Does impaired O2 delivery during exercise accentuate central and peripheral fatigue in patients with coexistent COPD-CHF?

Mayron F Oliveira, Joel T J Zelt, Joshua H Jones, Daniel M Hirai, Denis E O'Donnell, Samuel Verges, J Alberto Neder, Mayron F Oliveira, Joel T J Zelt, Joshua H Jones, Daniel M Hirai, Denis E O'Donnell, Samuel Verges, J Alberto Neder

Abstract

Impairment in oxygen (O2) delivery to the central nervous system ("brain") and skeletal locomotor muscle during exercise has been associated with central and peripheral neuromuscular fatigue in healthy humans. From a clinical perspective, impaired tissue O2 transport is a key pathophysiological mechanism shared by cardiopulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF). In addition to arterial hypoxemic conditions in COPD, there is growing evidence that cerebral and muscle blood flow and oxygenation can be reduced during exercise in both isolated COPD and CHF. Compromised cardiac output due to impaired cardiopulmonary function/interactions and blood flow redistribution to the overloaded respiratory muscles (i.e., ↑work of breathing) may underpin these abnormalities. Unfortunately, COPD and CHF coexist in almost a third of elderly patients making these mechanisms potentially more relevant to exercise intolerance. In this context, it remains unknown whether decreased O2 delivery accentuates neuromuscular manifestations of central and peripheral fatigue in coexistent COPD-CHF. If this holds true, it is conceivable that delivering a low-density gas mixture (heliox) through non-invasive positive pressure ventilation could ameliorate cardiopulmonary function/interactions and reduce the work of breathing during exercise in these patients. The major consequence would be increased O2 delivery to the brain and active muscles with potential benefits to exercise capacity (i.e., ↓central and peripheral neuromuscular fatigue, respectively). We therefore hypothesize that patients with coexistent COPD-CHF stop exercising prematurely due to impaired central motor drive and muscle contractility as the cardiorespiratory system fails to deliver sufficient O2 to simultaneously attend the metabolic demands of the brain and the active limb muscles.

Keywords: chronic heart failure; chronic obstructive pulmonary disease; oxygenation; respiratory muscle; skeletal muscle.

Figures

Figure 1
Figure 1
Schematic representation of potential negative cardiopulmonary interactions in moderate to severe COPD. Increases in mean intra-thoracic pressure (ITP) and large swings in pleural pressure (PPL) may reduce venous return and right ventricular (RV) preload. High PPL swings, compression of juxta-alveolar capillaries and hypoxic vasoconstriction increase RV afterload and intra-cavitary pressures. The latter occurrence, in association with extrinsic compression of the right heart by the overdistended lungs, can impair RV relaxation and displace the inter-ventricular septum to the left. Reduced left heart filling pressures and dimensions may contribute to further impairments in stroke volume (SV). Large PPL swings can also increase left ventricular (LV) afterload secondary to high transmural pressures (PTM). Moreover, decreased aortic impedance and augmented systemic vascular resistance (SVR) further increase LV afterload, thus compromising cardiac output (Q˙t). Of note, the relative contribution of each of the above factors is likely to vary according to different phases of respiratory and cardiac cycles.
Figure 2
Figure 2
Schematic representation of potential implications of abnormal pulmonary gas exchange and central hemodynamics on central nervous system (brain) and peripheral skeletal muscle function during exercise in combined COPD-CHF. Compromised O2 delivery to brain and active limb muscles can occur as a consequence of impairments in gas exchange (e.g., ↓arterial O2 pressure; PaO2) and/or decreased cardiac output (Q˙t) and thus blood flow. A large fraction of an already reduced Q˙t can be directed to the overloaded respiratory muscles (due to ↑work of breathing), therefore further decreasing active limb muscle perfusion and accentuating peripheral fatigue. Solid black lines indicate that increased afferent information from the respiratory/peripheral muscles and/or impaired cerebral oxygenation may decrease motor drive (i.e., central fatigue). In this context, it is conceivable that central and peripheral fatigue potentiate each other and contribute to early exercise cessation in coexistent COPD-CHF.

