Negative, Null and Beneficial Effects of Drinking Water on Energy Intake, Energy Expenditure, Fat Oxidation and Weight Change in Randomized Trials: A Qualitative Review

Jodi J D Stookey, Jodi J D Stookey

Abstract

Drinking water has heterogeneous effects on energy intake (EI), energy expenditure (EE), fat oxidation (FO) and weight change in randomized controlled trials (RCTs) involving adults and/or children. The aim of this qualitative review of RCTs was to identify conditions associated with negative, null and beneficial effects of drinking water on EI, EE, FO and weight, to generate hypotheses about ways to optimize drinking water interventions for weight management. RCT conditions that are associated with negative or null effects of drinking water on EI, EE and/or FO in the short term are associated with negative or null effects on weight over the longer term. RCT conditions that are associated with lower EI, increased EE and/or increased FO in the short term are associated with less weight gain or greater weight loss over time. Drinking water instead of caloric beverages decreases EI when food intake is ad libitum. Drinking water increases EE in metabolically-inflexible, obese individuals. Drinking water increases FO when blood carbohydrate and/or insulin concentrations are not elevated and when it is consumed instead of caloric beverages or in volumes that alter hydration status. Further research is needed to confirm the observed associations and to determine if/what specific conditions optimize drinking water interventions for weight management.

Keywords: drinking water; energy intake; fat oxidation; weight loss; weight management.

References

    1. Let’s Move, America’s Move to Raise a Healthier Generation of Kids. [(accessed on 8 October 2015)]; Available online:
    1. Drink Up. [(accessed on 8 October 2015)]. Available online:
    1. Centers for Disease Control and Prevention, Division of Nutrition, Physical Activity and Obesity (CDC) Rethink Your Drink. [(accessed on 8 October 2015)]; Available online: .
    1. United States Department of Agriculture (USDA) . [(accessed on 8 October 2015)]; Available online: .
    1. American Medical Association (AMA) Action Plan for Healthy Eating. [(accessed on 8 October 2015)]. Available online: .
    1. American Diabetes Association (ADA) Lose Weight by Eating Healthy. [(accessed on 8 October 2015)]. Available online: .
    1. American Heart Association (AHA) Replacing Sugary Drinks in Your Diet. [(accessed on 8 October 2015)]. Available online: .
    1. American Academy of Pediatrics Kids Should Not Consume Energy Drinks, and Rarely Need Sports Drinks, Says AAP. [(accessed on 8 October 2015)]. Available online: .
    1. American Academy of Pediatrics (AAP) Sports Drinks and Energy Drinks for Children and Adolescents: Are They Appropriate? Pediatrics. 2011;127:1182–1189.
    1. HBO The Weight of the Nation, Confronting America’s Obesity Epidemic. [(accessed on 8 October 2015)]. Available online: .
    1. World Cancer Research Fund International Inform people. [(accessed on 8 October 2015)]. Available online: .
    1. Mum, Dad I Prefer Water! Educational Programme Promoting Water Drinking among Children. [(accessed on 8 October 2015)]. Available online: .
    1. Opal Water. The Original Cool Drink. [(accessed on 8 October 2015)]; Available online: .
    1. Mexican President Urges Citizens to Exercise to Fight Obesity. [(accessed on 8 October 2015)]. Available online: .
    1. EPODE (Ensemble, Prévenons L’Obésité des Enfants) International Network EPODE and Similar Initiatives Across Europe. [(accessed on 8 October 2015)]. Available online:
    1. Water UK Wise Up on Water! [(accessed on 8 October 2015)]. Available online: .
    1. School Food Policy Country Factsheets Finland School Food Policy (Mandatory) [(accessed on 8 October 2015)]. Available online: .
    1. Israeli Public Health Program Takes Aim at Diabetes. [(accessed on 20 January 2013)]. Available online: .
    1. Muckelbauer R., Sarganas G., Gruneis A., Muller-Nordhorn J. Association between water consumption and body weight outcomes: A systematic review. Am. J. Clin. Nutr. 2013;98:282–299. doi: 10.3945/ajcn.112.055061.
    1. Goodman A.B., Blanck H.M., Sherry B., Park S., Nebeling L., Yaroch A.L. Behaviors and attitudes associated with low drinking water intake among US adults, Food Attitudes and Behaviors Survey, 2007. Prev. Chronic Dis. 2013;10:120248. doi: 10.5888/pcd10.120248.
    1. Ebbeling C.B., Feldman H.A., Chomitz V.R., Antonelli T.A., Gortmaker S.L., Osganian S.K., Ludwig D.S. A randomized trial of sugar-sweetened beverages and adolescent body weight. N. Engl. J. Med. 2012;367:1407–1416. doi: 10.1056/NEJMoa1203388.
