Transcutaneous cervical vagal nerve stimulation reduces sympathetic responses to stress in posttraumatic stress disorder: A double-blind, randomized, sham controlled trial

Nil Z Gurel, Matthew T Wittbrodt, Hewon Jung, Md Mobashir H Shandhi, Emily G Driggers, Stacy L Ladd, Minxuan Huang, Yi-An Ko, Lucy Shallenberger, Joy Beckwith, Jonathon A Nye, Bradley D Pearce, Viola Vaccarino, Amit J Shah, Omer T Inan, J Douglas Bremner, Nil Z Gurel, Matthew T Wittbrodt, Hewon Jung, Md Mobashir H Shandhi, Emily G Driggers, Stacy L Ladd, Minxuan Huang, Yi-An Ko, Lucy Shallenberger, Joy Beckwith, Jonathon A Nye, Bradley D Pearce, Viola Vaccarino, Amit J Shah, Omer T Inan, J Douglas Bremner

Abstract

Objective: Exacerbated autonomic responses to acute stress are prevalent in posttraumatic stress disorder (PTSD). The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on autonomic responses to acute stress in patients with PTSD. The authors hypothesized tcVNS would reduce the sympathetic response to stress compared to a sham device.

Methods: Using a randomized double-blind approach, we studied the effects of tcVNS on physiological responses to stress in patients with PTSD (n = 25) using noninvasive sensing modalities. Participants received either sham (n = 12) or active tcVNS (n = 13) after exposure to acute personalized traumatic script stress and mental stress (public speech, mental arithmetic) over a three-day protocol. Physiological parameters related to sympathetic responses to stress were investigated.

Results: Relative to sham, tcVNS paired to traumatic script stress decreased sympathetic function as measured by: decreased heart rate (adjusted β = -5.7%; 95% CI: ±3.6%, effect size d = 0.43, p < 0.01), increased photoplethysmogram amplitude (peripheral vasodilation) (30.8%; ±28%, 0.29, p < 0.05), and increased pulse arrival time (vascular function) (6.3%; ±1.9%, 0.57, p < 0.0001). Similar (p < 0.05) autonomic, cardiovascular, and vascular effects were observed when tcVNS was applied after mental stress or without acute stress.

Conclusion: tcVNS attenuates sympathetic arousal associated with stress related to traumatic memories as well as mental stress in patients with PTSD, with effects persisting throughout multiple traumatic stress and stimulation testing days. These findings show that tcVNS has beneficial effects on the underlying neurophysiology of PTSD. Such autonomic metrics may also be evaluated in daily life settings in tandem with tcVNS therapy to provide closed-loop delivery and measure efficacy.ClinicalTrials.gov Registration # NCT02992899.

Keywords: Electroceuticals; Posttraumatic stress disorder; Stress; Transcutaneous cervical stimulation; Vagus nerve stimulation; Wearable bioelectronic medicine.

© 2020 The Authors.

Figures

Fig. 1
Fig. 1
tcVNS without acute stress: Outcomes for stimulation without acute stress, merged from all days. Bars represent the unadjusted mean changes from baseline, error bars: 95% confidence interval (CI), values calculated from raw data, * indicates p < 0.05. β coefficients, adjusted CI, effect sizes (d), and p-values were reported in β (±CI, d, p) format. Active tcVNS group experienced the following relative to sham after adjustments: (A) The ratio of short-term variability to long-term variability (SD1/SD2) increased following stimulation by 14.1% (±11.6%, d = 0.43, p = 0.019). (B) Heart rate (HR) decreased following stimulation by 2.7% (±2.0%, d = 0.21, p = 0.009). (C) Photoplethysmogram (PPG) amplitude increased during stimulation by 43.4% (±43.4%, d = 0.53, p = 0.049) and following stimulation by 73.1% (±63.2%, d = 0.67, p = 0.025). (D) Pulse arrival time (PAT) increased during stimulation by 2.5% (±2.2%, d = 0.26, p = 0.026).
Fig. 2
Fig. 2
tcVNS after traumatic stress: Outcomes for stimulation following traumatic stress (all six scripts). Bars represent the unadjusted mean changes from baseline, error bars: 95% confidence interval (CI), values calculated from raw data, * indicates p < 0.05. β coefficients, adjusted CI, effect sizes (d), and p-values were reported in β (±CI, d, p) format. Active tcVNS group experienced the following relative to sham after traumatic stress after adjustments: (A) Heart rate (HR) decreased during stimulation by 5.6% (±3.6%, d = 0.43, p = 0.003), and following stimulation by 3.9% (±3.0%, d = 0.29, p = 0.013). (B) Photoplethysmogram (PPG) amplitude increased during stimulation by 30.8% (±28.0%, d = 0.41, p = 0.032). (C) Pulse arrival time (PAT) decreased less during traumatic stress by 9.2% (±3.0%, d = 0.15, p < 0.0001), stimulation by 2.2% (±2.2%, d = 0.42, p = 0.045), and following stimulation by 6.2% (±1.9%, d = 0.57, p < 0.0001).
Fig. 3
Fig. 3
Change in long-term heart rate variability (SD2) for multiple stimulation protocol following traumatic stress (four traumatic stress and six stimulation administrations on the first day). Bars represent the unadjusted mean changes from baseline, error bars: 95% confidence interval (CI), values calculated from raw data, * indicates p 

