A state-of-the-art review on fucoidan as an antiviral agent to combat viral infections

Biswajita Pradhan, Rabindra Nayak, Srimanta Patra, Prajna Paramita Bhuyan, Pradyota Kumar Behera, Amiya Kumar Mandal, Chhandashree Behera, Jang-Seu Ki, Siba Prasad Adhikary, Davoodbasha MubarakAli, Mrutyunjay Jena, Biswajita Pradhan, Rabindra Nayak, Srimanta Patra, Prajna Paramita Bhuyan, Pradyota Kumar Behera, Amiya Kumar Mandal, Chhandashree Behera, Jang-Seu Ki, Siba Prasad Adhikary, Davoodbasha MubarakAli, Mrutyunjay Jena

Abstract

As a significant public health hazard with several drug side effects during medical treatment, searching for novel therapeutic natural medicines is promising. Sulfated polysaccharides from algae, such as fucoidan, have been discovered to have a variety of medical applications, including antibacterial and immunomodulatory properties. The review emphasized on the utilization of fucoidan as an antiviral agent against viral infections by inhibiting their attachment and replication. Moreover, it can also trigger immune response against viral infection in humans. This review suggested to be use the fucoidan for the potential protective remedy against COVID-19 and addressing the antiviral activities of sulfated polysaccharide, fucoidan derived from marine algae that could be used as an anti-COVID19 drug in near future.

Keywords: Antiviral drug; COVID-19; Fucoidan; Immunomodulation; Marine algae.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2022 Elsevier Ltd. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Structure of the novel corona virus.
Fig. 2
Fig. 2
The viral entry and replication of novel coronavirus pathogenesis.
Fig. 3
Fig. 3
Sulfated polysaccharides (SPs) modulates antiviral mechanism of via inhibiting virus attachment, penetration, interiorization, uncoating and transcription and translation process.
Fig. 4
Fig. 4
The most common backbone chains of brown seaweed fucoidan type I (A), type II (B). The molecular structure of isolated fucoidan used against SARS-CoV-2 such as F. vesiculosus (C) and Undaria pinnatifida (D).
Fig. 5
Fig. 5
Fucoidan inhibit the attachment and viral entry. Moreover, fucoidan activate immune responses against COVID-19 patients via activation of T-cell.

References

    1. Alam S., Sarker M.M.R., Afrin S., Richi F.T., Zhao C., Zhou J.R., Mohamed I.N. Traditional herbal medicines, bioactive metabolites, and plant products against COVID-19: Update on clinical trials and mechanism of actions. Frontiers in Pharmacology. 2021;12
    1. Behera C., Dash S.R., Pradhan B., Jena M., Adhikary S.P. Algal diversity of Ansupa lake, Odisha, India. Nelumbo. 2020;62(2):207–220.
    1. Behera C., Pradhan B., Panda R., Nayak R., Nayak S., Jena M. Algal diversity of saltpans, Huma (Ganjam), India. Journal of the Indian Botanical Society. 2021;101(1 & 2):107–120.
    1. Buck C.B., Thompson C.D., Roberts J.N., Müller M., Lowy D.R., Schiller J.T. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathogens. 2006;2(7)
    1. Chatterjee S.K., Saha S., Munoz M.N.M. Molecular pathogenesis, immunopathogenesis and novel therapeutic strategy against COVID-19. Frontiers in Molecular Biosciences. 2020;7:196.
    1. Chen L., Xu W., Chen D., Chen G., Liu J., Zeng X., Zhu H. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro. International Journal of Biological Macromolecules. 2018;112:1055–1061.
    1. Dash S., Pradhan B., Behera C., M J. Algal diversity of Kanjiahata Lake, Nandankanan, Odisha, India. Journal of the Indian Botanical Society. 2020;99(1 & 2):11–24.
    1. Dash S., Pradhan B., Behera C., Nayak R., Jena M. Algal Flora of tampara Lake, chhatrapur, Odisha, India. Journal of the Indian Botanical Society. 2021;101(1):1–15.
    1. De Mello M.T., Silva A., de Carvalho Guerreiro R., Da-Silva F.R., Esteves A.M., Poyares D., Rosa D.S. Sleep and COVID-19: Considerations about immunity, pathophysiology, and treatment. Sleep Science. 2020;13(3):199.