    1. Tate D.F., Turner-McGrlevy G., Lyons E., Stevens J., Erickson K., Polzien K., Diamond M., Wang X., Popkin B. Replacing caloric beverages with water or diet beverages for weight loss in adults: Main results of the Choose Healthy Options Consciously Everyday (CHOICE) randomized clinical trial. Am. J. Clin. Nutr. 2012;95:555–563. doi: 10.3945/ajcn.111.026278.
    1. Gagliardino Comment. [(accessed on 8 October 2015)]. Available online: .
    1. Stookey J.D., Constant F., Popkin B.M., Gardner C.D. Drinking water is associated with weight loss in overweight dieting women independent of diet and activity. Obesity (Silver Spring) 2008;16:2481–2488. doi: 10.1038/oby.2008.409.
    1. Dennis E.A., Dengo A.L., Comber D.L., Flack K.D., Savla J., Davy K.P., Davy B.M. Water consumption increases weight loss during a hypocaloric diet intervention in middle-aged and older adults. Obesity (Silver Spring) 2010;18:300–307. doi: 10.1038/oby.2009.235.
    1. James J., Thomas P., Cavan D., Kerr D. Preventing childhood obesity by reducing consumption of carbonated drinks: Cluster randomized controlled trial. BMJ. 2004;328:1237–1239. doi: 10.1136/.
    1. Muckelbauer R., Libuda L., Clausen K., Toschke A.M., Reinehr T., Kersting M. Promotion and provision of drinking water in schools for overweight prevention: Randomized, controlled cluster trial. Pediatrics. 2009;123:e661–e667. doi: 10.1542/peds.2008-2186.
    1. Hernández-Cordero S., Barquera S., Rodríguez-Ramírez S., Villanueva-Borbolla M.A., González de Cossio T., Dommarco J.R., Popkin B. Substituting water for sugar-sweetened beverages reduces circulating triglycerides and the prevalence of metabolic syndrome in obese but not in overweight Mexican women in a randomized controlled trial. J. Nutr. 2014;144:1742–1752. doi: 10.3945/jn.114.193490.
    1. Siega-Riz A.M., Ghormli L.E., Mobley C., Gillis B., Stadler D., Hartstein J., Volpe S.L., Virus A., Bridgman J., The Healthy Study Group The effects of the Healthy Study intervention on middle school student dietary intakes. Int. J. Behav. Nutr. Phys. Act. 2011;8:7. doi: 10.1186/1479-5868-8-7.
    1. Peters J.C., Wyatt H.R., Foster G.D., Pan Z., Wojtanowski A.C., Vander Veur S.S., Herring S.J., Brill C., Hill J.O. The effects of water and non-nutritive sweetened beverages on weight loss during a 12-week weight loss treatment program. Obesity. 2014;22:1415–1421. doi: 10.1002/oby.20737.
    1. Della Valle D.M., Roe L.S., Rolls B.J. Does the consumption of caloric and non-caloric beverages with a meal affect energy intake? Appetite. 2005;44:187–193. doi: 10.1016/j.appet.2004.11.003.
    1. Black R.M., Tanaka P., Leiter L.A., Anderson G.H. Soft drinks with aspartame: Effect on subjective hunger, food selection, and food intake of young adult males. Physiol. Behav. 1991;49:803–810. doi: 10.1016/0031-9384(91)90321-E.
    1. Triana A.J., Apanius V., Richmond C., Castellanos V.H. Restricting fluid intake during a single meal did not affect food intake in older adults. Appetite. 2003;41:79–86. doi: 10.1016/S0195-6663(03)00053-9.
    1. Akhavan T., Luhovyy B.L., Anderson G.H. Effect of drinking compared with eating sugars or whey protein on short-term appetite and food intake. Int. J. Obes. (Lond.) 2011;35:562–569. doi: 10.1038/ijo.2010.163.
    1. Li E.T., Tsang L.B., Lui S.S. Resting metabolic rate and thermic effects of a sucrose sweetened soft drink during the menstrual cycle in young Chinese women. Can. J. Physiol. Pharmacol. 1999;77:544–550. doi: 10.1139/y99-038.
    1. Berneis K., Ninnis R., Häussinger D., Keller U. Effects of hyper- and hypoosmolality on whole body protein and glucose kinetics in humans. Am. J. Physiol. 1999;276:E188–E195.
    1. Boschmann M., Steiniger J., Franke G., Birkenfeld A.L., Luft F.C., Jordan J. Water drinking induces thermogenesis through osmosensitive mechanisms. J. Clin. Endocrinol. Metab. 2007;92:3334–3337. doi: 10.1210/jc.2006-1438.
