Characterization of Autosomal Dominant Hypercholesterolemia Caused by PCSK9 Gain of Function Mutations and Its Specific Treatment With Alirocumab, a PCSK9 Monoclonal Antibody

Paul N Hopkins, Joep Defesche, Sigrid W Fouchier, Eric Bruckert, Gérald Luc, Bertrand Cariou, Barbara Sjouke, Trond P Leren, Mariko Harada-Shiba, Hiroshi Mabuchi, Jean-Pierre Rabès, Alain Carrié, Charles van Heyningen, Valérie Carreau, Michel Farnier, Yee P Teoh, Mafalda Bourbon, Masa-Aki Kawashiri, Atsushi Nohara, Handrean Soran, A David Marais, Hayato Tada, Marianne Abifadel, Catherine Boileau, Bernard Chanu, Shoji Katsuda, Ichiro Kishimoto, Gilles Lambert, Hisashi Makino, Yoshihiro Miyamoto, Matthieu Pichelin, Kunimasa Yagi, Masakazu Yamagishi, Yassine Zair, Scott Mellis, George D Yancopoulos, Neil Stahl, Johanna Mendoza, Yunling Du, Sara Hamon, Michel Krempf, Gary D Swergold, Paul N Hopkins, Joep Defesche, Sigrid W Fouchier, Eric Bruckert, Gérald Luc, Bertrand Cariou, Barbara Sjouke, Trond P Leren, Mariko Harada-Shiba, Hiroshi Mabuchi, Jean-Pierre Rabès, Alain Carrié, Charles van Heyningen, Valérie Carreau, Michel Farnier, Yee P Teoh, Mafalda Bourbon, Masa-Aki Kawashiri, Atsushi Nohara, Handrean Soran, A David Marais, Hayato Tada, Marianne Abifadel, Catherine Boileau, Bernard Chanu, Shoji Katsuda, Ichiro Kishimoto, Gilles Lambert, Hisashi Makino, Yoshihiro Miyamoto, Matthieu Pichelin, Kunimasa Yagi, Masakazu Yamagishi, Yassine Zair, Scott Mellis, George D Yancopoulos, Neil Stahl, Johanna Mendoza, Yunling Du, Sara Hamon, Michel Krempf, Gary D Swergold

Abstract

Background: Patients with PCSK9 gene gain of function (GOF) mutations have a rare form of autosomal dominant hypercholesterolemia. However, data examining their clinical characteristics and geographic distribution are lacking. Furthermore, no randomized treatment study in this population has been reported.

Methods and results: We compiled clinical characteristics of PCSK9 GOF mutation carriers in a multinational retrospective, cross-sectional, observational study. We then performed a randomized placebo-phase, double-blind study of alirocumab 150 mg administered subcutaneously every 2 weeks to 13 patients representing 4 different PCSK9 GOF mutations with low-density lipoprotein cholesterol (LDL-C) ≥70 mg/dL on their current lipid-lowering therapies at baseline. Observational study: among 164 patients, 16 different PCSK9 GOF mutations distributed throughout the gene were associated with varying severity of untreated LDL-C levels. Coronary artery disease was common (33%; average age of onset, 49.4 years), and untreated LDL-C concentrations were higher compared with matched carriers of mutations in the LDLR (n=2126) or apolipoprotein B (n=470) genes. Intervention study: in PCSK9 GOF mutation patients randomly assigned to receive alirocumab, mean percent reduction in LDL-C at 2 weeks was 62.5% (P<0.0001) from baseline, 53.7% compared with placebo-treated PCSK9 GOF mutation patients (P=0.0009; primary end point). After all subjects received 8 weeks of alirocumab treatment, LDL-C was reduced by 73% from baseline (P<0.0001).

Conclusions: PCSK9 GOF mutation carriers have elevated LDL-C levels and are at high risk of premature cardiovascular disease. Alirocumab, a PCSK9 antibody, markedly lowers LDL-C levels and seems to be well tolerated in these patients.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique Identifier: NCT01604824.

Keywords: PCSK9 protein; alirocumab; cardiovascular diseases; clinical trial; genetics; human; hypercholesterolemia.

© 2015 The Authors.

Figures

Figure 1.
Figure 1.
Distribution of untreated low-density lipoprotein cholesterol (LDL-C) for patients with familial GOF mutations in PCSK9 without LDLR mutations (A) and position of the mutations and the 12 exons of the PCSK9 gene relative to the protein domains (B). †P value indicates reduction for mutation versus overall mean. ‡P value indicates increase for mutation versus overall mean. Dotted line represents mean LDL-C level of all PCSK9 mutation carriers from whom untreated LDL-C levels were available. 1.81 mmol/L=70 mg/dL; 2.59 mmol/L=100 mg/dL.
Figure 2.
Figure 2.
Change in low-density lipoprotein cholesterol (LDL-C) and free PCSK9 for patients with familial gain of function mutation in PCSK9 in the randomized alirocumab study. (A) Mean (±SE) LDL-C values and (B) mean (±SE) percent change from baseline in free plasma PCSK9 are shown by study group together with an indication of the dosing schedules. Mean (+SE) percent change from baseline in LDL-C (C) and free plasma PCSK9 (D) are shown by PCSK9 GOF mutation. C and D, Results from groups A and B were combined by shifting group A visits forward 2 weeks, thereby aligning the dosing schedule in the 2 groups.