Fig. 4

tcVNS after mental stress: Outcomes…

Fig. 4

tcVNS after mental stress: Outcomes for stimulation following two types of mental stress,…
Fig. 4
tcVNS after mental stress: Outcomes for stimulation following two types of mental stress, public speech and mental arithmetic. Bars represent the unadjusted mean changes from baseline, error bars: 95% confidence interval (CI), values calculated from raw data, * indicates p < 0.05. β coefficients, adjusted CI, effect sizes (d), and p-values were reported in β (±CI, d, p) format. Active tcVNS group experienced the following relative to sham after adjustments: (A) SD1/SD2 increased during stimulation right after speech task by 23.1% (±21.1%, d = 0.71, p = 0.033). (B) Similar to the speech task, SD1/SD2 increased by 41.2% (±22.5%, d = 0.44, p = 0.001). (C) Pre-ejection period (83) increased following stimulation after speech task by 6.8% (±5%, d = 0.16, p = 0.009). (D) Pulse pressure (PP) decreased following stimulation after mental arithmetic by 9.6% (±9.7%, d = 0.68, p = 0.049).
Fig. 4
Fig. 4
tcVNS after mental stress: Outcomes for stimulation following two types of mental stress, public speech and mental arithmetic. Bars represent the unadjusted mean changes from baseline, error bars: 95% confidence interval (CI), values calculated from raw data, * indicates p < 0.05. β coefficients, adjusted CI, effect sizes (d), and p-values were reported in β (±CI, d, p) format. Active tcVNS group experienced the following relative to sham after adjustments: (A) SD1/SD2 increased during stimulation right after speech task by 23.1% (±21.1%, d = 0.71, p = 0.033). (B) Similar to the speech task, SD1/SD2 increased by 41.2% (±22.5%, d = 0.44, p = 0.001). (C) Pre-ejection period (83) increased following stimulation after speech task by 6.8% (±5%, d = 0.16, p = 0.009). (D) Pulse pressure (PP) decreased following stimulation after mental arithmetic by 9.6% (±9.7%, d = 0.68, p = 0.049).