    1. Rumpler W., Seale J., Clevidence B., Judd J., Wiley E., Yamamoto S., Komatsu T., Sawaki T., Ishikura Y., Hosoda K. Oolong tea increases metabolic rate and fat oxidation in men. J. Nutr. 2001;131:2848–2852.
    1. Del Coso J., Estevez E., Mora-Rodriguez R. Caffeine effects on short-term performance during prolonged exercise in the heat. Med. Sci. Sports Exerc. 2008;40:744–751. doi: 10.1249/MSS.0b013e3181621336.
    1. Stookey J.D., Hamer J., Espinoza G., Higa A., Ng V., Tinajero-Deck L., Havel P.J., King J.C. Orange juice limits postprandial fat oxidation after breakfast in normal-weight adolescents and adults. Adv. Nutr. 2012;3:629S–635S. doi: 10.3945/an.112.001990.
    1. Daniels M.C., Popkin B.M. The impact of water intake on energy intake and weight status: A systematic review. Nutr. Rev. 2010;68:505–521. doi: 10.1111/j.1753-4887.2010.00311.x.
    1. Kaiser K.A., Shikany J.M., Keating K.D., Allison D.B. Will reducing sugar-sweetened beverage consumption reduce obesity? Evidence supporting conjecture is strong, but evidence when testing effect is weak. Obes. Rev. 2013;14:620–633. doi: 10.1111/obr.12048.
    1. Mattes R.D., Shikany J.M., Kaiser K.A., Allison D.B. Nutritively sweetened beverage consumption and body weight: A systematic review and meta-analysis of randomized experiments. Obes. Rev. 2011;12:346–365. doi: 10.1111/j.1467-789X.2010.00755.x.
    1. Avery A., Bostock L., McCullough F. A systematic review investigating interventions that can help reduce consumption of sugar-sweetened beverages in children leading to changes in body fatness. J. Hum. Nutr. Diet. 2015;28(Suppl. 1):52–64. doi: 10.1111/jhn.12267.
    1. Dennis E.A., Flack K.D., Davy B.M. Beverage consumption and adult weight management: A review. Eat. Behav. 2009;10:237–246. doi: 10.1016/j.eatbeh.2009.07.006.
    1. Almiron-Roig E., Palla L., Guest K., Ricchiuti C., Vint N., Jebb S.A., Drewnowski A. Factors that determine energy compensation: A systematic review of preload studies. Nutr. Rev. 2013;71:458–473. doi: 10.1111/nure.12048.
    1. Stookey J.D. Drinking water and weight management. Nutr. Today. 2010;45:S7–S12. doi: 10.1097/NT.0b013e3181fe15a8.
    1. Hu F.B., Malik V.S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol. Behav. 2010;100:47–54. doi: 10.1016/j.physbeh.2010.01.036.
    1. Lim J.S., Mietus-Snyder M., Valente A., Schwarz J.M., Lustig R.H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 2010;7:251–264. doi: 10.1038/nrgastro.2010.41.
    1. Bray G.A., Nielsen S.J., Popkin B.M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 2004;79:537–543.
    1. Stanhope K.L., Schwarz J.M., Havel P.J. Adverse metabolic effects of dietary fructose: Results from the recent epidemiological, clinical, and mechanistic studies. Curr. Opin. Lipidol. 2013;24:198–206. doi: 10.1097/MOL.0b013e3283613bca.
    1. Hellerstein M.K. De novo lipogenesis in humans: Metabolic and regulatory aspects. Eur. J. Clin. Nutr. 1999;53(Suppl. 1):S53–S65. doi: 10.1038/sj.ejcn.1600744.
    1. Jones P.J. Tracing lipogenesis in humans using deuterated water. Can. J. Physiol. Pharmacol. 1996;74:755–760. doi: 10.1139/y96-070.
    1. Ameer F., Scandiuzzi L., Hasnain S., Kalbacher H., Zaidi N. De novo lipogenesis in health and disease. Metabolism. 2014;63:895–902. doi: 10.1016/j.metabol.2014.04.003.
    1. Minehira K., Vega N., Vidal H., Acheson K., Tappy L. Effect of carbohydrate overfeeding on whole body macronutrient metabolism and expression of lipogenic enzymes in adipose tissue of lean and overweight humans. Int. J. Obes. Relat. Metab. Disord. 2004;28:1291–1298. doi: 10.1038/sj.ijo.0802760.
    1. Schwarz J.M., Neese R.A., Turner S., Dare D., Hellerstein M.K. Short-term alterations in carbohydrate energy intake in humans. Striking effects on hepatic glucose production, de novo lipogenesis, lipolysis, and whole-body fuel selection. J. Clin. Investig. 1995;96:2735–2743. doi: 10.1172/JCI118342.