    1. Dhar D., Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Research. 2020;285
    1. Díaz-Resendiz K.J.G., Covantes-Rosales C.E., Benítez-Trinidad A.B., Navidad-Murrieta M.S., Razura-Carmona F.F., Carrillo-Cruz C.D., Zambrano-Soria M. Effect of fucoidan on the mitochondrial membrane potential (ΔΨm) of leukocytes from patients with active COVID-19 and subjects that recovered from SARS-CoV-2 infection. Marine Drugs. 2022;20(2):99.
    1. Dinesh S., Menon T., Hanna L.E., Suresh V., Sathuvan M., Manikannan M. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. International Journal of Biological Macromolecules. 2016;82:83–88.
    1. Duarte M.E., Noseda D.G., Noseda M.D., Tulio S., Pujol C.A., Damonte E.B. Inhibitory effect of sulfated galactans from the marine alga Bostrychia montagnei on herpes simplex virus replication in vitro. Phytomedicine. 2001;8(1):53–58.
    1. Effenberger M., Grabherr F., Mayr L., Schwaerzler J., Nairz M., Seifert M., Tilg H. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut. 2020;69:1543–1544.
    1. Elengoe A. COVID-19 outbreak in Malaysia. Osong Public Health and Research Perspectives. 2020;11(3):93–100.
    1. Elizondo-Gonzalez R., Cruz-Suarez L.E., Ricque-Marie D., Mendoza-Gamboa E., Rodriguez-Padilla C., Trejo-Avila L.M. In vitro characterization of the antiviral activity of fucoidan from cladosiphon okamuranus against Newcastle disease virus. Virology Journal. 2012;9:307.
    1. Fields F.J., Lejzerowicz F., Schroeder D., Ngoi S.M., Tran M., McDonald D., Mayfield S. Effects of the microalgae chlamydomonas on gastrointestinal health. Journal of Functional Foods. 2020;65
    1. Fitton J.H., Park A.Y., Karpiniec S.S., Stringer D.N. Fucoidan and lung function: Value in viral infection. Marine Drugs. 2021;19(1):4.
    1. Flaviviridae P., Caliciviridae T., Iversen P., Stein D., Weller D., Frieman M., Ying T. 2020. Recent patents related to vaccines and methods of treatment of coronaviruses.
    1. Flerlage T., Boyd D.F., Meliopoulos V. Influenza virus and SARS-CoV-2: Pathogenesis and host responses in the respiratory tract. 19(7) 2021. pp. 425–441.
    1. Fukushi M., Ito T., Oka T., Kitazawa T., Miyoshi-Akiyama T., Kirikae T., Kudo K. Serial histopathological examination of the lungs of mice infected with influenza a virus PR8 strain. PLoS One. 2011;6(6)
    1. Grassauer A., Weinmuellner R., Meier C., Pretsch A., Prieschl-Grassauer E., Unger H. Iota-carrageenan is a potent inhibitor of rhinovirus infection. Virology Journal. 2008;5:107.
    1. Guo Y.R., Cao Q.D., Hong Z.S., Tan Y.Y., Chen S.D., Jin H.J., Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - An update on the status. Military Medical Research. 2020;7(1):11.
    1. Güven K.C., Coban B., Özdemir O. Pharmacology of marine macroalgae. Encyclopedia of Marine Biotechnology. 2020;1:585–615.
    1. Harden E.A., Falshaw R., Carnachan S.M., Kern E.R., Prichard M.N. Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Research. 2009;83(3):282–289.
    1. Hasui M., Matsuda M., Okutani K., Shigeta S. In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. International Journal of Biological Macromolecules. 1995;17(5):293–297.
    1. Hayashi K., Hayashi T., Kojima I. A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: In vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Research and Human Retroviruses. 1996;12(15):1463–1471.
    1. Hayashi K., Nakano T., Hashimoto M., Kanekiyo K., Hayashi T. Defensive effects of a fucoidan from brown alga undaria pinnatifida against herpes simplex virus infection. International Immunopharmacology. 2008;8(1):109–116.
