Tolerability and Safety of a Novel Ketogenic Ester, Bis-Hexanoyl (R)-1,3-Butanediol: A Randomized Controlled Trial in Healthy Adults

Oliver Chen, Traci M Blonquist, Eunice Mah, Kristen Sanoshy, Dawn Beckman, Kristin M Nieman, Barbara L Winters, Joshua C Anthony, Eric Verdin, John C Newman, Brianna J Stubbs, Oliver Chen, Traci M Blonquist, Eunice Mah, Kristen Sanoshy, Dawn Beckman, Kristin M Nieman, Barbara L Winters, Joshua C Anthony, Eric Verdin, John C Newman, Brianna J Stubbs

Abstract

Nutritional ketosis is a state of mildly elevated blood ketone concentrations resulting from dietary changes (e.g., fasting or reduced carbohydrate intake) or exogenous ketone consumption. In this study, we determined the tolerability and safety of a novel exogenous ketone diester, bis-hexanoyl-(R)-1,3-butanediol (BH-BD), in a 28-day, randomized, double-blind, placebo-controlled, parallel trial (NCT04707989). Healthy adults (n = 59, mean (SD), age: 42.8 (13.4) y, body mass index: 27.8 (3.9) kg/m2) were randomized to consume a beverage containing 12.5 g (Days 0-7) and 25 g (Days 7-28) of BH-BD or a taste-matched placebo daily with breakfast. Tolerability, stimulation, and sedation were assessed daily by standardized questionnaires, and blood and urine samples were collected at Days 0, 7, 14, and 28 for safety assessment. There were no differences in at-home composite systemic and gastrointestinal tolerability scores between BH-BD and placebo at any time in the study, or in acute tolerability measured 1-h post-consumption in-clinic. Weekly at-home composite tolerability scores did not change when BH-BD servings were doubled. At-home scores for stimulation and sedation did not differ between groups. BH-BD significantly increased blood ketone concentrations 1-h post-consumption. No clinically meaningful changes in safety measures including vital signs and clinical laboratory measurements were detected within or between groups. These results support the overall tolerability and safety of consumption of up to 25 g/day BH-BD.

Keywords: beta-hydroxybutyrate; exogenous ketone; gastrointestinal symptom; ketone diester; ketone ester; ketones.

Conflict of interest statement

This work was funded by BHB Therapeutics (Ireland) Ltd. (“BHB Therapeutics”), which is commercializing products that will contain BH-BD. BHB Therapeutics provided the study beverages used in this work. J.C.N. and E.V. are co-founders with equity interest in BHB Therapeutics Ltd. J.C.A. holds stock options in Juvenescence Limited and Juvenescence Life Sciences Limited and serves as Chief Scientific Officer of the JuvLife Division. B.J.S. holds stock options in BHB Therapeutics Ltd. and Juvenescence Ltd. J.C.N., E.V. and B.J.S. are inventors on patents related to the use of ketone bodies and BH-BD. B.W., K.N. and were scientific consultants in the design, review, and audit of these studies. They derive no direct financial benefit from the results of this research. O.C., T.B., E.M., K.S. and D.B. are employees of Biofortis Research, which received funding to conduct these studies. Biofortis Research derives no direct financial benefit from the results of this research.

Figures

Figure 1
Figure 1
Schematic illustrating endogenous and exogenous ketosis and bis-hexanoyl-(R)-1,3-butanediol (BH-BD) metabolism. Created with Biorender.Com. Abbreviations: BHB, beta-hydroxybutyrate.
Figure 2
Figure 2
Study design schematic. Abbreviations B-BAES, Brief Biphasic Alcohol Effect Scale; BH-BD, bis-hexanoyl (R)-1,3-butanediol; BTQ, beverage tolerability questionnaire.
Figure 3
Figure 3
Daily beverage tolerability composite scores for healthy adults consuming up to 25 g/day of BH-BD or placebo. 10 tolerability issues (gas/flatulence, nausea, vomiting, abdominal cramping, stomach rumbling, burping, reflux/heartburn, diarrhea, headache, and dizziness) were scored 0 = none, 1 = mild, 2 = moderate and 3 = severe, giving a maximal composite score of 30. (A) Pre-beverage composite score; (B) Post-beverage composite score. Dots indicate statistical outliers identified by the 1.5 x interquartile (IQR) rule.