    1. McDevitt R.M., Bott S.J., Harding M., Coward W.A., Bluck L.J., Prentice A.M. De novo lipogenesis during controlled overfeeding with sucrose of glucose in lean and obese women. Am. J. Clin. Nutr. 2001;74:737–746.
    1. Moore J.B., Gunn P.J., Fielding B.A. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients. 2014;6:5679–5703. doi: 10.3390/nu6125679.
    1. Drewnowski A., Rehm C.D., Constant F. Water and beverage consumption among adults in the United States: Cross-sectional study using data from NHANES 2005–2010. BMC Public Health. 2013;13:1068. doi: 10.1186/1471-2458-13-1068.
    1. Guelinckx I., Iglesia I., Bottin J.H., de Miguel-Etayo P., González-Gil E.M., Salas-Salvadó J., Kavouras S.A., Gandy J., Martinez H., Bardosono S., et al. Intake of water and beverages of children and adolescents in 13 countries. Eur. J. Nutr. 2015;54(Suppl. 2):69–79. doi: 10.1007/s00394-015-0955-5.
    1. Kaushik A., Mullee M.A., Bryant T.N., Hill C.M. A study of the association between children’s access to drinking water in primary schools and their fluid intake: Can water be “cool” in school? Child Care Health Dev. 2007;33:409–415. doi: 10.1111/j.1365-2214.2006.00721.x.
    1. Bar-Or O. Nutritional considerations for the child athlete. Can. J. Appl. Physiol. 2001;26:S186–S191. doi: 10.1139/h2001-053.
    1. Phillips P.A., Rolls B.J., Ledingham J.G., Forsling M.L., Morton J.J., Crowe M.J., Wollner L. Reduced thirst after water deprivation in healthy elderly men. N. Engl. J. Med. 1984;311:753–759. doi: 10.1056/NEJM198409203111202.
    1. Institute of Medicine (U.S.) Dietary Reference intakes for Water, Potassium, Sodium, Chloride, and Sulfate. National Academies Press; Washington, DC, USA: 2005. Panel on Dietary Reference Intakes for Electrolytes and Water, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board.
    1. Knechtle B., Muller G., Willmann F., Kotteck K., Eser P., Knecht H. Fat oxidation in men and women endurance athletes in running and cycling. Int. J. Sports Med. 2004;25:38–44.
    1. Rowlands D.S., Johnson N.A., Thomson J.A., Chapman P., Stannard S.R. Exogenous glucose oxidation is reduced with carbohydrate feeding during exercise after starvation. Metabolism. 2009;58:1161–1169. doi: 10.1016/j.metabol.2009.03.016.
    1. Andrade A.M., Kresge D.L., Teixeira P.J., Baptista F., Melanson K.J. Does eating slowly influence appetite and energy intake when water intake is controlled? Int. J. Behav. Nutr. Phys. Act. 2012;9:135. doi: 10.1186/1479-5868-9-135.
    1. Shah M., Copeland J., Dart L., Adams-Huet B., James A., Rhea D. Slower eating speed lowers energy intake in normal-weight but not overweight/obese subjects. J. Acad. Nutr. Diet. 2014;114:393–402. doi: 10.1016/j.jand.2013.11.002.
    1. Maersk M., Belza A., Holst J.J., Fenger-Grøn M., Pedersen S.B., Astrup A., Richelsen B. Satiety scores and satiety hormone response after sucrose-sweetened soft drink compared with isocaloric semi-skimmed milk and with non-caloric soft drink: A controlled trial. Eur. J. Clin. Nutr. 2012;66:523–529. doi: 10.1038/ejcn.2011.223.
    1. King N.A., Appleton K., Rogers P.J., Blundell J.E. Effects of sweetness and energy in drinks on food intake following exercise. Physiol. Behav. 1999;66:375–379. doi: 10.1016/S0031-9384(98)00280-7.
    1. Cecil J.E., Palmer C.N.A., Wrieden W., Murrie I., Bolton-Smith C., Watt P., Wallis D.J., Hetherington M.M. Energy intakes of children after preloads: Adjustment, not compensation. Am. J. Clin. Nutr. 2005;82:302–308.
    1. Hagg A., Jacobson T., Nordlund G., Rossner S. Effects of milk or water on lunch intake in preschool children. Appetite. 1998;31:83–92. doi: 10.1006/appe.1997.0152.
    1. Wilson J.F. Preschool children maintain intake of other foods at a meal including sugared chocolate milk. Appetite. 1991;16:61–67. doi: 10.1016/0195-6663(91)90112-6.
    1. Davy B.M., Dennis E.A., Dengo A.L., Wilson K.L., Davy K.P. Water consumption reduces energy intake at a breakfast meal in obese older adults. J. Am. Diet. Assoc. 2008;108:1236–1239. doi: 10.1016/j.jada.2008.04.013.