References

    1. Aaronson S.T., Sears P., Ruvuna F., Bunker M., Conway C.R. A 5-year observational study of patients with treatment-resistant depression treated with vagus nerve stimulation or treatment as usual: comparison of response, remission, and suicidality. Am. J. Psychiatr. 2017;174(7):640–648.
    1. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007;28(3):R1–R39.
    1. Ardell J.L., Rajendran P.S., Nier H.A., KenKnight B.H., Armour J.A. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function. Am. J. Physiol. Heart Circ. Physiol. 2015;309(10):H1740–H1752.
    1. Assenza G., Campana C., Colicchio G., Tombini M., Assenza F., Di Pino G. Transcutaneous and invasive vagal nerve stimulations engage the same neural pathways: in-vivo human evidence. Brain Stimulation. 2017;10(4):853–854.
    1. Badran B.W., Mithoefer O.J., Summer C.E., LaBate N.T., Glusman C.E., Badran A.W. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 2018;11(4):699–708.
    1. Badran B.W., Dowdle L.T., Mithoefer O.J., LaBate N.T., Coatsworth J., Brown J.C. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul. 2018;11(3):492–500.
    1. Becker C.B., Zayfert C., Anderson E. A survey of psychologists' attitudes towards and utilization of exposure therapy for PTSD. Behav. Res. Ther. 2004;42(3):277–292.
    1. Bigger J.T., Jr., Fleiss J.L., Steinman R.C., Rolnitzky L.M., Kleiger R.E., Rottman J.N. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. 1992;85(1):164–171.
    1. Blake D.D., Weathers F.W., Nagy L.M., Kaloupek D.G., Gusman F.D., Charney D.S. The development of a clinician-administered PTSD Scale. J. Trauma Stress. 1995;8(1):75–90.
    1. Boucsein W., Fowles D.C., Grimnes S., Ben-Shakhar G., roth W.T., Dawson M.E. Publication recommendations for electrodermal measurements. Psychophysiology. 2012;49(8):1017–1034.
    1. Bradley R., Greene J., Russ E., Dutra L., Westen D. A multidimensional meta-analysis of psychotherapy for PTSD. Am. J. Psychiatr. 2005;162(2):214–227.
    1. Bradley M.M., Miccoli L., Escrig M.A., Lang P.J. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology. 2008;45(4):602–607.
    1. Bremner J.D., Rapaport M.H. Vagus nerve stimulation: back to the future. Am. J. Psychiatr. 2017;124(7):609–610.
    1. Bremner J.D., Scott T.M., Delaney R.C., Southwick S.M., Mason J.W., Johnson D.R. Deficits in short-term memory in posttraumatic stress disorder. Am. J. Psychiatr. 1993;150(7):1015–1019.
    1. Bremner J.D., Licinio J., Darnell A., Krystal J.H., Owens M.J., Southwick S.M. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am. J. Psychiatr. 1997;154(5):624–629.
    1. Bremner J.D., Narayan M., Staib L.H., Southwick S.M., McGlashan T., Charney D.S. Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. Am. J. Psychiatr. 1999;156(11):1787–1795.
    1. Bremner J.D., Staib L.H., Kaloupek D., Southwick S.M., Soufer R., Charney D.S. Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study. Biol. Psychiatr. 1999;45(7):806–816.
    1. Bremner J.D., Vythilingam M., Vermetten E., Adil J., Khan S., Nazeer A. Cortisol response to a cognitive stress challenge in posttraumatic stress disorder (PTSD) related to childhood abuse. Psychoneuroendocrinology. 2003;28(6):733–750.
    1. Bretherton B., Atkinson L., Murray A., Clancy J., Deuchars S., Deuchars J. Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation. Aging (Albany NY) 2019;11(14):4836–4857.
    1. Brock C., Brock B., Aziz Q., Moller H.J., Pfeiffer Jensen M., Drewes A.M. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha. Neuro Gastroenterol. Motil. 2017;29(5)
    1. Burger A.M., Verkuil B., Van Diest I., Van der Does W., Thayer J.F., Brosschot J.F. The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans. Neurobiol. Learn. Mem. 2016;132:49–56.
    1. Burger A.M., Verkuil B., Fenlon H., Thijs L., Cools L., Miller H.C. Mixed evidence for the potential of non-invasive transcutaneous vagal nerve stimulation to improve the extinction and retention of fear. Behav. Res. Ther. 2017;97:64–74.
