Validation of PIN 3 physical activity survey in low-income overweight and obese young mothers

Mei-Wei Chang, Derek Hales, Roger Brown, Dianne Ward, Ken Resnicow, Susan Nitzke, Mei-Wei Chang, Derek Hales, Roger Brown, Dianne Ward, Ken Resnicow, Susan Nitzke

Abstract

Background: Existing physical activity surveys have not been validated for use with low-income overweight and obese young mothers. This study aimed to validate the Pregnancy Infection and Nutrition 3 (PIN3) physical activity survey and to explore whether its validity varied by race/ethnicity and body mass index (BMI) category when including or excluding child and adult care activities in the target population.

Methods: Participants were recruited from the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) and were asked to fill out the PIN3 survey and wear an Actigraph accelerometer. Validity was assessed (N = 42) using Spearman correlation coefficient.

Results: Regardless of inclusion or exclusion of child and adult care activity, the PIN3 survey showed evidence of validity for moderate (correlation coefficients 0.33 [p = 0.03]; 0.40 [p = 0.08]) but not vigorous (-0.01 [p = 0.91]; -0.06 [p = 0.69]) physical activity. The mean minutes per week spent in moderate, vigorous and moderate-vigorous physical activity measured by the PIN3 were substantially higher than when measured by accelerometer, for example, 588 (PIN3) versus 148 (accelerometer) minutes per week. Also, correlations between self-reported and objective monitored activity varied substantially by race/ethnicity and BMI category, for example, 0.29 (p = 0.18) for overweight women versus 0.57 (p = 0.007) for obese women; 0.27 (p = 0.20) for African American versus 0.66 (p = 0.001) for white.

Conclusions: The PIN3 survey may be adequate for many applications where quick and practical assessments are needed for moderate physical activity data in low-income overweight and obese young mothers. The substantial differences in mean minutes per week between the PIN3 and accelerometer may be due to over-reported physical activity by the study participants.

Trial registration: Clinical Trials Number: NCT01839708.