    1. Van Walleghen E.L., Orr J.S., Gentile C.L., Davy B.M. Pre-meal water consumption reduces meal energy intake in older but not younger subjects. Obesity. 2007;15:93–99. doi: 10.1038/oby.2007.506.
    1. Birch L.L., McPhee L., Sullivan S. Children’s food intake following drinks sweetened with sucrose or aspartame: Time course effects. Physiol. Behav. 1989;45:387–395. doi: 10.1016/0031-9384(89)90145-5.
    1. Birch L.L., Fisher J.O. Food intake regulation in children. Fat and sugar substitutes and intake. Ann. N. Y. Acad. Sci. 1997;819:194–220. doi: 10.1111/j.1749-6632.1997.tb51809.x.
    1. Birch L.L., McPhee L.S., Bryant J.L., Johnson S.L. Children’s lunch intake: Effects of midmorning snacks varying in energy density and fat content. Appetite. 1993;20:83–94. doi: 10.1006/appe.1993.1011.
    1. Lavin J.H., French S.A., Read N.W. The effect of sucrose- and aspartame-sweetened drinks on energy intake, hunger and food choice of female, moderately restrained eaters. Int. J. Obes. Relat. Metab. Disord. 1997;21:37–42. doi: 10.1038/sj.ijo.0800360.
    1. Rolls B.J., Kim S., Fedoroff I.C. Effects of drinks sweetened with sucrose or aspartame on hunger, thirst and food intake in men. Physiol. Behav. 1990;48:19–26. doi: 10.1016/0031-9384(90)90254-2.
    1. Westerterp-plantenga M.S., Verwegen C.R.T. The appetizing effect of an aperitif in overweight and normal weight humans. Am. J. Clin. Nutr. 1999;69:205–212.
    1. Rolls B.J., Bell E.A., Thorwart M.L. Water incorporated into a food but not served with a food decreases energy intake in lean women. Am. J. Clin. Nutr. 1999;70:448–455.
    1. Akhavan T., Luhovyy B.L., Brown P.H., Cho C.E., Anderson G.H. Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am. J. Clin. Nutr. 2010;91:966–975. doi: 10.3945/ajcn.2009.28406.
    1. Spitzer L., Rodin J. Effects of fructose and glucose preloads on subsequent food intake. Appetite. 1987;8:135–145. doi: 10.1016/S0195-6663(87)80006-5.
    1. Rodin J. Comparative effects of fructose, aspartame, glucose and water preloads on calorie and macronutrient intake. Am. J. Clin. Nutr. 1990;51:428–435.
    1. Akhavan T., Anderson G.H. Effects of glucose-to-fructose ratios in solutions on subjective satiety, food intake, and satiety hormones in young men. Am. J. Clin. Nutr. 2007;86:1354–1363.
    1. Rodin J., Reed D., Jamner L. Metabolic effects of fructose and glucose: Implications for food intake. Am. J. Clin. Nutr. 1988;47:683–689.
    1. Moyer A.E., Rodin J. Fructose and behavior: Does fructose influence food intake and macronutrient selection? Am. J. Clin. Nutr. 1993;58:810S–814S.
    1. Anderson G.H., Luhovyy B., Akhavan T., Panahi S. Milk proteins in the regulation of body weight, satiety, food intake and glycemia. In: Clemens R.A., Hernell O., Michaelsen K.F., editors. Milk and Milk Products in Human Nutrition. Volume 67. Nestec Ltd.; Vevey, Switzerland: 2011. pp. 147–159. (Nestlé Nutrition Institute Workshop Series: Pediatric Program).
    1. Riby J.E., Fujisawa T., Kretchmer N. Fructose absorption. Am. J. Clin. Nutr. 1993;58S:748S–758S.
    1. Ravich W.J., Theodore M.B., Thomas M. Fructose: Incomplete intestinal absorption in humans. Gastroenterology. 1983;84:26–29.
    1. Engell D. Interdependency of food and water intake in humans. Appetite. 1988;10:133–141. doi: 10.1016/0195-6663(88)90064-5.
    1. Toates F.M., Oatley K. Inhibition of ad libitum feeding in rats by salt injections and water deprivation. Q. J. Exp. Psychol. 1972;24:215–224. doi: 10.1080/00335557243000094.
    1. Schoorlemmer G.H., Evered M.D. Water and solute balance in rats during 10 h water deprivation and rehydration. Can. J. Physiol. Pharmacol. 1993;71:379–386. doi: 10.1139/y93-058.
    1. Schoorlemmer G.H., Evered M.D. Reduced feeding during water deprivation depends on hydration of the gut. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002;283:R1061–R1069. doi: 10.1152/ajpregu.00236.2002.