References

    1. Robinson A.M., Williamson D.H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol. Rev. 1980;60:143–187. doi: 10.1152/physrev.1980.60.1.143.
    1. Sherwood L.M., Parris E.E., Cahill G.F. Starvation in Man. N. Engl. J. Med. 1970;282:668–675. doi: 10.1056/NEJM197003192821209.
    1. Gilbert D.L., Pyzik P.L., Freeman J.M. The ketogenic diet: Seizure control correlates better with serum beta-hydroxybutyrate than with urine ketones. J. Child Neurol. 2000;15:787–790. doi: 10.1177/088307380001501203.
    1. Koeslag J.H., Noakes T.D., Sloan A.W. Post-Exercise Ketosis. J. Physiol. Lond. 1980;301:79–90. doi: 10.1113/jphysiol.1980.sp013190.
    1. Owen O.E., Morgan A.P., Kemp H.G., Sullivan J.M., Herrera M.G., Cahill G.F. Brain Metabolism during Fasting*. J. Clin. Investig. 1967;46:1589–1595. doi: 10.1172/JCI105650.
    1. Newman J.C., Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab. 2014;25:42–52. doi: 10.1016/j.tem.2013.09.002.
    1. Krebs H. The regulation of the release of ketone bodies by the liver. Adv. Enzym. Regul. 1966;4:339–353. doi: 10.1016/0065-2571(66)90027-6.
    1. Reichard G., Jr., Owen O.E., Haff A.C., Bortz W.M. Ketone-body production and oxidation in fasting obese humans. J. Clin. Investig. 1974;53:508. doi: 10.1172/JCI107584.
    1. Hallberg S.J., McKenzie A.L., Williams P.T., Bhanpuri N.H., Peters A.L., Campbell W.W., Hazbun T.L., Volk B.M., McCarter J., Phinney S.D., et al. Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at 1 Year: An Open-Label, Non-Randomized, Controlled Study. Diabetes Ther. 2018;9:583–612. doi: 10.1007/s13300-018-0373-9.
    1. Athinarayanan S.J., Adams R.N., Hallberg S.J., McKenzie A.L., Bhanpuri N.H., Campbell W.W., Volek J.S., Phinney S.D., McCarter J.P. Long-Term Effects of a Novel Continuous Remote Care Intervention Including Nutritional Ketosis for the Management of Type 2 Diabetes: A 2-Year Non-randomized Clinical Trial. Front. Endocrinol. 2019;10:348. doi: 10.3389/fendo.2019.00348.
    1. Strahlman R.S. Can Ketosis Help Migraine Sufferers? A Case Report. Headache. J. Head Face Pain. 2006;46:182. doi: 10.1111/j.1526-4610.2006.00321_5.x.
    1. Di Lorenzo C., Currà A., Sirianni G., Coppola G., Bracaglia M., Cardillo A., De Nardis L., Pierelli F. Diet transiently improves migraine in two twin sisters: Possible role of ketogenesis? Diet Exerc. Cogn. Funct. Neurol. Dis. 2014;28:305–308.
    1. Di Lorenzo C., Coppola G., Sirianni G., Di Lorenzo G., Bracaglia G., Di Lenola D., Siracusano A., Rossi P., Pirelli F. Migraine improvement during short lasting ketogenesis: A proof-of-concept study. Eur. J. Neurol. 2015;22:170–177. doi: 10.1111/ene.12550.
    1. Zuccoli G., Marcello N., Pisanello A., Servadei F., Vaccaro S., Mukherjee P., Seyfried T.N. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr. Metab. 2010;7:33. doi: 10.1186/1743-7075-7-33.
    1. Van der Louw E., Olierman J.F., van den Dernt P.M.L.A., Bromberg J.E.C., de Hoop E.O., Neuteboorn R.F., Catsman-Berrevoets C.E., Vincent A.J.P.E. Ketogenic diet treatment as adjuvant to standard treatment of glioblastoma multiforme: A feasibility and safety study. Adv. Med. Oncol. 2019;11 doi: 10.1177/1758835919853958.
    1. Veech R.L., Bradshaw P.C., Clarke K., Curtis W., Pawlosky R., King M.T. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life. 2017;69:305–314. doi: 10.1002/iub.1627.
    1. Veech R.L., Chaance B., Kashiwaya Y., Lardy H.A., Cahill G.C., Jr. Ketone bodies, potential therapeutic uses. IUBMB Life. 2001;51:241–247.
    1. Veech R.L. The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological conditions: Ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot. Essent. Fat. Acids. 2004;70:309–319. doi: 10.1016/j.plefa.2003.09.007.