References

    1. Agostoni P., Bussotti M., Cattadori G., Margutti E., Contini M., Muratori M., et al. . (2006). Gas diffusion and alveolar-capillary unit in chronic heart failure. Eur. Heart J. 27, 2538–2543. 10.1093/eurheartj/ehl302
    1. Agostoni P. G., Bussotti M., Palermo P., Guazzi M. (2002). Does lung diffusion impairment affect exercise capacity in patients with heart failure? Heart 88, 453–459. 10.1136/heart.88.5.453
    1. Aliverti A., Dellacà R. L., Lotti P., Bertini S., Duranti R., Scano G., et al. . (2005). Influence of expiratory flow-limitation during exercise on systemic oxygen delivery in humans. Eur. J. Appl. Physiol. 95, 229–242. 10.1007/s00421-005-1386-4
    1. Amann M. (2011). Central and peripheral fatigue: interaction during cycling exercise in humans. Med. Sci. Sports Exerc. 43, 2039–2045. 10.1249/MSS.0b013e31821f59ab
    1. Amann M., Calbet J. A. L. (2008). Convective oxygen transport and fatigue. J. Appl. Physiol. 104, 861–870. 10.1152/japplphysiol.01008.2007
    1. Amann M., Dempsey J. A. (2008). Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J. Physiol. 586, 161–173. 10.1113/jphysiol.2007.141838
    1. Amann M., Eldridge M. W., Lovering A. T., Stickland M. K., Pegelow D. F., Dempsey J. A. (2006b). Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J. Physiol. 575(Pt 3), 937–952. 10.1113/jphysiol.2006.113936
    1. Amann M., Pegelow D. F., Jacques A. J., Dempsey J. A. (2007). Inspiratory muscle work in acute hypoxia influences locomotor muscle fatigue and exercise performance of healthy humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R2036–R2045. 10.1152/ajpregu.00442.2007
    1. Amann M., Regan M. S., Kobitary M., Eldridge M. W., Boutellier U., Pegelow D. F., et al. . (2010). Impact of pulmonary system limitations on locomotor muscle fatigue in patients with COPD. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R314–R324. 10.1152/ajpregu.00183.2010
    1. Amann M., Romer L. M., Pegelow D. F., Jacques A. J., Hess C. J., Dempsey J. A. (2006a). Effects of arterial oxygen content on peripheral locomotor muscle fatigue. J. Appl. Physiol. 101, 119–127. 10.1152/japplphysiol.01596.2005
    1. Belardinelli R., Barstow T. J., Nguyen P., Wasserman K. (1997). Skeletal muscle oxygenation and oxygen uptake kinetics following constant work rate exercise in chronic congestive heart failure. Am. J. Cardiol. 80, 1319–1324. 10.1016/S0002-9149(97)00672-3
    1. Berton D. C., Barbosa P. B., Takara L. S., Chiappa G. R., Siqueira A. C. B., Bravo D. M., et al. . (2010). Bronchodilators accelerate the dynamics of muscle O2 delivery and utilisation during exercise in COPD. Thorax 65, 588–593. 10.1136/thx.2009.120857
    1. Borghi-Silva A., Carrascosa C., Oliveira C. C., Barroco A. C., Berton D. C., Vilaça D., et al. . (2008b). Effects of respiratory muscle unloading on leg muscle oxygenation and blood volume during high-intensity exercise in chronic heart failure. Am. J. Physiol. Heart Circ. Physiol. 294, H2465–H2472. 10.1152/ajpheart.91520.2007
    1. Borghi-Silva A., Oliveira C. C., Carrascosa C., Maia J., Berton D. C., Queiroga F., et al. . (2008a). Respiratory muscle unloading improves leg muscle oxygenation during exercise in patients with COPD. Thorax 63, 910–915. 10.1136/thx.2007.090167
    1. Boudestein L. C. M., Rutten F. H., Cramer M. J., Lammers J. W. J., Hoes A. W. (2009). The impact of concurrent heart failure on prognosis in patients with chronic obstructive pulmonary disease. Eur. J. Heart Fail. 11, 1182–1188. 10.1093/eurjhf/hfp148