    1. Hayashi K., Lee J.-B., Nakano T., Hayashi T. Anti-influenza a virus characteristics of a fucoidan from sporophyll of undaria pinnatifida in mice with normal and compromised immunity. Microbes and Infection. 2013;15(4):302–309.
    1. He Y., Wang J., Li F., Shi Y. Main clinical features of COVID-19 and potential prognostic and therapeutic value of the microbiota in SARS-CoV-2 infections. Frontiers in Microbiology. 2020;11:1302.
    1. Hemmingson J.A., Falshaw R., Furneaux R., Thompson K. Structure and antiviral activity of the galactofucan sulfates extracted from undaria pinnatifida (Phaeophyta) Journal of Applied Phycology. 2006;18(2):185–193.
    1. Heo S.Y., Ko S.C., Kim C.S., Oh G.W., Ryu B., Qian Z.J., Jung W.K. A heptameric peptide purified from spirulina sp. gastrointestinal hydrolysate inhibits angiotensin I-converting enzyme- and angiotensin II-induced vascular dysfunction in human endothelial cells. International Journal of Molecular Medicine. 2017;39(5):1072–1082.
    1. Hidari K.I., Takahashi N., Arihara M., Nagaoka M., Morita K., Suzuki T. Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochemical and Biophysical Research Communications. 2008;376(1):91–95.
    1. Hilliou L., Larotonda F.D., Abreu P., Ramos A.M., Sereno A.M., Gonçalves M.P. Effect of extraction parameters on the chemical structure and gel properties of kappa/iota-hybrid carrageenans obtained from mastocarpus stellatus. Biomolecular Engineering. 2006;23(4):201–208.
    1. Huang Y., Yang C., Xu X.F., Xu W., Liu S.W. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica. 2020;41(9):1141–1149.
    1. Huppert L.A., Matthay M.A., Ware L.B. Pathogenesis of acute respiratory distress syndrome. Seminars in Respiratory and Critical Care Medicine. 2019;40(1):31–39.
    1. Jin W., Zhang W., Mitra D., McCandless M.G., Sharma P., Tandon R., Linhardt R.J. The structure-activity relationship of the interactions of SARS-CoV-2 spike glycoproteins with glucuronomannan and sulfated galactofucan from Saccharina japonica. International Journal of Biological Macromolecules. 2020;163:1649–1658.
    1. Jin W., Zhang W., Mitra D., McCandless M.G., Sharma P., Tandon R., Linhardt R.J. The structure-activity relationship of the interactions of SARS-CoV-2 spike glycoproteins with glucuronomannan and sulfated galactofucan from Saccharina japonica. International Journal of Biological Macromolecules. 2020;163:1649–1658.
    1. Jin Y., Yang H., Ji W., Wu W., Chen S. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Vol. 12. 2020. p. 4.
    1. Kim S.-Y., Joo H.-G. Evaluation of adjuvant effects of fucoidan for improving vaccine efficacy. Journal of Veterinary Science. 2015;16(2):145–150.
    1. Koenighofer M., Lion T., Bodenteich A., Prieschl-Grassauer E., Grassauer A., Unger H., Fazekas T. Carrageenan nasal spray in virus confirmed common cold: Individual patient data analysis of two randomized controlled trials. Multidisciplinary Respiratory Medicine. 2014;9(1):57.
    1. Kuznetsova T.A., Ivanushko L.A., Persiyanova E.V., Shutikova A.L., Ermakova S.P., Khotimchenko M.Y., Besednova N.N. Evaluation of adjuvant effects of fucoidane from brown seaweed Fucus evanescens and its structural analogues for the strengthening vaccines effectiveness. Biomeditsinskaya Khimiya. 2017;63(6):553–558.
    1. Kwon P.S., Oh H., Kwon S.J., Jin W., Zhang F., Fraser K., Hong J.J. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. 6(1) 2020. p. 50.
    1. Lee J.B., Hayashi K., Hashimoto M., Nakano T., Hayashi T. Novel antiviral fucoidan from sporophyll of undaria pinnatifida (Mekabu) Chemical & Pharmaceutical Bulletin (Tokyo) 2004;52(9):1091–1094.