    1. Boyle C.N., Lorenzen S.M., Compton D., Watts A.G. Dehydration-anorexia derives from a reduction in meal size but not meal number. Physiol. Behav. 2012;105:305–314. doi: 10.1016/j.physbeh.2011.08.005.
    1. Watts A.G., Boyle C.N. The functional architecture of dehydration-anorexia. Physiol. Behav. 2010;100:472–477. doi: 10.1016/j.physbeh.2010.04.010.
    1. Kirwan J.P., O’Gorman D., Evans W.J. A moderate glycemic meal before endurance exercise can enhance performance. J. Appl. Physiol. 1998;84:53–59.
    1. Wallis G.A., Dawson R., Achten J., Webber J., Jeukendrup A. Metabolic response to carbohydrate ingestion during exercise in males and females. Am. J. Physiol. Endocrinol. Metab. 2006;290:E708–E715. doi: 10.1152/ajpendo.00357.2005.
    1. Mitchell J.B., Costill D.L., Houmard J.A., Fink W.J., Pascoe D.D., Pearson D.R. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J. Appl. Physiol. 1989;67:1843–1849.
    1. Arkinstall M.J., Bruce C.R., Nikolopoulos V., Garnham A.P., Hawley J.A. Effect of carbohydrate ingestion on metabolism during running and cycling. J. Appl. Physiol. 2001;91:2125–2134. doi: 10.1097/00005768-200105001-00016.
    1. Tsintzas O.K., Williams C., Boobis L., Greenhaff P. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. J. Appl. Physiol. 1996;81:801–809.
    1. Logan-Sprenger H.M., Heigenhauser G.J.F., Killian K.J., Spriet L.L. Effects of dehydration during cycling on skeletal muscle metabolism in females. Med. Sci. Sports Exerc. 2012;44:1949–1957. doi: 10.1249/MSS.0b013e31825abc7c.
    1. Nassis G.P., Williams C., Chisnall P. Effect of a carbohydrate-electrolyte drink on endurance capacity during prolonged intermittent high intensity running. Br. J. Sports Med. 1998;32:248–252. doi: 10.1136/bjsm.32.3.248.
    1. Fallowfield J.L., Williams C., Booth J., Choo B.H., Growns S. Effect of water ingestion on endurance capacity during prolonged running. J. Sports Sci. 1996;14:497–502. doi: 10.1080/02640419608727736.
    1. Gonzalez-Alonso J., Calbet J.A.L., Nielsen B. Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans. J. Physiol. 1999;520:577–589. doi: 10.1111/j.1469-7793.1999.00577.x.
    1. Jentjens R.L., Underwood K., Achten J., Currell K., Mann C.H., Jeukendrup A.E. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J. Appl. Physiol. 2006;100:807–816. doi: 10.1152/japplphysiol.00322.2005.
    1. Bilzon J.L.J., Murphy J.L., Allsopp A.J., Wootton S.A., Williams C. Influence of glucose ingestion by humans during recovery from exercise on substrate utilisation during subsequent exercise in a warm environment. Eur. J. Appl. Physiol. 2002;87:318–326.
    1. Komatsu T., Nakamori M., Komatsu K., Hosoda K., Okamura M., Toyama K., Ishikura Y., Sakai T., Kunii D., Yamamoto S. Oolong tea increases energy metabolism in Japanese females. J. Med. Investig. 2003;50:170–175.
    1. Dubnov-Raz G., Constantini N.W., Yariv H., Nice S., Shapira N. Influence of water drinking on resting energy expenditure in overweight children. Int. J. Obes. (Lond.) 2011;35:1295–1300. doi: 10.1038/ijo.2011.130.
    1. Chu L., Riddell M., Takken T., Timmons B.W. Carbohydrate intake reduces fat oxidation during exercise in obese boys. Eur. J. Appl. Physiol. 2011;111:3135–3141. doi: 10.1007/s00421-011-1940-1.
    1. Blacker S.D., Williams N.C., Fallowfield J.L., Willems M.E. The effect of a carbohydrate beverage on the physiological responses during prolonged load carriage. Eur. J. Appl. Physiol. 2011;111:1901–1908. doi: 10.1007/s00421-010-1822-y.
    1. Hawley J.A., Burke L.M., Angus D.J., Fallon K.E., Martin D.T., Febbraio M.A. Effect of altering substrate availability on metabolism and performance during intense exercise. Br. J. Nutr. 2000;84:829–838. doi: 10.1017/S0007114500002440.
    1. Horowitz J.F., Mora-Rodriguez R., Byerley L.O., Coyle E.F. Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Am. J. Physiol. 1997;273:E768–E775. doi: 10.1097/00005768-199605001-00443.