    1. Bowen T. S., Cannon D. T., Murgatroyd S. R., Birch K. M., Witte K. K., Rossiter H. B. (2012). The intramuscular contribution to the slow oxygen uptake kinetics during exercise in chronic heart failure is related to the severity of the condition. J. Appl. Physiol. 112, 378–387. 10.1152/japplphysiol.00779.2011
    1. Calverley P. M. A. (2006). Dynamic hyperinflation: is it worth measuring? Proc. Am. Thorac. Soc. 3, 239–244. 10.1513/pats.200508-084SF
    1. Cassidy S. S., Mitchell J. H. (1981). Effects of positive pressure breathing on right and left ventricular preload and afterload. Fed. Proc. 40, 2178–2181.
    1. Chiappa G. R., Borghi-Silva A., Ferreira L. F., Carrascosa C., Oliveira C. C., Maia J., et al. . (2008). Kinetics of muscle deoxygenation are accelerated at the onset of heavy-intensity exercise in patients with COPD: relationship to central cardiovascular dynamics. J. Appl. Physiol. 104, 1341–1350. 10.1152/japplphysiol.01364.2007
    1. Chiappa G. R., Queiroga F., Meda E., Ferreira L. F., Diefenthaeler F., Nunes M., et al. . (2009). Heliox improves oxygen delivery and utilization during dynamic exercise in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 179, 1004–1010. 10.1164/rccm.200811-1793OC
    1. Copp S. W., Hirai D. M., Ferreira L. F., Poole D. C., Musch T. I. (2010). Progressive chronic heart failure slows the recovery of microvascular O2 pressures after contractions in the rat spinotrapezius muscle. Am. J. Physiol. Heart Circ. Physiol. 299, H1755–H1761. 10.1152/ajpheart.00590.2010
    1. Dempsey J. A., Romer L., Rodman J., Miller J., Smith C. (2006). Consequences of exercise-induced respiratory muscle work. Respir. Physiol. Neurobiol. 151, 242–250. 10.1016/j.resp.2005.12.015
    1. Diederich E. R., Behnke B. J., McDonough P., Kindig C. A., Barstow T. J., Poole D. C., et al. . (2002). Dynamics of microvascular oxygen partial pressure in contracting skeletal muscle of rats with chronic heart failure. Cardiovasc. Res. 56, 479–486. 10.1016/S0008-6363(02)00545-X
    1. Edwards R. H., Hill D. K., Jones D. A., Merton P. A. (1977). Fatigue of long duration in human skeletal muscle after exercise. J. Physiol. 272, 769–778.
    1. Gagnon P., Bussières J. S., Ribeiro F., Gagnon S. L., Saey D., Gagné N., et al. . (2012). Influences of spinal anesthesia on exercise tolerance in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 186, 606–615. 10.1164/rccm.201203-0404OC
    1. Gandevia S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 81, 1725–1789.
    1. Goodall S., González-Alonso J., Ali L., Ross E. Z., Romer L. M. (2012). Supraspinal fatigue after normoxic and hypoxic exercise in humans. J. Physiol. 590(Pt 11), 2767–2782. 10.1113/jphysiol.2012.228890
    1. Guazzi M., Reina G., Tumminello G., Guazzi M. D. (2005). Alveolar-capillary membrane conductance is the best pulmonary function correlate of exercise ventilation efficiency in heart failure patients. Eur. J. Heart Fail. 7, 1017–1022. 10.1016/j.ejheart.2004.10.009
    1. Harms C. A., Babcock M. A., McClaran S. R., Pegelow D. F., Nickele G. A., Nelson W. B., et al. . (1997). Respiratory muscle work compromises leg blood flow during maximal exercise. J. Appl. Physiol. 82, 1573–1583.
    1. Hirai T., Zelis R., Musch T. I. (1995). Effects of nitric oxide synthase inhibition on the muscle blood flow response to exercise in rats with heart failure. Cardiovasc. Res. 30, 469–476. 10.1016/S0008-6363(95)00068-2
    1. Iandelli I., Aliverti A., Kayser B., Dellacà R., Cala S. J., Duranti R., et al. . (2002). Determinants of exercise performance in normal men with externally imposed expiratory flow limitation. J. Appl. Physiol. 92, 1943–1952. 10.1152/japplphysiol.00393.2000