    1. Lee J.B., Hayashi K., Maeda M., Hayashi T. Antiherpetic activities of sulfated polysaccharides from green algae. Planta Medica. 2004;70(9):813–817.
    1. Lee J.-B., Takeshita A., Hayashi K., Hayashi T. Structures and antiviral activities of polysaccharides from Sargassum trichophyllum. Carbohydrate Polymers. 2011;86(2):995–999.
    1. Leibbrandt A., Meier C., König-Schuster M., Weinmüllner R., Kalthoff D., Pflugfelder B., Fazekas T. Iota-carrageenan is a potent inhibitor of influenza a virus infection. PLoS One. 2010;5(12)
    1. Li M., Shang Q., Li G., Wang X., Yu G. Degradation of marine algae-derived carbohydrates by bacteroidetes isolated from human gut microbiota. Marine Drugs. 2017;15(4)
    1. Liang T.J. Hepatitis B: The virus and disease. Hepatology. 2009;49(5 Suppl) S13-21.
    1. Lin H.T., Chen C.C., Chiao D.J., Chang T.Y., Chen X.A., Young J.J., Kuo S.C. Nanoparticular CpG-adjuvanted SARS-CoV-2 S1 protein elicits broadly neutralizing and Th1-biased immunoreactivity in mice. International Journal of Biological Macromolecules. 2021;193(Pt B):1885–1897.
    1. Liu Y.C., Kuo R.L., Shih S.R. COVID-19: The first documented coronavirus pandemic in history. Biomedical Journal. 2020;43(4):328–333.
    1. Maharana S., Pradhan B., Jena M., Misra M.K. Diversity of phytoplankton in Chilika Lagoon, Odisha, India. Environment and Ecology. 2019;37:737–746.
    1. Makarenkova I.D., Deriabin P.G., L'Vov D K., Zviagintseva T.N., Besednova N.N. Antiviral activity of sulfated polysaccharide from the brown algae Laminaria japonica against avian influenza A (H5N1) virus infection in the cultured cells. Voprosy Virusologii. 2010;55(1):41–45.
    1. Mandal P., Mateu C.G., Chattopadhyay K., Pujol C.A., Damonte E.B., Ray B. Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antiviral Chemistry & Chemotherapy. 2007;18(3):153–162.
    1. Marchetti M., Pisani S., Pietropaolo V., Seganti L., Nicoletti R., Orsi N. Inhibition of herpes simplex virus infection by negatively charged and neutral carbohydrate polymers. Journal of Chemotherapy. 1995;7(2):90–96.
    1. Matsuhiro B., Conte A.F., Damonte E.B., Kolender A.A., Matulewicz M.C., Mejías E.G., Zúñiga E.A. Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta) Carbohydrate Research. 2005;340(15):2392–2402.
    1. Mercer J., Schelhaas M., Helenius A. Virus entry by endocytosis. Annual Review of Biochemistry. 2010;79:803–833.
    1. Mohanty S., Pradhan B., Patra S., Behera C., Nayak R., Jena M. Screening for nutritive bioactive compounds in some algal strains isolated from coastal Odisha. Journal of Advanced Plant Sciences. 2020;10(2):1–8.
    1. Moscona A. Global transmission of oseltamivir-resistant influenza. The New England Journal of Medicine. 2009;360(10):953–956.
    1. MubarakAli D., et al. An evidence of microalgal peptides to target spike protein of COVID-19: In silico approach. Microbial Pathogenesis. 2021;60(1):105189.
    1. Neyrinck A.M., Taminiau B., Walgrave H., Daube G., Cani P.D., Bindels L.B., Delzenne N.M. Spirulina protects against hepatic inflammation in aging: An effect related to the modulation of the gut microbiota? Nutrients. 2017;9(6)
    1. Oguntibeju O.O. Quality of life of people living with HIV and AIDS and antiretroviral therapy. Hiv/Aids (Auckland, NZ) 2012;4:117.
    1. Pagarete A., Ramos A.S., Puntervoll P., Allen M.J., Verdelho V. Antiviral potential of algal metabolites—A comprehensive review. Marine Drugs. 2021;19(2):94.
    1. Parasher A. COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment. Postgraduate Medical Journal. 2021;97(1147):312–320.