    1. Burger A.M., Van Diest I., van der Does W., Hysaj M., Thayer J.F., Brosschot J.F. Transcutaneous vagus nerve stimulation and extinction of prepared fear: a conceptual non-replication. Sci. Rep. 2018;8(1):11471.
    1. Cahill S.P., Foa E.B., Hembree E.A., Marshall R.D., Nacash N. Dissemination of exposure therapy in the treatment of posttraumatic stress disorder. J. Trauma Stress. 2006;19(5):597–610.
    1. Camm A.J., Malik M., Bigger J., Breithardt G., Cerutti S., Cohen R.J. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996;17(3):354–381.
    1. Chen S.P., Ay I., de Morais A.L., Qin T., Zheng Y., Sadeghian H. Vagus nerve stimulation inhibits cortical spreading depression. Pain. 2016;157(4):797–805.
    1. Clancy J.A., Mary D.A., Witte K.K., Greenwood J.P., Deuchars S.A., Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7(6):871–877.
    1. Cukor J., Olden M., Lee F., Difede J. Evidence-based treatments for PTSD, new directions, and special challenges. Ann. N. Y. Acad. Sci. 2010;1208:82–89.
    1. Elzinga B.M., Schmahl C.G., Vermetten E., van Dyck R., Bremner J.D. Higher cortisol levels following exposure to traumatic reminders in abuse-related PTSD. Neuropsychopharmacology. 2003;28(9):1656–1665.
    1. Engineer N.D., Riley J.R., Seale J.D., Vrana W.A., Shetake J.A. Reversing pathological neural activity using targeted plasticity. Nature. 2011;470(7332):101.
    1. Etemadi M., Inan O.T. Wearable ballistocardiogram and seismocardiogram systems for health and performance. J. Appl. Physiol. 2018;124(2):452–461.
    1. Fang J., Rong P., Hong Y., Fan Y., Liu J., Wang H. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol. Psychiatr. 2016;79(4):266–273.
    1. First M.B., Gibbon M. The structured clinical Interview for DSM-IV Axis I disorders (SCID-I) and the structured clinical Interview for DSM-IV Axis II disorders (SCID-II) In: Segal M.J.H.D.L., editor. Comprehensive Handbook of Psychological Assessment. 2. John Wiley & Sons Inc.; Hoboken, NJ, US: 2004. pp. 134–143.
    1. Frangos E., Komisaruk B.R. Access to vagal projections via cutaneous electrical stimulation of the neck: fMRI evidence in healthy humans. Brain Stimul. 2017;10(1):19–27.
    1. Frangos E., Ellrich J., Komisaruk B.R. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8(3):624–636.
    1. Frayne S.M., Chiu V.Y., Iqbal S., Berg E.A., Laungani K.J., Cronkite R.C. Medical care needs of returning veterans with PTSD: their other burden. J. Gen. Intern. Med. 2011;26(1):33–39.
    1. Garcia R.G., Lin R.L., Lee J., Kim J., Barbieri R., Sclocco R. Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients. Pain. 2017;158(8):1461–1472.
    1. Gazi A.H., Gurel N.Z., Richardson K.L.S., Wittbrodt M.T., Shah A.J., Vaccarino V. Investigating digital cardiovascular biomarker responses to transcutaneous cervical vagus nerve stimulation: state-space modeling, prediction, and simulation. JMIR mHealth and uHealth. 2020:20488. (forthcoming/(in press)
    1. Gill J.M., Saligan L., Woods S., Page G. PTSD is associated with an excess of inflammatory immune activities. Psychiatr. Care. 2009;45(4):262–277.
    1. Gurel N.Z., Jung H., Hersek S., Inan O.T. Fusing near-infrared spectroscopy with wearable hemodynamic measurements improves classification of mental stress. IEEE Sensor. J. 2019;19(19):8522–8531.
    1. Gurel N.Z., Huang M., Wittbrodt M.T., Jung H., Ladd S.L., Shandhi M.M.H. Quantifying acute physiological biomarkers of transcutaneous cervical vagal nerve stimulation in the context of psychological stress. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 2020;13(1):47–59.
    1. Gurel N.Z., Gazi A.H., Scott K.L., Wittbrodt M.T., Shah A.J., Vaccarino V. Timing considerations for noninvasive vagal nerve stimulation in clinical studies. AMIA Annu Symp Proc. 2020;2019:1061–1070.
    1. Gurel N.Z., Wittbrodt M.T., Jung H., Ladd S.L., Shah A.J., Vaccarino V. Automatic detection of target engagement in transcutaneous cervical vagal nerve stimulation for traumatic stress triggers. IEEE Journal of Biomedical and Health Informatics. 2020:1.