    1. Poffé C., Ramaekers M., Bogaerts S., Hespel P. Bicarbonate Unlocks the Ergogenic Action of Ketone Monoester Intake in Endurance Exercise. Med. Sci. Sports Exerc. 2021;53:431–441. doi: 10.1249/MSS.0000000000002467.
    1. Poffé C., Ramaekers M., Bogaerts S., Hespel P. Exogenous ketosis impacts neither performance nor muscle glycogen breakdown in prolonged endurance exercise. J. Appl. Physiol. 2020;128:1643–1653. doi: 10.1152/japplphysiol.00092.2020.
    1. Cox P.J., Kirk T., Ashmore T., Willerton K., Evans R., Smith A., Murray A., Stubbs B., West J., McLure S.W., et al. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metab. 2016;24:256–268. doi: 10.1016/j.cmet.2016.07.010.
    1. Waldman H.S., Basham S.A., Price F.G., Smith J.W., Chander H., Knight A.C., Krings B.M., McAllister M.J. Exogenous ketone salts do not improve cognitive responses after a high-intensity exercise protocol in healthy college-aged males. Appl. Physiol. Nutr. Metab. 2018;43:711–717. doi: 10.1139/apnm-2017-0724.
    1. Mujica-Parodi L.R., Amgalan A., Sultan S.F., Antal B., Sun X., Skiena S., Lithen A., Adra N., Ratai E.-M., Weistuch C., et al. Diet modulates brain network stability, a biomarker for brain aging, in young adults. Proc. Natl. Acad. Sci. USA. 2020;117:6170–6177. doi: 10.1073/pnas.1913042117.
    1. Evans M., Egan B. Intermittent Running and Cognitive Performance after Ketone Ester Ingestion. Med. Sci. Sports Exerc. 2018;50:2330–2338. doi: 10.1249/MSS.0000000000001700.
    1. Avgerinos I.K., Egan J.M., Mattson M.P., Kapogiannis D. Medium Chain Triglycerides induce mild ketosis and may improve cognition in Alzheimer’s disease. A systematic review and meta-analysis of human studies. Ageing Res. Rev. 2020;58 doi: 10.1016/j.arr.2019.101001.
    1. Walsh J.J., Neudorf H., Little J.P. 14-Day Ketone Supplementation Lowers Glucose and Improves Vascular Function in Obesity: A Randomized Crossover Trial. J. Clin. Endocrinol. Metab. 2021;106:e1738–e1754. doi: 10.1210/clinem/dgaa925.
    1. Myette-Côté É., Neudorf H., Rafiei H., Clarke K., Little J.P. Prior ingestion of exogenous ketone monoester attenuates the glycaemic response to an oral glucose tolerance test in healthy young individuals. J. Physiol. 2018;596:1385–1395. doi: 10.1113/JP275709.
    1. Myette-Côté É., Caldwell H.G., Ainslie P.N., Clarke K., Little J.P. A ketone monoester drink reduces the glycemic response to an oral glucose challenge in individuals with obesity: A randomized trial. Am. J. Clin. Nutr. 2019;110:1491–1501. doi: 10.1093/ajcn/nqz232.
    1. Soto-Mota A., Norwitz N.G., Clarke K. Why a d-beta-hydroxybutyrate monoester? Biochem. Soc. Trans. 2020;48:51–59. doi: 10.1042/BST20190240.
    1. Soto-Mota A., Vansant H., Evans R.D., Clarke K. Safety and tolerability of sustained exogenous ketosis using ketone monoester drinks for 28 days in healthy adults. Regul. Toxicol. Pharmacol. 2019;109 doi: 10.1016/j.yrtph.2019.104506.
    1. Stefan M., Sharp M., Gheith R., Lowery R., Wilson J. The Effects of Exogenous Beta-Hydroxybutyrate Supplementation on Metrics of Safety and Health. Int. J. Nutr. Food Sci. 2020;9:154–162.
    1. Fortier M., Castellano C., St-Pierre V., Myette-Côté É., Langlois F., Roy M., Morin M., Bocti C., Fulop T., Godin J., et al. A ketogenic drink improves cognition in mild cognitive impairment: Results of a 6-month RCT. Alzheimer’s Dement. 2021;17:543–552. doi: 10.1002/alz.12206.