    1. Patra S., Nayak R., Patro S., Pradhan B., Sahu B., Behera C., Jena M. Chemical diversity of dietary phytochemicals and their mode of chemoprevention. Biotechnology Reports (Amsterdam, Netherlands) 2021;30
    1. Patra S., Pradhan B., Nayak R., Behera C., Das S., Patra S.K., Bhutia S.K. Dietary polyphenols in chemoprevention and synergistic effect in cancer: Clinical evidences and molecular mechanisms of action. Phytomedicine. 2021;90
    1. Patra S., Pradhan B., Nayak R., Behera C., Panda K.C., Das S., Jena M. 2021. Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: Current evidences and future perspectives.
    1. Patra S., Pradhan B., Nayak R., Behera C., Rout L., Jena M., Bhutia S.K. Chemotherapeutic efficacy of curcumin and resveratrol against cancer: Chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics. Seminars in Cancer Biology. 2021;73:310–320.
    1. Pereira L., Critchley A.T. The COVID 19 novel coronavirus pandemic 2020: Seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? Journal of Applied Phycology. 2020:1–3.
    1. Perrotta F., Matera M.G., Cazzola M., Bianco A. Severe respiratory SARS-CoV2 infection: Does ACE2 receptor matter? Respiratory Medicine. 2020;168
    1. Ponce N.M., Pujol C.A., Damonte E.B., Flores M.L., Stortz C.A. Fucoidans from the brown seaweed adenocystis utricularis: Extraction methods, antiviral activity and structural studies. Carbohydrate Research. 2003;338(2):153–165.
    1. Pradhan B., Patra S., Behera C., Nayak R., Patil S., Bhutia S.K., Jena M. Enteromorpha compressa extract induces anticancer activity through apoptosis and autophagy in oral cancer. 47(12) 2020. pp. 9567–9578..
    1. Pradhan B., Patra S., Nayak R., Behera C., Dash S.R., Nayak S., Jena M. Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: A journey under the sea in pursuit of potent therapeutic agents. International Journal of Biological Macromolecules. 2020;164:4263–4278.
    1. Pradhan B., Maharana S., Bhakta S., Jena M. Marine phytoplankton diversity of Odisha coast, India with special reference to new record of diatoms and dinoflagellates. Vegetos. 2021 doi: 10.1007/s42535-021-00301-2.
    1. Pradhan B., Nayak R., Patra S., Jit B., Ragusa A., Jena M. Bioactive metabolites from marine algae as potent pharmacophores against oxidative stress-associated human diseases: A comprehensive review. Molecules. 2021;26(1):37.
    1. Pradhan B., Patra S., Behera C., Nayak R., Jit B.P., Ragusa A. 26(4) 2021. Preliminary investigation of the antioxidant, anti-diabetic, and anti-inflammatory activity of Enteromorpha intestinalis extracts.
    1. Pradhan B., Patra S., Dash S.R., Nayak R., Behera C., Jena M. Evaluation of the anti-bacterial activity of methanolic extract of Chlorella vulgaris beyerinck [Beijerinck] with special reference to antioxidant modulation. Future Journal of Pharmaceutical Sciences. 2021;7(1):17.
    1. Pradhan B., Bhuyan P.P., Patra S., Nayak R., Behera P.K., Behera C., Jena M. Beneficial effects of seaweeds and seaweed-derived bioactive compounds: Current evidence and future prospective. Biocatalysis and Agricultural Biotechnology. 2022;39
    1. Pradhan B., Nayak R., Patra S., Bhuyan P.P., Dash S.R., Ki J.-S., Jena M. Cyanobacteria and algae-derived bioactive metabolites as antiviral agents: Evidence, mode of action, and scope for further expansion; A comprehensive review in light of the SARS-CoV-2 outbreak. Antioxidants. 2022;11(2):354.
    1. Pradhan B., Patra S., Dash S.R., Satapathy Y., Nayak S., Mandal A.K., Jena M. In vitro antidiabetic, anti-inflammatory and antibacterial activity of marine alga Enteromorpha compressa collected from Chilika lagoon, Odisha, India. Vegetos. 2022 doi: 10.1007/s42535-022-00359-6.