    1. Hamer H.M., Bauer S. Lessons learned from transcutaneous vagus nerve stimulation (tVNS) Epilepsy Res. 2019;153:83–84.
    1. Hernandez J., Riobo I., Rozga A., Abowd G.D., Picard R.W., editors. Using Electrodermal Activity to Recognize Ease of Engagement in Children during Social Interactions. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2014.
    1. Hoge C.W., Grossman S.H., Auchterlonie J.L., Riviere L.A., Milliken C.S., Wilk J.E. PTSD treatment for soldiers after combat deployment: low utilization of mental health care and reasons for dropout. Psychiatr. Serv. 2014;65(8):997–1004.
    1. Hoskins M., Pearce J., Bethell A., Dankova L., Barbui C., Tol W.A. Pharmacotherapy for post-traumatic stress disorder: systematic review and meta-analysis. Br. J. Psychiatry. 2015;206(2):93–100.
    1. Hughes J.W., Dennis M.F., Beckham J.C. Baroreceptor sensitivity at rest and during stress in women with posttraumatic stress disorder or major depressive disorder. J. Trauma Stress. 2007;20(5):667–676.
    1. Inan O.T., Migeotte P.F., Park K.S., Etemadi M., Tavakolian K., Casanella R. Ballistocardiography and seismocardiography: a review of recent advances. IEEE J Biomed Health Inform. 2015;19(4):1414–1427.
    1. Kelmendi B., Adams T.G., Yarnell S., Southwick S., Abdallah C.G., Krystal J.H. PTSD: from neurobiology to pharmacological treatments. Eur. J. Psychotraumatol. 2016;7:31858.
    1. Kelsey R.M. American Psychological Association; Washington, DC, US: 2012. Beta-adrenergic Cardiovascular Reactivity and Adaptation to Stress: the Cardiac Pre-ejection Period as an Index of Effort. How Motivation Affects Cardiovascular Response: Mechanisms and Applications; pp. 43–60.
    1. Kessler R.C., Sonnega A., Bromet E., Hughes M., Nelson C.B. Posttraumatic stress disorder in the national comorbidity survey. Arch. Gen. Psychiatr. 1995;52(12):1048–1060.
    1. Kilpatrick D.G., Resnick H.S., Milanak M.E., Miller M.W., Keyes K.M., Friedman M.J. National estimates of exposure to traumatic events and PTSD prevalence using DSM-IV and DSM-5 criteria. J. Trauma Stress. 2013;26(5):537–547.
    1. Kitayama N., Vaccarino V., Kutner M., Weiss P., Bremner J.D. Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J. Affect. Disord. 2005;88(1):79–86.
    1. Kraus T., Hosl K., Kiess O., Schanze A., Kornhuber J., Forster C. BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J. Neural. Transm. 2007;114(11):1485–1493.
    1. Krystal J.H., Davis L.L., Neylan T.C., Raskind M A., Schnurr P.P., Stein M.B. It is time to address the crisis in the pharmacotherapy of posttraumatic stress disorder: a consensus statement of the PTSD psychopharmacology working group. Biol. Psychiatr. 2017;82(7):e51–e59.
    1. La Rovere M.T. Baroreflex sensitivity as a new marker for risk stratification. Z. Kardiol. 2000;89(Suppl. 3):44–50.
    1. La Rovere M.T., Schwartz P.J. Baroreflex sensitivity as a cardiac and arrhythmia mortality risk stratifier. Pacing Clin. Electrophysiol. 1997;20(10 Pt 2):2602–2613.
    1. La Rovere M.T., Bigger J.T., Jr., Marcus F.I., Mortara A., Schwartz P.J. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes after Myocardial Infarction) Investigators. Lancet. 1998;351(9101):478–484.
    1. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 2013;4:863.
    1. Lamb D.G., Porges E.C., Lewis G.F., Williamson J.B. Non-invasive vagal nerve stimulation effects on hyperarousal and autonomic state in patients with posttraumatic stress disorder and history of mild traumatic brain injury: preliminary evidence. Front. Med. 2017;4:124.
    1. Lampert R., Bremner J.D., Su S., Miller A., Lee F., Cheema F. Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men. Am. Heart J. 2008;156(4):759. e1-.e7.
    1. Lerman I., Hauger R., Sorkin L., Proudfoot J., Davis B., Huang A. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial. Neuromodulation. 2016;19(3):283–290.
    1. Lerman I., Davis B., Huang M., Huang C., Sorkin L., Proudfoot J. Noninvasive vagus nerve stimulation alters neural response and physiological autonomic tone to noxious thermal challenge. PloS One. 2019;14(2)
