Interrelationships between Skin Structure, Function, and Microbiome of Pregnant Females and Their Newborns: Study Protocol for a Prospective Cohort Study

Doris Wilborn, Jan Kottner, Kathrin Hillmann, Sa Xu, Frank Konietschke, Ulrike Blume-Peytavi, Doris Wilborn, Jan Kottner, Kathrin Hillmann, Sa Xu, Frank Konietschke, Ulrike Blume-Peytavi

Abstract

Background: Pregnancy leads to several skin changes, but evidence about structural and functional skin changes is scarce. Findings on skin structure and function in children in their first year reveal rapid skin maturation, but evidence indicates that in particular, water holding and transport mechanisms are different from adults. Important questions include whether maternal cutaneous properties predict infant skin condition, and if so, how. This is especially relevant for the skin's microbiome because it closely interacts with the host and is assumed to play a role in many skin diseases. Therefore, the study objective is to explore characteristics of skin and hair of pregnant women and their newborns during pregnancy and in the first six months after delivery and their associations.

Methods: The study has an observational longitudinal design. We are recruiting pregnant females between 18 and 45 years using advertisement campaigns in waiting areas of gynecologists and hospital's outpatient services. A final sample size of n = 100 women is the target. We perform noninvasive, standardized skin, hair, and skin microbiome measurements. We establish the baseline visit during pregnancy until at the latest four weeks before delivery. We schedule follow-up visits four weeks and six months after birth for mothers and their newborns. We will calculate descriptive statistical methods using frequencies and associations over time depending on scale levels of the measurements. Discussion. The majority of previous studies that have investigated infants' skin microbiome and its associations used cross-sectional designs and focused on selected characteristics in small samples. In our longitudinal study, we will characterize a broad range of individual and environmental characteristics of mothers and their newborns to evaluate interrelationships with skin parameters and their changes over time. Considering the combination of these multiple variables and levels will allow for a deeper understanding of the complex interrelationship of the newborn's skin maturation. This trial is registered with ClinicalTrials.gov (Identifier: NCT04759924).

Conflict of interest statement

Sa Xu is a member of the DehaaRossun Research Center, Hong Kong, and is employed at Lunaler, Hong Kong. Ulrike Blume-Peytavi is a scientific member of the Board of the DehaaRossun Research Center.

Copyright © 2021 Doris Wilborn et al.