    1. Stubbs B.J., Cox P.J., Kirk T., Evans R.D., Clarke K. Gastrointestinal Effects of Exogenous Ketone Drinks are Infrequent, Mild, and Vary According to Ketone Compound and Dose. Int. J. Sport Nutr. Exerc. Metab. 2019;29:596–603. doi: 10.1123/ijsnem.2019-0014.
    1. Jeukendrup E.A., Thielen J.J., Wagenmakers A.J., Brouns F., Saris W.H. Effect of medium-chain triacylglycerol and carbohydrate ingestion during exercise on substrate utilization and subsequent cycling performance. Am. J. Clin. Nutr. 1998;67:397–404. doi: 10.1093/ajcn/67.3.397.
    1. Wibisono C., Rowe N., Beavis E., Kepreotes H., Mackie F.E., Lawson J.A., Cardamone M. Ten-Year Single-Center Experience of the Ketogenic Diet: Factors Influencing Efficacy, Tolerability, and Compliance. J. Pediatr. 2015;166:1030.e1–1036.e1. doi: 10.1016/j.jpeds.2014.12.018.
    1. Stubbs B.J., Blade T., Mills S., Thomas J., Yufei X., Nelson F.R., Higley N., Nikiforov A.I., Rhiner M.O., Verdin E., et al. In vitro stability and in vivo pharmacokinetics of the novel ketogenic ester, bis hexanoyl (R)-1,3-butanediol. Food Chem. Toxicol. 2021;147 doi: 10.1016/j.fct.2020.111859.
    1. Declaration of Helsinki . Adopted by the 18th WMA General Assembly, Helsinki, Finland, June 1964, and Amended by the: 59th WMA General Assembly, Seoul, October 2008. World Medical Association; Ferney-Voltaire, France: 2008. Ethical Principles for Medical Research Involving Human Subjects.
    1. Boler B.M.V., Serao M.C.R., Bauer L.L., Staeger M.A., Boileau T.W., Swanson K., Fahey G.C. Digestive physiological outcomes related to polydextrose and soluble maize fibre consumption by healthy adult men. Br. J. Nutr. 2011;106:1864–1871. doi: 10.1017/S0007114511002388.
    1. Maki K.C., Rains T.M., Kelley K.M., Cook C.M., Schild A.L., Gietl E. Fibermalt is well tolerated in healthy men and women at intakes up to 60 g/d: A randomized, double-blind, crossover trial. Int. J. Food Sci. Nutr. 2012;64:274–281. doi: 10.3109/09637486.2012.738652.
    1. Martin C.S., Earleywine M., Musty R.E., Perrine M.W., Swift R.M. Development and Validation of the Biphasic Alcohol Effects Scale. Alcohol. Clin. Exp. Res. 1993;17:140–146. doi: 10.1111/j.1530-0277.1993.tb00739.x.
    1. Rueger S.Y., King A.C. Validation of the Brief Biphasic Alcohol Effects Scale (B-BAES) Alcohol. Clin. Exp. Res. 2012;37:470–476. doi: 10.1111/j.1530-0277.2012.01941.x.
    1. Peterson J.I., Young D.S. Evaluation of the hexokinase-glucose-6-phosphate dehydrogenase method of determination of glucose in urine. Anal. Biochem. 1968;23:301–316. doi: 10.1016/0003-2697(68)90361-8.
    1. Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972;18:499–502. doi: 10.1093/clinchem/18.6.499.
    1. Ivy J.L., Costill D.L., Fink W.J., Maglischo E. Contribution of Medium and Long Chain Triglyceride Intake to Energy Metabolism during Prolonged Exercise. Int. J. Sports Med. 1980;1:15–20. doi: 10.1055/s-2008-1034624.
    1. Shah N., Limketkai B. The Use of Medium-Chain Triglycerides in Gastrointestinal Disorders. Pract. Gastroenterol. 2017;41:20–28.
    1. Liu Y.-M., Wang H.-S. Medium-chain Triglyceride Ketogenic Diet, An Effective Treatment for Drug-resistant Epilepsy and A Comparison with Other Ketogenic Diets. Biomed. J. 2013;36:9–15. doi: 10.4103/2319-4170.107154.
    1. Ohnuma T., Toda A., Kimoto A., Takebayashi Y., Higashiyama R., Tagata Y., Ito M., Ota T., Shibata N., Arai H. Benefits of use, and tolerance of, medium-chain triglyceride medical food in the management of Japanese patients with Alzheimer’s disease: A prospective, open-label pilot study. Clin. Interv. Aging. 2016;11:29–36. doi: 10.2147/CIA.S95362.
    1. Liu Y.-M.C. Medium-chain triglyceride (MCT) ketogenic therapy. Epilepsia. 2008;49:33–36. doi: 10.1111/j.1528-1167.2008.01830.x.