    1. Prokofjeva M.M., Imbs T.I., Shevchenko N.M., Spirin P.V., Horn S., Fehse B., Prassolov V.S. Fucoidans as potential inhibitors of HIV-1. Marine Drugs. 2013;11(8):3000–3014.
    1. Queiroz K.C., Medeiros V.P., Queiroz L.S., Abreu L.R., Rocha H.A., Ferreira C.V., Leite E.L. Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomedicine & Pharmacotherapy. 2008;62(5):303–307.
    1. Rabanal M., Ponce N.M., Navarro D.A., Gómez R.M., Stortz C.A. The system of fucoidans from the brown seaweed Dictyota dichotoma: Chemical analysis and antiviral activity. Carbohydrate Polymers. 2014;101:804–811.
    1. Ratha S.K., Renuka N., Rawat I., Bux F. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition. 2021;83
    1. Richards C., Williams N.A., Fitton J.H., Stringer D.N., Karpiniec S.S., Park A.Y. Oral fucoidan attenuates lung pathology and clinical signs in a severe influenza a mouse model. Marine Drugs. 2020;18(5):246.
    1. Rodrigues D., Walton G., Sousa S., Rocha-Santos T.A., Duarte A.C., Freitas A.C., Gomes A.M. In vitro fermentation and prebiotic potential of selected extracts from seaweeds and mushrooms. LWT. 2016;73:131–139.
    1. Rodríguez M.C., Merino E.R., Pujol C.A., Damonte E.B., Cerezo A.S., Matulewicz M.C. Galactans from cystocarpic plants of the red seaweed Callophyllis variegata (Kallymeniaceae, Gigartinales) Carbohydrate Research. 2005;340(18):2742–2751.
    1. Schijns V., Lavelle E.C. Prevention and treatment of COVID-19 disease by controlled modulation of innate immunity. 50(7) 2020. pp. 932–938.
    1. Sen I.K., Chakraborty I., Mandal A.K., Bhanja S.K., Patra S., Maity P. A review on antiviral and immunomodulatory polysaccharides from indian medicinal plants, which may be beneficial to COVID-19 infected patients. International Journal of Biological Macromolecules. 2021;181:462–470.
    1. Sepúlveda-Crespo D., Ceña-Díez R., Jiménez J.L., Ángeles Muñoz-Fernández M. Mechanistic studies of viral entry: An overview of dendrimer-based microbicides as entry inhibitors against both HIV and HSV-2 overlapped infections. Medicinal Research Reviews. 2017;37(1):149–179.
    1. Shi Q., Wang A., Lu Z., Qin C., Hu J., Yin J. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydrate Research. 2017;453–454:1–9.
    1. Singhal T. A review of coronavirus Disease-2019 (COVID-19) Indian Journal of Pediatrics. 2020;87(4):281–286.
    1. Sivagnanavelmurugan M., Marudhupandi T., Palavesam A., Immanuel G. Antiviral effect of fucoidan extracted from the brown seaweed, Sargassum wightii, on shrimp Penaeus monodon postlarvae against white spot syndrome virus. Journal of the World Aquaculture Society. 2012;43(5):697–706.
    1. Sobh A., Bonilla F.A. Vaccination in primary immunodeficiency disorders. The Journal of Allergy and Clinical Immunology: In Practice. 2016;4(6):1066–1075.
    1. Song S., Peng H., Wang Q., Liu Z., Dong X., Wen C., Ai C. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. 11(9) 2020. pp. 7415–7420.
    1. Song S., Peng H., Wang Q., Liu Z., Dong X., Wen C., Zhu B. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food & Function. 2020;11(9):7415–7420.
    1. Song Y., He P., Rodrigues A.L., Datta P., Tandon R., Bates J.T., Zhang F. Anti-SARS-CoV-2 activity of rhamnan sulfate from Monostroma nitidum. Marine Drugs. 2021;19(12):685.
    1. Subbarao K., Mahanty S. Respiratory virus infections: Understanding COVID-19. Immunity. 2020;52(6):905–909.
    1. Sun T., Zhang X., Miao Y., Zhou Y., Shi J., Yan M., Chen A. Studies on antiviral and immuno-regulation activity of low molecular weight fucoidan from Laminaria japonica. Journal of Ocean University of China. 2018;17(3):705–711.
