasive biomarkers for detection and staging of colorectal cancer. Cancer Letters. 2007;249(1):87–96. doi: 10.1016/j.canlet.2006.12.021.
    1. de Gonzalo-Calvo D., de Luxán-Delgado B., Rodríguez-González S., et al. Interleukin 6, soluble tumor necrosis factor receptor I and red blood cell distribution width as biological markers of functional dependence in an elderly population: a translational approach. Cytokine. 2012;58(2):193–198. doi: 10.1016/j.cyto.2012.01.005.
    1. Dogan M., Kucuk U., Uz O. Red blood cell distribution width is worthwhile when interpreted with other inflammatory markers. Journal of Geriatric Cardiology. 2015;12(4):457–458.
    1. Ephrem G. Red blood cell distribution width should indeed be assessed with other inflammatory markers in daily clinical practice. Cardiology. 2013;124(1):p. 61. doi: 10.1159/000345925.
    1. Dunn G. P., Old L. J., Schreiber R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity and Immunoediting. 2004;21(2):137–148. doi: 10.1016/j.immuni.2004.07.017.
    1. Rosenberg S. A. Progress in human tumour immunology and immunotherapy. Nature. 2001;411(6835):380–384. doi: 10.1038/35077246.
    1. Frey D. M., Droeser R. A., Viehl C. T., et al. High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. International Journal of Cancer. 2010;126(11):2635–2643. doi: 10.1002/ijc.24989.
    1. Lee W.-S., Park S., Lee W. Y., Yun S. H., Chun H.-K. Clinical impact of tumor-infiltrating lymphocytes for survival in stage II colon cancer. Cancer. 2010;116(22):5188–5199. doi: 10.1002/cncr.25293.

Source: PubMed

Подписаться