    1. Goedecke J.H., Clark V.R., Noakes T.D., Lambert E. The Effects of Medium-Chain Triacylglycerol and Carbohydrate Ingestion on Ultra-Endurance Exercise Performance. Int. J. Sport Nutr. Exerc. Metab. 2005;15:15–27. doi: 10.1123/ijsnem.15.1.15.
    1. Stubbs B., Cox P.J., Evans R.D., Santer P., Miller J., Faull O.K., Magor-Elliott S., Hiyama S., Stirling M., Clarke K. On the Metabolism of Exogenous Ketones in Humans. Front. Physiol. 2017;8:848. doi: 10.3389/fphys.2017.00848.
    1. Rittig N., Svart M., Thomsen H.H., Vestergaard E.T., Rehfeld J.F., Hartmann B., Holst J.J., Johannsen M., Moller N., Jessen N. Oral D/L-3-Hydroxybutyrate Stimulates Cholecystokinin and Insulin Secretion and Slows Gastric Emptying in Healthy Males. J. Clin. Endocrinol. Metab. 2020;105:e3597–e3605. doi: 10.1210/clinem/dgaa483.
    1. Fischer T., Och U., Klawon I., Och T., Grüneberg M., Fobker M., Bordewick-Dell U., Marquardt T. Effect of a Sodium and Calcium DL-β-Hydroxybutyrate Salt in Healthy Adults. J. Nutr. Metab. 2018;2018:9812806. doi: 10.1155/2018/9812806.
    1. Evans M., Patchett E., Nally R., Kearns R., Larney M., Egan B. Effect of acute ingestion of β-hydroxybutyrate salts on the response to graded exercise in trained cyclists. Eur. J. Sport Sci. 2018;18:376–386. doi: 10.1080/17461391.2017.1421711.
    1. Chander H., McAllister M.J., Holland A.M., Waldman H.S., Krings B.M., Swain J.C., Turner A.J., Basham S.A., Smith J.W., Knight A.C. Effects of 7-Day Ketone Ingestion and a Physiological Workload on Postural Stability, Cognitive, and Muscular Exertion Measures in Professional Firefighters. Safety. 2019;5:15. doi: 10.3390/safety5010015.
    1. Leckey J.J., Ross M.L., Quod M., Hawley J.A., Burke L.M. Ketone Diester Ingestion Impairs Time-Trial Performance in Professional Cyclists. Front. Physiol. 2017;8:806. doi: 10.3389/fphys.2017.00806.
    1. David M.S., Merien F., Braakhuis A., Plews D., Laursen P., Dulson D.K. The Effect of 1,3-Butanediol on Cycling Time-Trial Performance. Int. J. Sport Nutr. Exerc. Metab. 2019;29:466–473.
    1. Vandoorne T., De Smet S., Ramaekers M., Van Thienen R., De Bock K., Clarke K., Hespel P. Intake of a Ketone Ester Drink during Recovery from Exercise Promotes mTORC1 Signaling but Not Glycogen Resynthesis in Human Muscle. Front. Physiol. 2017;8:310. doi: 10.3389/fphys.2017.00310.
    1. Evans M., Mcswiney F.T., Brady A.J., Egan B. No Benefit of Ingestion of a Ketone Monoester Supplement on 10-km Running Performance. Med. Sci. Sports Exerc. 2019;51:2506–2515. doi: 10.1249/MSS.0000000000002065.
    1. Clarke K., Tchabanenko K., Pawlosky R., Carter E., King M.T., Musa-Veloso K., Ho M., Roberts A., Robertson J., VanItallie T.B., et al. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul. Toxicol. Pharmacol. 2012;63:401–408. doi: 10.1016/j.yrtph.2012.04.008.
    1. Schrieks I.C., Stafleu A., Kallen V.L., Grootjen M., Witkamp R., Hendriks H.F.J. The Biphasic Effects of Moderate Alcohol Consumption with a Meal on Ambiance-Induced Mood and Autonomic Nervous System Balance: A Randomized Crossover Trial. PLoS ONE. 2014;9:e86199. doi: 10.1371/journal.pone.0086199.
    1. Fridberg D.J., Rueger S.Y., Smith P., King A.C. Association of Anticipated and Laboratory-Derived Alcohol Stimulation, Sedation, and Reward. Alcohol. Clin. Exp. Res. 2017;41:1361–1369. doi: 10.1111/acer.13415.
    1. Greaves G., Xiang R., Rafiei H., Malas A., Little J.P. Prior ingestion of a ketone monoester supplement reduces postprandial glycemic responses in young healthy-weight individuals. Appl. Physiol. Nutr. Metab. 2020:1–9. doi: 10.1139/apnm-2020-0644.

Source: PubMed

Подписаться