    1. Synytsya A., Bleha R., Synytsya A., Pohl R., Hayashi K., Yoshinaga K., Hayashi T. Mekabu fucoidan: Structural complexity and defensive effects against avian influenza a viruses. Carbohydrate Polymers. 2014;111:633–644.
    1. Tamama K. Potential benefits of dietary seaweeds as protection against COVID-19. Nutrition Reviews. 2021;79(7):814–823.
    1. Tandon R., Sharp J.S., Zhang F., Pomin V.H., Ashpole N.M., Mitra D., Linhardt R.J. Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives. Journal of Virology. 2021;95(3)
    1. Tay M.Z., Poh C.M., Rénia L. The trinity of COVID-19: Immunity, inflammation and intervention. 20(6) 2020. pp. 363-–374.
    1. Thuy T.T., Ly B.M., Van T.T., Quang N.V., Tu H.C., Zheng Y., Ai U. Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydrate Polymers. 2015;115:122–128.
    1. Trinchero J., Ponce N.M., Córdoba O.L., Flores M.L., Pampuro S., Stortz C.A., Turk G. Antiretroviral activity of fucoidans extracted from the brown seaweed adenocystis utricularis. Phytotherapy Research. 2009;23(5):707–712.
    1. V'Kovski P., Kratzel A., Steiner S., Stalder H. Coronavirus biology and replication: Implications for SARS-CoV-2. 19(3) 2021. pp. 155–170.
    1. Wan Y., Shang J., Sun S., Tai W., Chen J., Geng Q., Shi Z. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. Vol. 94. 2020. p. 5.
    1. Wang W., Wang S.X., Guan H.S. The antiviral activities and mechanisms of marine polysaccharides: An overview. Marine Drugs. 2012;10(12):2795–2816.
    1. Wang W., Wu J., Zhang X., Hao C., Zhao X., Jiao G., Yu G. Inhibition of influenza a virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Scientific Reports. 2017;7(1):1–14.
    1. Wang W., Wu J., Zhang X., Hao C., Zhao X., Jiao G., Yu G. Inhibition of influenza a virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Scientific Reports. 2017;7:40760.
    1. Witvrouw M., De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. General Pharmacology. 1997;29(4):497–511.
    1. Witvrouw M., Este J., Mateu M., Reymen D., Andrei G., Snoeck R., Desmyter J. Activity of a sulfated polysaccharide extracted from the red seaweed aghardhiella tenera against human immunodeficiency virus and other enveloped viruses. Antiviral Chemistry and Chemotherapy. 1994;5(5):297–303.
    1. Wu Q., Liu L., Miron A., Klímová B., Wan D., Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of spirulina: An overview. Archives of Toxicology. 2016;90(8):1817–1840.
    1. Yim J.H., Kim S.J., Ahn S.H., Lee C.K., Rhie K.T., Lee H.K. Antiviral effects of sulfated exopolysaccharide from the marine microalga gyrodinium impudicum strain KG03. Marine Biotechnology (New York, N.Y.) 2004;6(1):17–25.
    1. Yim S.-K., Kim K., Kim I., Chun S., Oh T., Kim J.-U., Ku B. Inhibition of SARS-CoV-2 virus entry by the crude polysaccharides of seaweeds and abalone viscera in vitro. Marine Drugs. 2021;19(4):219.
    1. Yim S.K., Kim K., Kim I.H., Chun S.H., Oh T.H., Kim J.U., Jung K.J. Inhibition of SARS-CoV-2 virus entry by the crude polysaccharides of seaweeds and abalone viscera in vitro. Marine Drugs. 2021;19(4)
    1. Zeitlin L., Whaley K.J., Hegarty T.A., Moench T.R., Cone R.A. Tests of vaginal microbicides in the mouse genital herpes model. Contraception. 1997;56(5):329–335.
    1. Zuo T., Zhang F., Lui G.C.Y., Yeoh Y.K., Li A.Y.L., Zhan H., Ng S.C. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020;159(3):944–955. e948.

Source: PubMed

Подписаться