Differential expression of microRNAs in GH-secreting pituitary adenomas

Zhi-Gang Mao, Dong-Sheng He, Jing Zhou, Bin Yao, Wei-Wei Xiao, Chun-Hua Chen, Yong-Hong Zhu, Hai-Jun Wang, Zhi-Gang Mao, Dong-Sheng He, Jing Zhou, Bin Yao, Wei-Wei Xiao, Chun-Hua Chen, Yong-Hong Zhu, Hai-Jun Wang

Abstract

Background: The purpose of this study was to (1) identify specific miRNAs in growth hormones (GH)-secreting pituitary adenomas; (2) determine the relationship between the expression of these miRNAs and tumor size, somatostatin analogs treatment, and responsiveness to somatostatin analogs (SSA).

Methods: Fifteen GH-secreting adenomas patients were treated with lanreotide for 4 months before surgery. Patients with 50% reduction of GH secretion by lanreotide were considered as SSA responders, while patients with less than 50% of GH reduction were considered as SSA nonresponders. We analyzed the miRNAs in 21 GH-secreting pituitary adenomas and 6 normal pituitaries by miRCURY™ LNA array and some differentially expressed miRNAs were validated by quantitative real-time PCR.

Results: Fifty-two miRNAs were differentially expressed between GH-secreting pituitary adenomas and normal pituitaries. Differential expression of 9 miRNAs was observed between micro- and macro-adenomas. Thirteen miRNAs were differentially expressed between tumor samples from lanreotide-treated patients and those from lanreotide-untreated patients. Seven miRNAs were differentially expressed between SSA responders or GH nonresponders. Several identified miRNAs may be involved in cell proliferation, apoptosis, cancer development and progression.

Conclusions: Our results indicate that altered miRNAs expression is involved in GH-secreting pituitary adenomas transformation, which will shed light on the mechanisms for the treatment of acromegaly by SSA. Identification and characterization of the targets of altered miRNAs genes may elucidate molecular mechanisms involved in the pathogenesis of pituitary adenoma.

Trial registration: ClinicalTrials.gov NCT00993356.

Figures

Figure 1
Figure 1
Cluster analysis shows a clear distinction between GH-secreting pituitary adenomas and normal pituitary. GH-secreting pituitary adenomas: 1-21, Normal pituitary: 22-27.
Figure 2
Figure 2
Cluster analysis shows a clear distinction between macro- and microadenomas in GH-secreting pituitary adenomas. Macroadenomas:1-18, Microadenomas:19-21.
Figure 3
Figure 3
Cluster analysis shows a clear distinction between SSA Responders and SSA Noresponders in GH-secreting pituitary adenomas. SSA Responders:1-12, SSA Noresponders:13-15.