    1. Liljeberg Elmstahl H., Bjorck I.M.E. Milk as a supplement to mixed meals may elevate postprandial insulinaemia. Eur. J. Clin. Nutr. 2001;55:994–999. doi: 10.1038/sj.ejcn.1601259.
    1. Keller U., Szinnai G., Bilz S., Berneis K. Effects of changes in hydration on protein, glucose and lipid metabolism in man: Impact on health. Eur. J. Clin. Nutr. 2003;57(Suppl. 2):S69–S74. doi: 10.1038/sj.ejcn.1601904.
    1. Hargreaves M., Dillo P., Angus D., Febbraio M. Effect of fluid ingestion on muscle metabolism during prolonged exercise. J. Appl. Physiol. 1996;80:363–366.
    1. Maughan R.J., Bethell L.R., Leiper J.B. Effects of ingested fluids on exercise capacity and on cardiovascular and metabolic responses to prolonged exercise in man. Exp. Physiol. 1996;81:847–859. doi: 10.1113/expphysiol.1996.sp003981.
    1. Gonzalez-Alonso J., Calbet J.A.L., Nielsen B. Muscle blood flow is reduced with dehydration during prolonged exercise in humans. J. Physiol. 1998;513:895–905. doi: 10.1111/j.1469-7793.1998.895ba.x.
    1. Yancey P.H., Clark M.E., Hand S.C., Bowlus R.D., Somero G.N. Living with water stress: Evolution of osmolyte systems. Science. 1982;217:1214–1222. doi: 10.1126/science.7112124.
    1. Lang F., Busch G.L., Ritter M., Völkl H., Waldegger S., Gulbins E., Häussinger D. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 1998;78:247–306.
    1. Ritz P., Salle A., Simard G., Dumas J.F., Foussard F., Malthiery Y. Effects of changes in water compartments on physiology and metabolism. Eur. J. Clin. Nutr. 2003;57(Suppl. 2):S2–S5. doi: 10.1038/sj.ejcn.1601894.
    1. Schliess F., Häussinger D. Cell volume and insulin signaling. Int. Rev. Cytol. 2003;225:187–228.
    1. Agius L., Peak M., Beresford G., al-Habori M., Thomas T.H. The role of ion content and cell volume in insulin action. Biochem. Soc. Trans. 1994;22:516–522. doi: 10.1042/bst0220516.
    1. Shamah Levy T., Morales Ruán C., Amaya Castellanos C., Salazar Coronel A., Jiménez Aguilar A., Méndez Gómez Humarán I. Effectiveness of a diet and physical activity promotion strategy on the prevention of obesity in Mexican school children. BMC Public Health. 2012;12:152. doi: 10.1186/1471-2458-12-152.
    1. De Ruyter J.C., Olthof M.R., Seidell J.C., Katan M.B. A trial of sugar-free or sugar sweetened beverages and body weight in children. N. Engl. J. Med. 2012;367:1397–1406. doi: 10.1056/NEJMoa1203034.
    1. Sichieri R., Trotte A.P., deSouza R.A., Veiga G.V. School randomized trial on prevention of excessive weight gain by discouraging students from drinking sodas. Public Health Nutr. 2008;12:197–202. doi: 10.1017/S1368980008002644.
    1. Ebbeling C.B., Feldman H.A., Osganian S.K., Chomitz V. Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: A randomized controlled pilot study. Pediatrics. 2006;117:673–680. doi: 10.1542/peds.2005-0983.
    1. Stookey J.D., del Toro R., Hamer J., Medina A., Higa A., Ng V., TinajeroDeck L., Juarez L. Qualitative and/or quantitative drinking water recommendations for pediatric obesity treatment. J. Obes. Weight Loss Ther. 2014;4:232. doi: 10.4172/2165-7904.1000232.
    1. Arnberg K., Mølgaard C., Michaelsen K.F., Jensen S.M., Trolle E., Larnkjær A. Skim milk, whey, and casein increase body weight and whey and casein increase the plasma C-peptide concentration in overweight adolescents. J. Nutr. 2012;142:2083–2090. doi: 10.3945/jn.112.161208.
    1. Akers J.D., Cornett R.A., Savla J.S., Davy K.P., Davy B.M. Daily self-monitoring of body weight, step count, fruit and vegetable intake and water consumption: A feasible and effective long-term weight loss maintenance approach. J. Acad. Nutr. Diet. 2012;112:685–692. doi: 10.1016/j.jand.2012.01.022.
    1. Verbestel V., DeCoen V., van Winckel M., Huybrechts I., Maes L., de Bourdeaudhuij I. Prevention of overweight in children younger than 2 years old: A pilot cluster randomized controlled trial. Public Health Nutr. 2014;17:1384–1392. doi: 10.1017/S1368980013001353.