References

    1. Surber C., Dragicevic N., Kottner J. Skin care products for healthy and diseased skin. pH of the Skin: Issues and Challenges . 2018;54:183–200. doi: 10.1159/000489532.
    1. Muallem M. M., Rubeiz N. G. Physiological and biological skin changes in pregnancy. Clinics in Dermatology . 2006;24(2):80–83. doi: 10.1016/j.clindermatol.2005.10.002.
    1. Vora R., Gupta R., Mehta M., Chaudhari A., Pilani A., Patel N. Pregnancy and skin. Journal of Family Medicine and Primary Care . 2014;3(4):318–324. doi: 10.4103/2249-4863.148099.
    1. Panicker V. V., Riyaz N., Balachandran P. K. A clinical study of cutaneous changes in pregnancy. Journal of epidemiology and global health . 2017;7(1):63–70. doi: 10.1016/j.jegh.2016.10.002.
    1. Ciechanowicz P., Sikora M., Taradaj K., et al. Skin changes during pregnancy. Is that an important issue for pregnant women? Ginekologia Polska . 2018;89(8):449–452. doi: 10.5603/gp.a2018.0077.
    1. Martins-Costa G. M., Bakos R. Total body photography and sequential digital dermoscopy in pregnant women. Dermatology Practical and Conceptual . 2019;9(2):126–131. doi: 10.5826/dpc.0902a08.
    1. Boyer G., Lachmann N., Bellemère G., De Belilovsky C., Baudouin C. Effects of pregnancy on skin properties: a biomechanical approach. Skin Research and Technology . 2018;24(4):551–556. doi: 10.1111/srt.12465.
    1. Piérard-Franchimont C., Piérard G. E. Alterations in hair follicle dynamics in women. BioMed Research International . 2013;2013957432
    1. Thom E. Pregnancy and the hair growth cycle: anagen induction against hair growth disruption using Nourkrin(®) with Marilex(®), a proteoglycan replacement therapy. Journal of Cosmetic Dermatology . 2017;16(3):421–427. doi: 10.1111/jocd.12286.
    1. Ludriksone L., Garcia Bartels N., Kanti V., Blume-Peytavi U., Kottner J. Skin barrier function in infancy: a systematic review. Archives of Dermatological Research . 2014;306(7):591–599. doi: 10.1007/s00403-014-1458-6.
    1. Nikolovski J., Stamatas G. N., Kollias N., Wiegand B. C. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. Journal of Investigative Dermatology . 2008;128(7):1728–1736. doi: 10.1038/sj.jid.5701239.
    1. Visscher M. O., Adam R., Brink S., Odio M. Newborn infant skin: physiology, development, and care. Clinics in Dermatology . 2015;33(3):271–280. doi: 10.1016/j.clindermatol.2014.12.003.
    1. Oranges T., Dini V., Romanelli M. Skin physiology of the neonate and infant: clinical implications. Advances in Wound Care . 2015;4(10):587–595. doi: 10.1089/wound.2015.0642.
    1. Hughes-Formella B., Wunderlich O., Williams R., et al. Comparison of skin structural and functional parameters in well-nourished and moderately undernourished infants. Skin Pharmacology and Physiology . 2019;32(4):212–223. doi: 10.1159/000499434.
    1. Theunis J. V. C., Bianchi P., BacqueyA C. C., et al. Comparison of two skincare regimens in healthy newborns during the first six weeks of life. Clinical Dermatology . 2017;5(3-4):99–106.
    1. Fluhr J. W., Darlenski R. Skin surface pH in newborns: origin and consequences. pH of the Skin: Issues and Challenges . 2018;54:26–32. doi: 10.1159/000489515.
    1. Findley K., Grice E. A. The skin microbiome: a focus on pathogens and their association with skin disease. PLoS Pathogens . 2014;10(10) doi: 10.1371/journal.ppat.1004436.e1004436
    1. Capone K. A., Dowd S. E., Stamatas G. N., Nikolovski J. Diversity of the human skin microbiome early in life. Journal of Investigative Dermatology . 2011;131(10):2026–2032. doi: 10.1038/jid.2011.168.
    1. Dominguez-Bello M. G., Costello E. K., Contreras M., et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences . 2010;107(26):11971–11975. doi: 10.1073/pnas.1002601107.
    1. Costello E. K., Carlisle E. M., Bik E. M., Morowitz M. J., Relman D. A. Microbiome assembly across multiple body sites in low-birthweight infants. mBio . 2013;4(6):13. doi: 10.1128/mBio.00782-13.e00782
    1. Younge N. E., Araújo-Pérez F., Brandon D., Seed P. C. Early-life skin microbiota in hospitalized preterm and full-term infants. Microbiome . 2018;6(1):p. 98. doi: 10.1186/s40168-018-0486-4.
    1. Zhu T., Liu X., Kong F.-Q., et al. Age and mothers: potent influences of children’s skin microbiota. Journal of Investigative Dermatology . 2019;139(12):2497–2505. doi: 10.1016/j.jid.2019.05.018.
    1. Lehtimäki J., Karkman A., Laatikainen T., et al. Patterns in the skin microbiota differ in children and teenagers between rural and urban environments. Scientific Reports . 2017;7 doi: 10.1038/srep45651.45651
    1. Manus M. B., Kuthyar S., Perroni-Marañón A. G., Núñez-de la Mora A., Amato K. R. InfantSkin bacterial communities vary by skin site and infant age across populationsin Mexico and the United States. mSystems . 2020;5(6) doi: 10.1128/mSystems.00834-20.e00834-20
    1. Kottner J., Ludriksone L., Garcia Bartels N., Blume-Peytavi U. Do repeated skin barrier measurements influence each other’s results? An explorative study. Skin Pharmacology and Physiology . 2014;27(2):90–96. doi: 10.1159/000351882.
    1. Lévêque J. L. EEMCO guidance for the assessment of skin topography. The European expert group on efficacy measurement of cosmetics and other topical products. Journal of the European Academy of Dermatology and Venereology : JEADV . 1999;12(2):103–114.
    1. Gambichler T., Moussa G., Regeniter P., et al. Validation of optical coherence tomography in vivo using cryostat histology. Physics in Medicine and Biology . 2007;52(5):N75–N85. doi: 10.1088/0031-9155/52/5/n01.
    1. Trojahn C., Dobos G., Richter C., Blume-Peytavi U., Kottner J. Journal of Biomedical Optics . 2015;20(4) doi: 10.1117/1.jbo.20.4.045003.045003
    1. Monteiro Rodrigues L., Fluhr J. W. EEMCO guidance for the in vivo assessment of biomechanical properties of the human skin and its annexes: revisiting instrumentation and test modes. Skin Pharmacology and Physiology . 2020;33(1):44–60.
    1. Akdeniz M., Gabriel S., Lichterfeld-Kottner A., Blume-Peytavi U., Kottner J. Transepidermal water loss in healthy adults: a systematic review and meta-analysis update. British Journal of Dermatology . 2018;179(5):1049–1055. doi: 10.1111/bjd.17025.
    1. Elban F., Hahnel E., Blume-Peytavi U., Kottner J. Reliability and agreement of skin barrier measurements in a geriatric care setting. J Tissue Viability . 2020;29:30085–30091.
    1. Lambers H., Piessens S., Bloem A., Pronk H., Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. International Journal of Cosmetic Science . 2006;28(5):359–370. doi: 10.1111/j.1467-2494.2006.00344.x.
    1. Schmid-Wendtner M.-H., Korting H. C. The pH of the skin surface and its impact on the barrier function. Skin Pharmacology and Physiology . 2006;19(6):296–302. doi: 10.1159/000094670.
    1. Berardesca E. EEMCO guidance for the assessment of stratum corneum hydration: electrical methods. Skin Research and Technology . 1997;3(2):126–132. doi: 10.1111/j.1600-0846.1997.tb00174.x.
    1. McInnes P., Cutting M. Manual of Procedures for Humancomment Microbiome ProjectCore Microbiome Sampling Protocol AHMP Protocol # 07-001Version Number: 12.0 . 2010. .
    1. Lozano I., Saunier J. B., Panhard S., Loussouarn G. The diversity of the human hair colour assessed by visual scales and instrumental measurements. A worldwide survey. International Journal of Cosmetic Science . 2017;39(1):101–107. doi: 10.1111/ics.12359.
    1. Twisk J. W. R. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide . 2nd. Cambridge, UK: Cambridge University Press; 2013.
    1. von Elm E., Altman D. G., Egger M., Pocock S. J., Gøtzsche P. C., Vandenbroucke J. P. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Journal of Clinical Epidemiology . 2008;61(4):344–349. doi: 10.1016/j.jclinepi.2007.11.008.
    1. Vandenbroucke J. P., von Elm E., Altman D. G., et al. Strengthening the reporting of observational studies in Epidemiology (STROBE): explanation and elaboration. PLoS Medicine . 2007;4(10) doi: 10.1371/journal.pmed.0040297.e297

Source: PubMed

Подписаться