    1. Johnson B. D., Weisman I. M., Zeballos R. J., Beck K. C. (1999). Emerging concepts in the evaluation of ventilatory limitation during exercise: the exercise tidal flow-volume loop. Chest 116, 488–503. 10.1378/chest.116.2.488
    1. Katayama K., Amann M., Pegelow D. F., Jacques A. J., Dempsey J. A. (2007). Effect of arterial oxygenation on quadriceps fatigability during isolated muscle exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1279–R1286. 10.1152/ajpregu.00554.2006
    1. Kindig C. A., Musch T. I., Basaraba R. J., Poole D. C. (1999). Impaired capillary hemodynamics in skeletal muscle of rats in chronic heart failure. J. Appl. Physiol. 87, 652–660.
    1. Langer D., Ciavaglia C. E., Neder J. A., Webb K. A., O'Donnell D. E. (2014). Lung hyperinflation in chronic obstructive pulmonary disease: mechanisms, clinical implications and treatment. Expert Rev. Respir. Med. 27, 1–19. 10.1586/17476348.2014.949676
    1. Mador M. J., Deniz O., Aggarwal A., Kufel T. J. (2003). Quadriceps fatigability after single muscle exercise in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 168, 102–108. 10.1164/rccm.200202-080OC
    1. Mador M. J., Deniz O., Deniz O., Aggarwal A., Shaffer M., Kufel T. J., et al. . (2005). Effect of respiratory muscle endurance training in patients with COPD undergoing pulmonary rehabilitation. Chest 128, 1216–1224. 10.1378/chest.128.3.1216
    1. Merton P. A. (1954). Voluntary strength and fatigue. J. Physiol. 123, 553–564.
    1. Miller J. D., Hemauer S. J., Smith C. A., Stickland M. K., Dempsey J. A. (2006). Expiratory threshold loading impairs cardiovascular function in health and chronic heart failure during submaximal exercise. J. Appl. Physiol. 101, 213–227. 10.1152/japplphysiol.00862.2005
    1. Miller J. D., Pegelow D. F., Jacques A. J., Dempsey J. A. (2005). Effects of augmented respiratory muscle pressure production on locomotor limb venous return during calf contraction exercise. J. Appl. Physiol. 99, 1802–1815. 10.1152/japplphysiol.00278.2005
    1. Millet G. Y., Lepers R. (2004). Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med. 34, 105–116. 10.2165/00007256-200434020-00004
    1. Millet G. Y., Martin V., Martin A., Vergès S. (2011). Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur. J. Appl. Physiol. 111, 2489–2500. 10.1007/s00421-011-1996-y
    1. Narkiewicz K., Pesek C. A., van de Borne P. J., Kato M., Somers V. K. (1999). Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure. Circulation 100, 262–267. 10.1161/01.CIR.100.3.262
    1. Nóbrega A. C., Williamson J. W., Araújo C. G., Friedman D. B. (1994). Heart rate and blood pressure responses at the onset of dynamic exercise: effect of Valsalva manoeuvre. Eur. J. Appl. Physiol. 68, 336–340. 10.1007/BF00571453
    1. O'Donnell D. E., Laveneziana P., Webb K., Neder J. A. (2014). Chronic obstructive pulmonary disease: clinical integrative physiology. Clin. Chest Med. 35, 51–69. 10.1016/j.ccm.2013.09.008
    1. O'Donnell D. E., Revill S. M., Webb K. A. (2001). Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care. Med. 164, 770–777. 10.1164/ajrccm.164.5.2012122
    1. Oliveira M. F., Rodrigues M. K., Treptow E., Cunha T. M., Ferreira E. M. V., Neder J. A. (2012). Effects of oxygen supplementation on cerebral oxygenation during exercise in chronic obstructive pulmonary disease patients not entitled to long-term oxygen therapy. Clin. Physiol. Funct. Imaging 32, 52–58. 10.1111/j.1475-097X.2011.01054.x
    1. Piepoli M., Clark A. L., Volterrani M., Adamopoulos S., Sleight P., Coats A. J. (1996). Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation 93, 940–952. 10.1161/01.CIR.93.5.940
