The Role of Nutritional Factors in Asthma: Challenges and Opportunities for Epidemiological Research

Annabelle Bédard, Zhen Li, Wassila Ait-Hadad, Carlos A Camargo Jr, Bénédicte Leynaert, Christophe Pison, Orianne Dumas, Raphaëlle Varraso, Annabelle Bédard, Zhen Li, Wassila Ait-Hadad, Carlos A Camargo Jr, Bénédicte Leynaert, Christophe Pison, Orianne Dumas, Raphaëlle Varraso

Abstract

The prevalence of asthma has nearly doubled over the last decades. Twentieth century changes in environmental and lifestyle factors, including changes in dietary habits, physical activity and the obesity epidemic, have been suggested to play a role in the increase of asthma prevalence and uncontrolled asthma worldwide. A large body of evidence has suggested that obesity is a likely risk factor for asthma, but mechanisms are still unclear. Regarding diet and physical activity, the literature remains inconclusive. Although the investigation of nutritional factors as a whole (i.e., the "diet, physical activity and body composition" triad) is highly relevant in terms of understanding underlying mechanisms, as well as designing effective public health interventions, their combined effects across the life course has not received a lot of attention. In this review, we discuss the state of the art regarding the role of nutritional factors in asthma, for each window of exposure. We focus on the methodological and conceptual challenges encountered in the investigation of the complex time-dependent interrelations between nutritional factors and asthma and its control, and their interaction with other determinants of asthma. Lastly, we provide guidance on how to address these challenges, as well as suggestions for future research.

Keywords: asthma; asthma control; body composition; diet; nutritional factors; physical activity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 2
Figure 2
Issue of time-dependent confounding* in the interrelations between nutritional factors and asthma/asthma control. Covf: time-fixed covariates; Covt − 1: time-dependent covariates at time t − 1; * For simplicity, the interrelations between each nutritional factor are not represented in this figure (see Figure 1).
Figure 1
Figure 1
Issue of mediation* in the interrelations between nutritional factors and asthma/asthma control. IE1 = indirect effect of diet on asthma/asthma control mediated by body composition; IE2 = indirect effect of physical activity on asthma/asthma control mediated by body composition; DE1 = direct effect of diet on asthma/asthma control; DE2 = direct effect of physical activity on asthma/asthma control; * For simplicity, the time-dependent nature of the interrelations between nutritional factors and asthma, and their covariates, is not represented in this figure (see Figure 2).