    1. Rosário R., Oliveira B., Araújo A., Lopes O., Padrão P., Moreira A., Teixeira V., Barros R., Pereira B., Moreira P. The impact of an intervention taught by trained teachers on childhood overweight. Int. J. Environ. Res. Public Health. 2012;9:1355–1367. doi: 10.3390/ijerph9041355.
    1. Egger M., Smith G.D. Principles of and procedures for systematic reviews. In: Egger M., Smith G.D., Altman D.G., editors. Systematic Reviews in Health Care, Meta-Analysis in Context. BMJ Publishing Group; London, UK: 2001. pp. 23–42.
    1. Wells M., Williams B., Treweek S., Coyle J., Taylor J. Intervention description is not enough: Evidence from an in depth multiple case study on the untold role and impact of context in randomized controlled trials of seven complex interventions. Trials. 2012;13:95. doi: 10.1186/1745-6215-13-95.
    1. Improved Clinical Effectiveness Through Behavioral Research Group (ICEBeRG) Designing theoretically informed implementation interventions. Implement. Sci. 2006;1:4. doi: 10.1186/1748-5908-1-4.
    1. Wilmore J.H., Costill D.L. Physiology of Sport and Exercise. 3rd ed. Human Kinetics Publishing; Champaign, IL, USA: 2005.
    1. Stookey J.D., Barclay D., Arieff A., Popkin B.M. The altered fluid distribution in obesity may reflect plasma hypertonicity. Eur. J. Clin. Nutr. 2007;61:190–199. doi: 10.1038/sj.ejcn.1602521.
    1. Kenney E.L., Long M.W., Cradock A.L., Gortmaker S.L. Prevalence of Inadequate Hydration among US Children and Disparities by Gender and Race/Ethnicity: National Health and Nutrition Examination Survey, 2009–2012. Am. J. Public Health. 2015;105:e113–e118. doi: 10.2105/AJPH.2015.302572.
    1. Bonnet F., Lepicard E.M., Cathrin L., Letellier C., Constant F., Hawili N., Friedlander G. French children start their school day with a hydration deficit. Ann. Nutr. Metab. 2012;60:257–263.
    1. Chenevière X., Borrani F., Sangsue D., Gojanovic B., Malatesta D. Gender differences in whole-body fat oxidation kinetics during exercise. Appl. Physiol. Nutr. Metab. 2011;36:88–95. doi: 10.1139/H10-086.
    1. Dasilva S.G., Guidetti L., Buzzachera C.F., Elsangedy H.M., Krinski K., de Campos W., Goss F.L., Baldari C. Gender-based differences in substrate use during exercise at a self-selected pace. J. Strength Cond. Res. 2011;25:2544–2551. doi: 10.1519/JSC.0b013e3181fb4962.
    1. Holt S.H., Sandona N., Brand-Miller J.C. The effects of sugar-free vs sugar-rich beverages on feelings of fullness and subsequent food intake. Int. J. Food Sci. Nutr. 2000;51:59–71.
    1. Veitch J., Singh A., van Stralen M.M., van Mechelen W., Brug J., Chinapaw M.J. Reduction in sugar-sweetened beverages is not associated with more water or diet drinks. Public Health Nutr. 2011;14:1388–1393. doi: 10.1017/S1368980010002727.
    1. United States Department of Agriculture (USDA) Scientific Report of the 2015 Dietary Guidelines Committee: Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. United States Department of Health and Human Services; Washington, DC, USA: 2015.
    1. Zemel M.B., Richards J., Mathis S., Milstead A., Gebhardt L., Silva E. Dairy augmentation of total and central fat loss in obese subjects. Int. J. Obes. (Lond.) 2005;29:391–397. doi: 10.1038/sj.ijo.0802880.
    1. Stookey J.D., Klein A., Hamer J., Chi C., Higa A., Ng V., Arieff A., Kuypers F.A., Larkin S., Perrier E., et al. RBC deformability and amino acid concentrations after hypo-osmotic challenge may reflect chronic cell hydration status in healthy young men. Physiol. Rep. 2013;1:e00117. doi: 10.1002/phy2.117.
    1. Ezendam N.P., Brug J., Oenema A. Evaluation of the Web-based computer-tailored FATaintPHAT intervention to promote energy balance among adolescents: Results from a school cluster randomized trial. Arch. Pediatr. Adolesc. Med. 2012;166:248–255. doi: 10.1001/archpediatrics.2011.204.
    1. Parretti H.M., Aveyard P., Blannin A., Clifford S.J., Coleman S.J., Roalfe A., Daley A.J. Efficacy of water preloading before main meals as a strategy for weight loss in primary care patients with obesity: RCT. Obesity. 2015;23:1785–1791. doi: 10.1002/oby.21167.

Source: PubMed

Подписаться