    1. Lima B.B., Hammadah M., Wilmot K., Pearce B.D., Shah A., Levantsevych O. Posttraumatic stress disorder is associated with enhanced interleukin-6 response to mental stress in subjects with a recent myocardial infarction. Brain Behav. Immun. 2019;75:26–33.
    1. Lissek S., van Meurs B. Learning models of PTSD: theoretical accounts and psychobiological evidence. Int. J. Psychophysiol. 2015;98(3 Pt 2):594–605.
    1. Medicine Io Treatment for posttraumatic stress disorder in military and veteran populations: final assessment. Mil. Med. 2014;179(12):1401–1403.
    1. Millasseau S.C., Ritter J.M., Takazawa K., Chowienczyk P.J. Contour analysis of the photoplethysmographic pulse measured at the finger. J. Hypertens. 2006;24(8):1449–1456.
    1. Mourdoukoutas A.P., Truong D.Q., Adair D.K., Simon B.J., Bikson M. High-resolution multi-scale computational model for non-invasive cervical vagus nerve stimulation. Neuromodulation. 2018;21(3):261–268. doi: 10.1111/ner.12706. Epub 2017 Oct 27. PMID: 29076212; PMCID: PMC5895480.
    1. Mukkamala R., Hahn J.O., Inan O.T., Mestha L.K., Kim C.S., Toreyin H. Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans. Biomed. Eng. 2015;62(8):1879–1901.
    1. Nemeroff C.B., Bremner J.D., Foa E.B., Mayberg H.S., North C.S., Stein M.B. Posttraumatic stress disorder: a state-of-the-science review. J. Psychiatr. Res. 2006;40(1):1–21.
    1. Newlin D.B., Levenson R.W. Pre-ejection period: measuring beta-adrenergic influences upon the heart. Psychophysiology. 1979;16(6):546–553.
    1. Noble I.J., Gonzalez I.J., Meruva V.B., Callahan K.A., Belfort B.D., Ramanathan K.R. Effects of vagus nerve stimulation on extinction of conditioned fear and post-traumatic stress disorder symptoms in rats. Transl. Psychiatry. 2017;7(e1217):1–8.
    1. Nonis R., D'Ostilio K., Schoenen J., Magis D. Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: an electrophysiological study in healthy volunteers. Cephalalgia. 2017;37(13):1285–1293.
    1. Oshinsky M.L., Murphy A.L., Hekierski H., Jr., Cooper M., Simon B.J. Noninvasive vagus nerve stimulation as treatment for trigeminal allodynia. Pain. 2014;155(5):1037–1042.
    1. Park J., Marvar P.J., Liao P., Kankam M.L., Norrholm S.D., Downey R.M. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder. J. Physiol. 2017;595(14):4893–4908.
    1. Peña D.F., Engineer N.D., McIntyre C.K. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol. Psychiatr. 2013;73(11):1071–1077.
    1. Peña D.F., Engineer N.D., McIntyre C.K. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol. Psychiatr. 2013;73(11):1071–1077.
    1. Pena D.F., Childs J.E., Willett S., Vital A., McIntyre C.K., Kroener S. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Front. Behav. Neurosci. 2014;8:327.
    1. Peña D.F., Childs J.E., Willett S., Vital A., McIntyre C.K., Kroener S. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Front. Behav. Neurosci. 2014;8:327.
    1. Reuter U., McClure C., Liebler E., Pozo-Rosich P. Non-invasive neuromodulation for migraine and cluster headache: a systematic review of clinical trials. J. Neurol. Neurosurg. Psychiatry. 2019;90(7):796–804. doi: 10.1136/jnnp-2018-320113. PMID: 30824632; PMCID: PMC6585264.
    1. Rong P., Liu J., Wang L., Liu R., Fang J., Zhao J. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J. Affect. Disord. 2016;195:172–179.
    1. Rosell J., Colominas J., Riu P., Pallas-Areny R., Webster J.G. Skin impedance from 1 Hz to 1 MHz. IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. 1988;35(8):649–651.
    1. Roy B., Ghatak S. Nonlinear methods to assess changes in heart rate variability in type 2 diabetic patients. Arq. Bras. Cardiol. 2013;101(4):317–327.
    1. Seery M.D. The biopsychosocial model of challenge and threat: using the heart to measure the mind. Social and Personality Psychology Compass. 2013;7(9):637–653.