    1. Ponikowski P., Chua T. P., Anker S. D., Francis D. P., Doehner W., Banasiak W., et al. . (2001). Peripheral chemoreceptor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation 104, 544–549. 10.1161/hc3101.093699
    1. Poole D. C., Hirai D. M., Copp S. W., Musch T. I. (2012). Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance. Am. J. Physiol. Heart Circ. Physiol. 302, H1050–H1063. 10.1152/ajpheart.00943.2011
    1. Potter W. A., Olafsson S., Hyatt R. E. (1971). Ventilatory mechanics and expiratory flow limitation during exercise in patients with obstructive lung disease. J. Clin. Invest. 50, 910–919. 10.1172/JCI106563
    1. Ranieri V. M., Dambrosio M., Brienza N. (1996). Intrinsic PEEP and cardiopulmonary interaction in patients with COPD and acute ventilatory failure. Eur. Respir. J. 9, 1283–1292. 10.1183/09031936.96.09061283
    1. Ribeiro J. P., Chiappa G. R., Neder J. A., Frankenstein L. (2009). Respiratory muscle function and exercise intolerance in heart failure. Curr. Heart Fail. Rep. 6, 95–101. 10.1007/s11897-009-0015-7
    1. Robotham J. L., Lixfeld W., Holland L., MacGregor D., Bryan A. C., Rabson J. (1978). Effects of respiration on cardiac performance. J. Appl. Physiol. 44, 703–709.
    1. Rodrigues M. K., Oliveira M. F., Soares A., Treptow E., Neder J. A. (2013). Additive effects of non-invasive ventilation to hyperoxia on cerebral oxygenation in COPD patients with exercise-related O2 desaturation. Clin. Physiol. Funct. Imaging 33, 274–281. 10.1111/cpf.12024
    1. Romer L. M., Lovering A. T., Haverkamp H. C., Pegelow D. F., Dempsey J. A. (2006). Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans. J. Physiol. 571(Pt 2), 425–439. 10.1113/jphysiol.2005.099697
    1. Rutten F. H., Cramer M.-J. M., Grobbee D. E., Sachs A. P. E., Kirkels J. H., Lammers J.-W. J., et al. . (2005). Unrecognized heart failure in elderly patients with stable chronic obstructive pulmonary disease. Eur. Heart J. 26, 1887–1894. 10.1093/eurheartj/ehi291
    1. Saito S., Miyamoto K., Nishimura M., Aida A., Saito H., Tsujino I., et al. . (1999). Effects of inhaled bronchodilators on pulmonary hemodynamics at rest and during exercise in patients with COPD. Chest 115, 376–382. 10.1378/chest.115.2.376
    1. Scharf S. M. (1991). Cardiovascular effects of airways obstruction. Lung 169, 1–23. 10.1007/BF02714137
    1. Sheel A. W., Derchak P. A., Morgan B. J., Pegelow D. F., Jacques A. J., Dempsey J. A. (2001). Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow in humans. J. Physiol. 537(Pt 1), 277–289. 10.1111/j.1469-7793.2001.0277k.x
    1. Stark-Leyva K. N., Beck K. C., Johnson B. D. (2004). Influence of expiratory loading and hyperinflation on cardiac output during exercise. J. Appl. Physiol. 96, 1920–1927. 10.1152/japplphysiol.00756.2003
    1. St Croix C. M., Morgan B. J., Wetter T. J., Dempsey J. A. (2000). Fatiguing inspiratory muscle work causes reflex sympathetic activation in humans. J. Physiol. 529(Pt 2), 493–504. 10.1111/j.1469-7793.2000.00493.x
    1. Stubbing D. G., Pengelly L. D., Morse J. L., Jones N. L. (1980). Pulmonary mechanics during exercise in subjects with chronic airflow obstruction. J. Appl. Physiol. 49, 511–515.
    1. Todd G., Taylor J. L., Gandevia S. C. (2003). Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J. Physiol. 551(Pt 2), 661–671. 10.1113/jphysiol.2003.044099
    1. Verges S., Bachasson D., Wuyam B. (2010). Effect of acute hypoxia on respiratory muscle fatigue in healthy humans. Respir. Res. 11:109. 10.1186/1465-9921-11-109
    1. Verges S., Rupp T., Jubeau M., Wuyam B., Esteve F., Levy P., et al. . (2012). Cerebral perturbations during exercise in hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R903–R916. 10.1152/ajpregu.00555.2011

Source: PubMed

Подписаться