Sleep and weight loss in low-income overweight or obese postpartum women

Mei-Wei Chang, Alai Tan, Jonathan Schaffir, Duane T Wegener, Mei-Wei Chang, Alai Tan, Jonathan Schaffir, Duane T Wegener

Abstract

Background: We conducted secondary data analyses to examine the associations between sleep duration, sleep quality, sleep disturbance and ≥ 5% of weight loss in low-income overweight or obese postpartum women enrolled in a community-based lifestyle behavior intervention study aimed at prevention of weight gain.

Methods: Participants were recruited from the Special Supplemental Nutrition Program for Women, Infants, and Children in Michigan. The Pittsburgh Sleep Quality Index was used to assess sleep duration, sleep quality, and sleep disturbance. All participants were assessed and weighed at baseline (T1, 569 participants), 4-month (T2, 367 participants), and 7-month from T1 (T3, 332 participants). Descriptive statistics and mixed-effects regression analysis were performed.

Results: Participants reported longer sleep duration (p = 0.048), better sleep quality (p = 0.003) and less sleep disturbance (p < 0.001) over time. There were no significant mean body weight changes at T2 and T3. However, a significantly higher proportion of women lost ≥5% of body weight at T3 (23.1%) than T2 (12.5%, p = 0.001). Sleep duration, quality, and disturbance were not significantly associated with ≥5% of weight loss.

Conclusion: Improvements in sleep duration, sleep quality and sleep disturbance over time were not associated with ≥5% of weight loss in low-income overweight or obese postpartum women.

Trial registration: Clinical Trials NCT01839708; retrospectively registered February 28, 2013.

Keywords: Low-income women; Obesity; Postpartum; Sleep.