References

    1. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, et al. European Atherosclerosis Society Consensus Panel. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34:3478–3490. doi: 10.1093/eurheartj/eht273.
    1. Sjouke B, Kusters DM, Kindt I, Besseling J, Defesche JC, Sijbrands EJ, et al. Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype-phenotype relationship, and clinical outcome. Eur Heart J. 2015;36:560–565. doi: 10.1093/eurheartj/ehu058.
    1. Varret M, Rabès JP, Saint-Jore B, Cenarro A, Marinoni JC, Civeira F, et al. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32. Am J Hum Genet. 1999;64:1378–1387. doi: 10.1086/302370.
    1. Hunt SC, Hopkins PN, Bulka K, McDermott MT, Thorne TL, Wardell BB, et al. Genetic localization to chromosome 1p32 of the third locus for familial hypercholesterolemia in a Utah kindred. Arterioscler Thromb Vasc Biol. 2000;20:1089–1093.
    1. Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–156. doi: 10.1038/ng1161.
    1. Timms KM, Wagner S, Samuels ME, Forbey K, Goldfine H, Jammulapati S, et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum Genet. 2004;114:349–353. doi: 10.1007/s00439-003-1071-9.
    1. Leren TP. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet. 2004;65:419–422. doi: 10.1111/j.0009-9163.2004.0238.x.
    1. Sun XM, Eden ER, Tosi I, Neuwirth CK, Wile D, Naoumova RP, et al. Evidence for effect of mutant PCSK9 on apolipoprotein B secretion as the cause of unusually severe dominant hypercholesterolaemia. Hum Mol Genet. 2005;14:1161–1169. doi: 10.1093/hmg/ddi128.
    1. Allard D, Amsellem S, Abifadel M, Trillard M, Devillers M, Luc G, et al. Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Hum Mutat. 2005;26:497. doi: 10.1002/humu.9383.
    1. Homer VM, Marais AD, Charlton F, Laurie AD, Hurndell N, Scott R, et al. Identification and characterization of two non-secreted PCSK9 mutants associated with familial hypercholesterolemia in cohorts from New Zealand and South Africa. Atherosclerosis. 2008;196:659–666. doi: 10.1016/j.atherosclerosis.2007.07.022.
    1. Miyake Y, Kimura R, Kokubo Y, Okayama A, Tomoike H, Yamamura T, et al. Genetic variants in PCSK9 in the Japanese population: rare genetic variants in PCSK9 might collectively contribute to plasma LDL cholesterol levels in the general population. Atherosclerosis. 2008;196:29–36. doi: 10.1016/j.atherosclerosis.2006.12.035.
    1. Noguchi T, Katsuda S, Kawashiri MA, Tada H, Nohara A, Inazu A, et al. The E32K variant of PCSK9 exacerbates the phenotype of familial hypercholesterolaemia by increasing PCSK9 function and concentration in the circulation. Atherosclerosis. 2010;210:166–172. doi: 10.1016/j.atherosclerosis.2009.11.018.
    1. Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res. 2009;50:S172–S177. doi: 10.1194/jlr.R800091-JLR200.
    1. Lo Surdo P, Bottomley MJ, Calzetta A, Settembre EC, Cirillo A, Pandit S, et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 2011;12:1300–1305. doi: 10.1038/embor.2011.205.
    1. Lambert G, Sjouke B, Choque B, Kastelein JJ, Hovingh GK. The PCSK9 decade. J Lipid Res. 2012;53:2515–2524. doi: 10.1194/jlr.R026658.
    1. Wang Y, Huang Y, Hobbs HH, Cohen JC. Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR. J Lipid Res. 2012;53:1932–1943. doi: 10.1194/jlr.M028563.
    1. Seidah NG, Awan Z, Chrétien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–1036. doi: 10.1161/CIRCRESAHA.114.301621.
    1. Maxwell KN, Breslow JL. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci U S A. 2004;101:7100–7105. doi: 10.1073/pnas.0402133101.
    1. Stein EA, Mellis S, Yancopoulos GD, Stahl N, Logan D, Smith WB, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366:1108–1118. doi: 10.1056/NEJMoa1105803.
    1. Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet. 2012;380:29–36. doi: 10.1016/S0140-6736(12)60771-5.
    1. Giugliano RP, Desai NR, Kohli P, Rogers WJ, Somaratne R, Huang F, et al. LAPLACE-TIMI 57 Investigators. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet. 2012;380:2007–2017. doi: 10.1016/S0140-6736(12)61770-X.
    1. Sullivan D, Olsson AG, Scott R, Kim JB, Xue A, Gebski V, et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA. 2012;308:2497–2506. doi: 10.1001/jama.2012.25790.
    1. Raal F, Scott R, Somaratne R, Bridges I, Li G, Wasserman SM, et al. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation. 2012;126:2408–2417. doi: 10.1161/CIRCULATIONAHA.112.144055.
    1. Feldman B, Wang E, Willan A, Szalai JP. The randomized placebo-phase design for clinical trials. J Clin Epidemiol. 2001;54:550–557.
    1. Fouchier SW, Kastelein JJ, Defesche JC. Update of the molecular basis of familial hypercholesterolemia in the Netherlands. Hum Mutat. 2005;26:550–556. doi: 10.1002/humu.20256.
    1. Umans-Eckenhausen MA, Defesche JC, Sijbrands EJ, Scheerder RL, Kastelein JJ. Review of first 5 years of screening for familial hypercholesterolaemia in the Netherlands. Lancet. 2001;357:165–168. doi: 10.1016/S0140-6736(00)03587-X.
    1. Haddad L, Day IN, Hunt S, Williams RR, Humphries SE, Hopkins PN. Evidence for a third genetic locus causing familial hypercholesterolemia. A non-LDLR, non-APOB kindred. J Lipid Res. 1999;40:1113–1122.
    1. Leren TP. Cascade genetic screening for familial hypercholesterolemia. Clin Genet. 2004;66:483–487. doi: 10.1111/j.1399-0004.2004.00320.x.

Source: PubMed

Подписаться