References

    1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14. doi: 10.1001/jama.2014.732.
    1. Burke J-P, Williams K, Narayan K-M, Leibson C, Haffner S-M, Stern M-P. A population perspective on diabetes prevention: whom should we target for preventing weight gain? Diabetes Care. 2003;26(7):1999–2004. doi: 10.2337/diacare.26.7.1999.
    1. Preis SR, Pencina MJ, Mann DM, D'Agostino RB, Sr, Savage PJ, Fox CS. Early-adulthood cardiovascular disease risk factor profiles among individuals with and without diabetes in the Framingham Heart Study. Diabetes Care. 2013;36(6):1590–6. doi: 10.2337/dc12-1121.
    1. Koebnick C, Smith N, Huang K, Martinez MP, Clancy HA, Kushi LH. The prevalence of obesity and obesity-related health conditions in a large, multiethnic cohort of young adults in California. Ann Epidemiol. 2012;22(9):609–16. doi: 10.1016/j.annepidem.2012.05.006.
    1. Bassett DR, Jr, Wyatt HR, Thompson H, Peters JC, Hill JO. Pedometer-measured physical activity and health behaviors in U.S. adults. Med Sci Sports Exerc. 2010;42(10):1819–25. doi: 10.1249/MSS.0b013e3181dc2e54.
    1. Parks SE, Housemann RA, Brownson RC. Differential correlates of physical activity in urban and rural adults of various socioeconomic backgrounds in the United States. J Epidemiol Community Health. 2003;57(1):29–35. doi: 10.1136/jech.57.1.29.
    1. De Cocker KA, van Uffelen JG, Brown WJ. Associations between sitting time and weight in young adult Australian women. Prev Med. 2010;51(5):361–7. doi: 10.1016/j.ypmed.2010.07.009.
    1. Lahjibi E, Heude B, Dekker JM, Hojlund K, Laville M, Nolan J, et al. Impact of objectively measured sedentary behaviour on changes in insulin resistance and secretion over 3 years in the RISC study: interaction with weight gain. Diabetes Metab. 2013;39(3):217–25. doi: 10.1016/j.diabet.2012.12.006.
    1. Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA. 2003;289(14):1785–91. doi: 10.1001/jama.289.14.1785.
    1. Matthews CE, George SM, Moore SC, Bowles HR, Blair A, Park Y, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95(2):437–45. doi: 10.3945/ajcn.111.019620.
    1. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–9. doi: 10.1503/cmaj.051351.
    1. How much physical activity do adults need? []
    1. Schmidt MD, Freedson PS, Pekow P, Roberts D, Sternfeld B, Chasan-Taber L. Validation of the Kaiser Physical Activity Survey in pregnant women. Med Sci Sports Exerc. 2006;38(1):42–50. doi: 10.1249/01.mss.0000181301.07516.d6.
    1. Aittasalo M, Pasanen M, Fogelholm M, Ojala K. Validity and repeatability of a short pregnancy leisure time physical activity questionnaire. J Phys Act Health. 2010;7(1):109–18.
    1. Evenson KR, Wen F. Measuring physical activity among pregnant women using a structured one-week recall questionnaire: evidence for validity and reliability. Int J Behav Nutr Phys Act. 2010;7:21. doi: 10.1186/1479-5868-7-21.
    1. Ainsworth BE, Irwin ML, Addy CL, Whitt MC, Stolarczyk LM. Moderate physical activity patterns of minority women: the Cross-Cultural Activity Participation Study. J Womens Health Gend Based Med. 1999;8(6):805–13. doi: 10.1089/152460999319129.
    1. Collins BS, Miller YD, Marshall AL. Physical activity in women with young children: how can we assess “anything that's not sitting”? Women Health. 2007;45(2):95–116. doi: 10.1300/J013v45n02_06.
    1. Jones SA, Evenson KR, Johnston LF, Trost SG, Samuel-Hodge C, Jewell DA, et al. Psychometric properties of the modified RESIDE physical activity questionnaire among low-income overweight women. J Sci Med Sport. 2014;18(1):37–42. doi: 10.1016/j.jsams.2013.12.007.
    1. Bull FC, Maslin TS, Armstrong T. Global physical activity questionnaire (GPAQ): nine country reliability and validity study. J Phys Act Health. 2009;6(6):790–804.
    1. Ferrari P, Friedenreich C, Matthews CE. The role of measurement error in estimating levels of physical activity. Am J Epidemiol. 2007;166(7):832–40. doi: 10.1093/aje/kwm148.
    1. Chang MW, Nitzke S, Brown R, Resnicow K. A community based prevention of weight gain intervention (Mothers In Motion) among young low-income overweight and obese mothers: design and rationale. BMC Public Health. 2014;14(1):280. doi: 10.1186/1471-2458-14-280.
    1. Hendelman D, Miller K, Baggett C, Debold E, Freedson P. Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med Sci Sports Exerc. 2000;32(9 Suppl):S442–9. doi: 10.1097/00005768-200009001-00002.
    1. Melanson EL, Jr, Freedson PS. Validity of the Computer Science and Applications, Inc. (CSA) activity monitor. Med Sci Sports Exerc. 1995;27(6):934–40. doi: 10.1249/00005768-199506000-00021.
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8. doi: 10.1249/mss.0b013e31815a51b3.
    1. StataCorp . College Station. Texas: StataCorp LP; 2011. Stata Statistical Software: Release 12.
    1. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498–504. doi: 10.1097/00005768-200009001-00009.
    1. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Jr, Tudor-Locke C, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81. doi: 10.1249/MSS.0b013e31821ece12.
    1. Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56. doi: 10.1186/1479-5868-5-56.
    1. van Poppel MN, Chinapaw MJ, Mokkink LB, van Mechelen W, Terwee CB. Physical activity questionnaires for adults: a systematic review of measurement properties. Sports Med. 2010;40(7):565–600. doi: 10.2165/11531930-000000000-00000.
    1. Helmerhorst HJ, Brage S, Warren J, Besson H, Ekelund U. A systematic review of reliability and objective criterion-related validity of physical activity questionnaires. Int J Behav Nutr Phys Act. 2012;9:103. doi: 10.1186/1479-5868-9-103.
    1. Buchowski MS, Townsend KM, Chen KY, Acra SA, Sun M. Energy expenditure determined by self-reported physical activity is related to body fatness. Obes Res. 1999;7(1):23–33. doi: 10.1002/j.1550-8528.1999.tb00387.x.
    1. Walsh MC, Hunter GR, Sirikul B, Gower BA. Comparison of self-reported with objectively assessed energy expenditure in black and white women before and after weight loss. Am J Clin Nutr. 2004;79(6):1013–9.
    1. Bell R, Tennant PW, McParlin C, Pearce MS, Adamson AJ, Rankin J, et al. Measuring physical activity in pregnancy: a comparison of accelerometry and self-completion questionnaires in overweight and obese women. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):90–5. doi: 10.1016/j.ejogrb.2013.05.018.
    1. Adams SA, Matthews CE, Ebbeling CB, Moore CG, Cunningham JE, Fulton J, et al. The effect of social desirability and social approval on self-reports of physical activity. Am J Epidemiol. 2005;161(4):389–98. doi: 10.1093/aje/kwi054.
    1. Leenders NY, Sherman WM, Nagaraja HN. Energy expenditure estimated by accelerometry and doubly labeled water: do they agree? Med Sci Sports Exerc. 2006;38(12):2165–72. doi: 10.1249/01.mss.0000235883.94357.95.
    1. Altschuler A, Picchi T, Nelson M, Rogers JD, Hart J, Sternfeld B. Physical activity questionnaire comprehension: lessons from cognitive interviews. Med Sci Sports Exerc. 2009;41(2):336–43. doi: 10.1249/MSS.0b013e318186b1b1.
    1. Oostdam N, van Mechelen W, van Poppel M. Validation and responsiveness of the AQuAA for measuring physical activity in overweight and obese pregnant women. J Sci Med Sport. 2012;16(5):412–6. doi: 10.1016/j.jsams.2012.09.001.
    1. Chang M, Brown R, Nitzke S. Participant recruitment and retention in a pilot program to prevent weight gain in low-income overweight and obese mothers. BMC Public Health. 2009;9:424. doi: 10.1186/1471-2458-9-424.

Source: PubMed

Подписаться