    1. Shah A.J., Lampert R., Goldberg J., Veledar E., Bremner J.D., Vaccarino V. Posttraumatic stress disorder and impaired autonomic modulation in male twins. Biol. Psychiatr. 2013;73(11):1103–1110.
    1. Sheps D.S., McMahon R.P., Becker L., Carney R.M., Freedland K.E., Cohen J.D. Mental stress-induced ischemia and all-cause mortality in patients with coronary artery disease: results from the Psychophysiological Investigations of Myocardial Ischemia study. Circulation. 2002;105(15):1780–1784.
    1. Sherin J.E., Nemeroff C.B. Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin. Neurosci. 2011;13(3):263–278.
    1. Sleight P., La Rovere M.T., Mortara A., Pinna G., Maestri R., Leuzzi S. Physiology and pathophysiology of heart rate and blood pressure variability in humans: is power spectral analysis largely an index of baroreflex gain? Clin. Sci. (Lond.) 1995;88(1):103–109.
    1. Stavrakis S., Humphrey M.B., Scherlag B.J., Hu Y., Jackman W.M., Nakagawa H. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J. Am. Coll. Cardiol. 2015;65(9):867–875.
    1. Stavrakis S., Stoner J.A., Humphrey M.B., Morris L., Filiberti A., Reynolds J.C. TREAT af (transcutaneous electrical vagus nerve stimulation to suppress atrial fibrillation): a randomized clinical trial. JACC (J. Am. Coll. Cardiol.): Clinical Electrophysiology. 2020;6(3):282–291.
    1. Steenerson R.L., Cronin G.W. Tinnitus reduction using transcutaneous electrical stimulation. Otolaryngol. Clin. 2003;36(2):337–344.
    1. Steenkamp M.M., Litz B.T., Hoge C.W., Marmar C.R. Psychotherapy for military-related PTSD: a review of randomized clinical trials. J. Am. Med. Assoc. 2015;314(5):489–500.
    1. Tarn J., Legg S., Mitchell S., Simon B., Ng W.-F. The effects of noninvasive vagus nerve stimulation on fatigue and immune responses in patients with primary sjögren's syndrome. Neuromodulation: Technology at the Neural Interface. 2019;22(5):580–585.
    1. Ulmer C.S., Calhoun P.S., Edinger J.D., Wagner H.R., Beckham J.C. Sleep disturbance and baroreceptor sensitivity in women with posttraumatic stress disorder. J. Trauma Stress. 2009;22(6):643–647.
    1. Vaccarino V., Lampert R., Bremner J.D., Lee F., Su S., Maisano C. Depressive symptoms and heart rate variability: evidence for a shared genetic substrate in a study of twins. Psychosom. Med. 2008;70(6):628–636.
    1. Verkuil B. Transcutaneous vagus nerve stimulation does not affect attention to fearful faces in high worriers. Behav. Res. Ther. 2019;1(113):25–31.
    1. Vest A.N., Da Poian G., Li Q., Liu C., Nemati S., Shah A. 2018. An Open Source Benchmarked Toolbox for Cardiovascular Waveform and Interval Analysis. Physiological Measurement. (in press)
    1. Warren C.M., Tona K.D., Ouwerkerk L., van Paridon J., Poletiek F., van Steenbergen H. The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimul. 2019;12(3):635–642.
    1. Wessa M., Flor H. Failure of extinction of fear responses in posttraumatic stress disorder: evidence from second-order conditioning. Am. J. Psychiatr. 2007;164(11):1684–1692.
    1. Wittbrodt M.T., Gurel N.Z., Nye J.A., Ladd S., Shandhi M.M.H., Huang M. Non-invasive vagal nerve stimulation decreases brain activity during trauma scripts. Brain Stimulation. 2020;13(5):1333–1348.
    1. Wormwood J.B., Khan Z., Siegel E., Lynn S.K., Dy J., Barrett L.F. Physiological indices of challenge and threat: a data-driven investigation of autonomic nervous system reactivity during an active coping stressor task. Psychophysiology. 2019;56(12)
    1. Yakunina N., Kim S.S., Nam E.C. Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation. 2017;20(3):290–300.
    1. Yakunina N., Kim S.S., Nam E.C. BOLD fMRI effects of transcutaneous vagus nerve stimulation in patients with chronic tinnitus. PloS One. 2018;13(11)
    1. Yehuda R., LeDoux J. Response variation following trauma: a translational neuroscience approach to understanding PTSD. Neuron. 2007;56(1):19–32.
    1. Yu L., Huang B., Po S.S., Tan T., Wang M., Zhou L. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc. Interv. 2017;10(15):1511–1520.

Source: PubMed

Подписаться