References

    1. Nilsen TW. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 2007;23:243–249. doi: 10.1016/j.tig.2007.02.011.
    1. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008;9:219–230. doi: 10.1038/nrm2347.
    1. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in caenorhabditis elegans. Nature. 2000;403:901–906. doi: 10.1038/35002607.
    1. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408:86–89. doi: 10.1038/35040556.
    1. Esquela-Kerscher A, Slack FJ. Oncomirs--microRNAs with a role in cancer. Nature Reviews Cancer. 2006;6:259–269. doi: 10.1038/nrc1840.
    1. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11:441–450. doi: 10.1016/j.devcel.2006.09.009.
    1. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang XW, Shelton J, Shingara J, Chin L, Brown D, Slack FJ. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007;67:7713–7722. doi: 10.1158/0008-5472.CAN-07-1083.
    1. Gartel AL, Kandel ES. miRNAs: Little known mediators of oncogenesis. Semin Cancer Biol. 2008;18:103–110. doi: 10.1016/j.semcancer.2008.01.008.
    1. Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 2006;66:7390–7394. doi: 10.1158/0008-5472.CAN-06-0800.
    1. Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC. miR-15a and miR-16-1 downregulation in pituitary adenomas. J Cell Physiol. 2005;204:280–285. doi: 10.1002/jcp.20282.
    1. Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC. Identification of differentially expressed microRNAs by microarray: a possible role for microrna genes in pituitary adenomas. J Cell Physiol. 2007;210:370–377. doi: 10.1002/jcp.20832.
    1. Amaral FC, Torres N, Saggioro F, Neder L, Machado HR, Silva WA, Moreira AC, Castro M. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab. 2009;94:320–323. doi: 10.1210/jc.2008-1451.
    1. Melmed S. Medical progress: Acromegaly. N Engl J Med. 2006;355:2558–2573. doi: 10.1056/NEJMra062453.
    1. Shimon I, Cohen ZR, Ram Z, Hadani M. Transsphenoidal surgery for acromegaly: endocrinological follow-up of 98 patients. Neurosurgery. 2001;48:1239–1245. doi: 10.1097/00006123-200106000-00008.
    1. Maiza JC, Vezzosi D, Matta M, Donadille F, Loubes-Lacroix F, Cournot M, Bennet A, Caron P. Long-term (up to 18 years) effects on GH/IGF-1 hypersecretion and tumour size of primary somatostatin analogue (SSTa) therapy in patients with GH-secreting pituitary adenoma responsive to SSTa. Clin Endocrinol. 2007;67:282–289. doi: 10.1111/j.1365-2265.2007.02878.x.
    1. Plöckinger U, Albrecht S, Mawrin C, Saeger W, Buchfelder M, Petersenn S, Schulz S. Selective loss of somatostatin receptor 2 in octreotide resistant growth hormone secreting adenomas. J Clin Endocrinol Metab. 2008;93:1203–1210.
    1. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:2002–2007. doi: 10.1093/nar/29.9.e45.
    1. Mao ZG, Zhu YH, Tang HL, Wang DY, Zhou J, He DS, Lan H, Luo BN, Wang HJ. Preoperative lanreotide treatment in acromegalic patients with macroadenomas increases short-term postoperative cure rates: a prospective, randomized trial. Eur J Endocrinol. 2010;162:661–666. doi: 10.1530/EJE-09-0908.
    1. Yu J, Ryan DG, Getsios S, Oliveira-Fernandes M, Fatima A, Lavker RM. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. PNAS. 2008;105:19300–19305. doi: 10.1073/pnas.0803992105.
    1. Hino K, Tsuchiya K, Fukao T, Kiga K, Okamoto R, Kanai T, Watanabe M. Inducible expression of microRNA-194 is regulated by HNF-1a during intestinal epithelial cell differentiation. RNA. 2008;14:1433–1442. doi: 10.1261/rna.810208.
    1. Ferretti E, Smaele ED, Miele E, Laneve P, Po A, Pelloni M, Paganelli A, Marcotullio LD, Caffarelli E, Screpanti I, Bozzoni I, Gulino A. Concerted microRNA control of hedgehog signalling in cerebellar neuronal progenitor and tumour cells. J EMBO. 2008;27:2616–2627. doi: 10.1038/emboj.2008.172.
    1. Guo CG, Sah JF, Beard L, Willson JKV, Markowitz SD, Guda K. The noncoding RNA, mir-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Gene Chromosome Canc. 2008;47:939–946. doi: 10.1002/gcc.20596.
    1. Salehi F, Kovacs K, Scheithauer BW, Lloyd RV, Cusimano M. Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update. Endocrine-Related Cancer. 2008;15:721–743. doi: 10.1677/ERC-08-0012.
    1. Visone R, Russo L, Pallante P, Martino ID, Ferraro A, Leone V, Borbone E, Petrocca F, Alder H, Croce CM, Fusco A. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocrine-Related Cancer. 2007;14:791–798. doi: 10.1677/ERC-07-0129.
    1. Heath KE, Argente J, Barrios V, Pozo J, Díaz-González F, Martos-Moreno GA, Caimari M, Gracia R, Campos-Barros Á. Primary acid-labile subunit deficiency due to recessive IGFALS mutations results in postnatal growth deficit associated with low circulating insulin growth factor (IGF)-I, IGF binding protein-3 levels, and hyperinsulinemia. J Clin Endocrinol Metab. 2008;93:1616–1624. doi: 10.1210/jc.2007-2678.
    1. Moller LN, Stidsen CE, Hartmann B, Holst JJ. Somatostatin receptors. Biochim Biophys Acta. 2003;1616:1–84. doi: 10.1016/S0005-2736(03)00235-9.
    1. Saveanu A, Gunz G, Dufour H, Caron P, Fina F, Ouafik L, Culler MD, Moreau JP, Enjalbert A, Jaquet P. Bim-23244, a somatostatin receptor subtype 2- and 5-selective analog with enhanced efficacy in suppressing growth hormone (GH) from octreotide-resistant human GH-secreting adenomas. J Clin Endocrinol Metab. 2001;86:140–145. doi: 10.1210/jc.86.1.140.
    1. Hofland LJ, van der Hoek J, van Koetsveld PM, de Herder WW, Waaijers M, Sprij-Mooij D, Bruns C, Weckbecker G, Feelders R, van der Lely AJ, Beckers A, Lamberts SW. The novel somatostatin analog SOM230 is a potent inhibitor of hormone release by growth hormone- and prolactin-secreting pituitary adenomas in vitro. J Clin Endocrinol Metab. 2004;89:1577–1585. doi: 10.1210/jc.2003-031344.
    1. Taboada GF, Luque RM, Bastos W, Guimaraes RF, Marcondes JB, Chimelli LM, Fontes R, Mata PJ, Filho PN, Carvalho DP, Kineman RD, Gadelha MR. Quantitative analysis of somatostatin receptor subtype (SSTR1-5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. Eur J Endocrinol. 2007;156:65–74. doi: 10.1530/eje.1.02313.
    1. Visvanathan J, Lee S, Lee B, Lee JW, Lee SK. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes & Dev. 2007;21:744–749.
    1. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–7070. doi: 10.1158/0008-5472.CAN-05-1783.
    1. Shi B, Sepp-Lorenzino L, Prisco M, Linsley Peter, deAngelis T, Baserga R. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem. 2007;282:32582–32590. doi: 10.1074/jbc.M702806200.
    1. Landgraf P, Rusu M, Sheridan R, Sewer Al, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa' R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, Vita GD, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Lauro RD, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou NF, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129:1401–1414. doi: 10.1016/j.cell.2007.04.040.

Source: PubMed

Подписаться