Conflict of interest statement

Mei-Wei Chang, PhD, is an Associate Professor; Alai Tan, PhD, is an Associate Professor; Jonathan Schaffir, MD, is an Associate Professor; Duane T. Wegener, PhD, is a Professor.Participation was voluntary. Participants provided written consent prior to participating in the study if they met the study criteria and understood the study requirements. This study was approved and monitored by Michigan Department of Health and Human Services and Michigan State University Institutional Review Boards.Not applicable.The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. Jama. 2016;315(21):2284–2291. doi: 10.1001/jama.2016.6458.
    1. Braveman P, Marchi K, Egerter S, Kim S, Metzler M, Stancil T, Libet M. Poverty, near-poverty, and hardship around the time of pregnancy. Matern Child Health J. 2010;14(1):20–35. doi: 10.1007/s10995-008-0427-0.
    1. Prevention CfDCa. Eligibility and enrollment in the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC)--27 states and New York City, 2007–2008. MMWR Morbidity and mortality weekly report 2013. 62(10):189–93.
    1. Olson CM, Strawderman MS, Hinton PS, Pearson TA. Gestational weight gain and postpartum behaviors associated with weight change from early pregnancy to 1 y postpartum. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity. 2003;27(1):117–127. doi: 10.1038/sj.ijo.0802156.
    1. Endres LK, Straub H, McKinney C, Plunkett B, Minkovitz CS, Schetter CD, Ramey S, Wang C, Hobel C, Raju T, et al. Postpartum weight retention risk factors and relationship to obesity at 1 year. Obstet Gynecol. 2015;125(1):144–152. doi: 10.1097/AOG.0000000000000565.
    1. Keum N, Greenwood DC, Lee DH, Kim R, Aune D, Ju W, Hu FB, Giovannucci EL. Adult weight gain and adiposity-related cancers: a dose-response meta-analysis of prospective observational studies. J Natl Cancer Inst. 2015;107:2. doi: 10.1093/jnci/djv088.
    1. Zheng Y, Manson JE, Yuan C, Liang MH, Grodstein F, Stampfer MJ, Willett WC, Hu FB. Associations of weight gain from early to middle adulthood with major health outcomes later in life. Jama. 2017;318(3):255–269. doi: 10.1001/jama.2017.7092.
    1. Arnold M, Freisling H, Stolzenberg-Solomon R, Kee F, O'Doherty MG, Ordonez-Mena JM, Wilsgaard T, May AM, Bueno-de-Mesquita HB, Tjonneland A, et al. Overweight duration in older adults and cancer risk: a study of cohorts in Europe and the United States. Eur J Epidemiol. 2016;31(9):893–904. doi: 10.1007/s10654-016-0169-z.
    1. Abdullah A, Wolfe R, Stoelwinder JU, de Courten M, Stevenson C, Walls HL, Peeters A. The number of years lived with obesity and the risk of all-cause and cause-specific mortality. Int J Epidemiol. 2011;40(4):985–996. doi: 10.1093/ije/dyr018.
    1. Abdullah A, Amin FA, Stoelwinder J, Tanamas SK, Wolfe R, Barendregt J, Peeters A. Estimating the risk of cardiovascular disease using an obese-years metric. BMJ Open. 2014;4(9):e005629. doi: 10.1136/bmjopen-2014-005629.
    1. Abdullah A, Stoelwinder J, Shortreed S, Wolfe R, Stevenson C, Walls H, de Courten M, Peeters A. The duration of obesity and the risk of type 2 diabetes. Public Health Nutr. 2011;14(1):119–126. doi: 10.1017/S1368980010001813.
    1. Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC, de Las Fuentes L, He S, Okunade AL, Patterson BW, et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 2016;23(4):591–601. doi: 10.1016/j.cmet.2016.02.005.
    1. Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG, Hill JO, Brancati FL, Peters A, Wagenknecht L, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34(7):1481–1486. doi: 10.2337/dc10-2415.
    1. Ma C, Avenell A, Bolland M, Hudson J, Stewart F, Robertson C, Sharma P, Fraser C, MacLennan G. Effects of weight loss interventions for adults who are obese on mortality, cardiovascular disease, and cancer: systematic review and meta-analysis. BMJ. 2017;359:j4849. doi: 10.1136/bmj.j4849.
    1. Wu Y, Zhai L, Zhang D. Sleep duration and obesity among adults: a meta-analysis of prospective studies. Sleep Med. 2014;15(12):1456–1462. doi: 10.1016/j.sleep.2014.07.018.
    1. Xiao RS, Kroll-Desrosiers AR, Goldberg RJ, Pagoto SL, Person SD, Waring ME. The impact of sleep, stress, and depression on postpartum weight retention: a systematic review. J Psychosom Res. 2014;77(5):351–358. doi: 10.1016/j.jpsychores.2014.09.016.
    1. Theorell-Haglow J, Berglund L, Berne C, Lindberg E. Both habitual short sleepers and long sleepers are at greater risk of obesity: a population-based 10-year follow-up in women. Sleep Med. 2014;15(10):1204–1211. doi: 10.1016/j.sleep.2014.02.014.
    1. Gutierrez-Repiso C, Soriguer F, Rubio-Martin E, Esteva de Antonio I, Ruiz de Adana MS, Almaraz MC, Olveira-Fuster G, Morcillo S, Valdes S, Lago-Sampedro AM, et al. Night-time sleep duration and the incidence of obesity and type 2 diabetes. Findings from the prospective Pizarra study. Sleep Med. 2014;15(11):1398–1404. doi: 10.1016/j.sleep.2014.06.014.
    1. Xiao Q, Arem H, Moore SC, Hollenbeck AR, Matthews CE. A large prospective investigation of sleep duration, weight change, and obesity in the NIH-AARP diet and health study cohort. Am J Epidemiol. 2013;178(11):1600–1610. doi: 10.1093/aje/kwt180.
    1. Filiatrault ML, Chaput JP, Drapeau V, Tremblay A. Eating behavior traits and sleep as determinants of weight loss in overweight and obese adults. Nutr Diabetes. 2014;4:e140. doi: 10.1038/nutd.2014.37.
    1. Adler E, Dhruva A, Moran PJ, Daubenmier J, Acree M, Epel ES, Bacchetti P, Prather AA, Mason A, Hecht FM. Impact of a mindfulness-based weight-loss intervention on sleep quality among adults with obesity: data from the SHINE randomized controlled trial. J Altern Complement Med. 2017;23(3):188–195. doi: 10.1089/acm.2016.0141.
    1. Alfaris N, Wadden TA, Sarwer DB, Diwald L, Volger S, Hong P, Baxely A, Minnick AM, Vetter ML, Berkowitz RI, et al. Effects of a 2-year behavioral weight loss intervention on sleep and mood in obese individuals treated in primary care practice. Obesity. 2015;23(3):558–564. doi: 10.1002/oby.20996.
    1. Shade MY, Berger AM, Dizona PJ, Pozehl BJ, Pullen CH. Sleep and health-related factors in overweight and obese rural women in a randomized controlled trial. J Behav Med. 2016;39(3):386–397. doi: 10.1007/s10865-015-9701-y.
    1. Nordin M, Kaplan RM. Sleep discontinuity and impaired sleep continuity affect transition to and from obesity over time: results from the alameda county study. Scand J Public Health. 2010;38(2):200–207. doi: 10.1177/1403494809357105.
    1. Chang M, Nitzke S, Brown R, Egan M, Bendekgey C, Buist D. Recruitment challenges and enrollment observations from a community based intervention (mothers in motion) for low-income overweight and obese women. Contemporary Clinical Trials Communication. 2017;5:26–33. doi: 10.1016/j.conctc.2016.11.004.
    1. Chang MW, Nitzke S, Brown R, Resnicow K. A community based prevention of weight gain intervention (mothers in motion) among young low-income overweight and obese mothers: design and rationale. BMC Public Health. 2014;14:280. doi: 10.1186/1471-2458-14-280.
    1. Chang MW, Brown R, Nitzke S. Results and lessons learned from a prevention of weight gain program for low-income overweight and obese young mothers: mothers in motion. BMC Public Health. 2017;17(1):182. doi: 10.1186/s12889-017-4109-y.
    1. Buysse DJ, Reynolds CF, 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Li G, Kong L, Zhou H, Kang X, Fang Y, Li P. Relationship between prenatal maternal stress and sleep quality in Chinese pregnant women: the mediation effect of resilience. Sleep Med. 2016;25:8–12. doi: 10.1016/j.sleep.2016.02.015.
    1. Chang M, Nitzke S, Brown R. Mothers in motion intervention effect on psychosocial health in young, low-income women with overweight or obesity. BMC Public Health. 2019;19:56. doi: 10.1186/s12889-019-6404-2.
    1. Anders TF, Iosif AM, Schwichtenberg AJ, Tang K, Goodlin-Jones BL. Six-month sleep-wake organization and stability in preschool-age children with autism, developmental delay, and typical development. Behav Sleep Med. 2011;9(2):92–106. doi: 10.1080/15402002.2011.557991.
    1. Teti DM, Shimizu M, Crosby B, Kim BR. Sleep arrangements, parent-infant sleep during the first year, and family functioning. Dev Psychol. 2016;52(8):1169–1181. doi: 10.1037/dev0000148.

Source: PubMed

Подписаться