References

    1. Kyu H.H., Abate D., Abate K.H., Abay S.M., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., Abdelalim A., et al. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1859–1922. doi: 10.1016/S0140-6736(18)32335-3.
    1. Ferrante G., La Grutta S. The burden of pediatric asthma. Front. Pediatr. 2018;6:1–7. doi: 10.3389/fped.2018.00186.
    1. Eder W., Ege M.J., von Mutius E. The asthma epidemic. N. Engl. J. Med. 2006;355:2226–2235. doi: 10.1056/NEJMra054308.
    1. Beasley R., Semprini A., Mitchell E.A. Risk factors for asthma: Is prevention possible? Lancet. 2015;386:1075–1085. doi: 10.1016/S0140-6736(15)00156-7.
    1. Braido F., Brusselle G., Guastalla D., Ingrassia E., Nicolini G., Price D., Roche N., Soriano J.B., Worth H. Determinants and impact of suboptimal asthma control in Europe: The INTERNATIONAL CROSS-SECTIONAL AND LONGITUDINAL ASSESSMENT ON ASTHMA CONTROL (LIAISON) study. Respir. Res. 2016;17:51. doi: 10.1186/s12931-016-0374-z.
    1. Global Initiative for Asthma (GINA) Global Strategy for Asthma Management and Prevention 2020. [(accessed on 11 March 2021)]; Available online:
    1. Health Promotion Glossary. [(accessed on 28 September 2020)]; Available online:
    1. von Mutius E., Smits H.H. Primary prevention of asthma: From risk and protective factors to targeted strategies for prevention. Lancet. 2020;396:854–866. doi: 10.1016/S0140-6736(20)31861-4.
    1. Varraso R., Camargo C.A. Diet and asthma: Need to account for asthma type and level of prevention. Expert Rev. Respir. Med. 2016;10:1147–1150. doi: 10.1080/17476348.2016.1240033.
    1. Peters U., Dixon A.E., Forno E. Obesity and asthma. J. Allergy Clin. Immunol. 2018;141:1169–1179. doi: 10.1016/j.jaci.2018.02.004.
    1. Novosad S., Khan S., Wolfe B., Khan A. Role of obesity in asthma control, the obesity-asthma phenotype. J. Allergy. 2013;2013:538642. doi: 10.1155/2013/538642.
    1. Xie M., Wenzel S.E. A global perspective in asthma: From phenotype to endotype. Chin. Med. J. 2013;126:166–174.
    1. de Marco R., Locatelli F., Sunyer J., Burney P. Differences in incidence of reported asthma related to age in men and women. A retrospective analysis of the data of the European Respiratory Health Survey. Am. J. Respir. Crit. Care Med. 2000;162:68–74. doi: 10.1164/ajrccm.162.1.9907008.
    1. Olivenstein R., Hamid Q. Asthma in the elderly … Their time is right now. Clin. Exp. Allergy. 2011;41:457–458. doi: 10.1111/j.1365-2222.2011.03702.x.
    1. Orie N., Sluiter H., De Vries K., Tammeling G., Witkop J. The host factor in bronchitis. In: Orie N., Sluiter H., editors. Bronchitis. Royal Van Gorcum; Assen, The Netherlands: 1961. pp. 43–59.
    1. Taylor D.R., Cowan J.O., Greene J.M., Willan A.R., Sears M.R. Asthma in remission: Can relapse in early adulthood be predicted at 18 years of age? Chest. 2005;127:845–850. doi: 10.1378/chest.127.3.845.
    1. Martinez F.D., Wright A.L., Taussig L.M., Holberg C.J., Halonen M., Morgan W.J. Asthma and wheezing in the first six years of life. N. Engl. J. Med. 1995;332:133–138. doi: 10.1056/NEJM199501193320301.
    1. Ferris B.G. Epidemiology Standardization Project (American Thoracic Society) Am. Rev. Respir. Dis. 1978;118:1–120.
    1. Brille D., Casula D., van der Lende R., Smidt U., Minette A. British Medical Research Council/Communauté Européenne du Charbon et de l’Acier. CEE-CECA; Luxembourg: 1971. Commentaires relatifs au questionnaire pour l’étude de la bronchite chronique et de l’emphysème pulmonaire. Collection D’hygiène et de Médecine et du Travail, n°14.
    1. Sunyer J., Pekkanen J., Garcia-Esteban R., Svanes C., Künzli N., Janson C., de Marco R., Antó J.M., Burney P. Asthma score: Predictive ability and risk factors. Allergy. 2007;62:142–148. doi: 10.1111/j.1398-9995.2006.01184.x.
    1. Pekkanen J., Sunyer J., Anto J.M., Burney P. Operational definitions of asthma in studies on its aetiology. Eur. Respir. J. 2005;26:28–35. doi: 10.1183/09031936.05.00120104.
    1. Liu A.H., Zeiger R., Sorkness C., Mahr T., Ostrom N., Burgess S., Rosenzweig J.C., Manjunath R. Development and cross-sectional validation of the Childhood Asthma Control Test. J. Allergy Clin. Immunol. 2007;119:817–825. doi: 10.1016/j.jaci.2006.12.662.
    1. Cloutier M.M., Schatz M., Castro M., Clark N., Kelly H.W., Mangione-Smith R., Sheller J., Sorkness C., Stoloff S., Gergen P. Asthma outcomes: Composite scores of asthma control. J. Allergy Clin. Immunol. 2012;129:S24–S33. doi: 10.1016/j.jaci.2011.12.980.
    1. Hu F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002;13:3–9. doi: 10.1097/00041433-200202000-00002.
    1. Trichopoulou A., Kouris-Blazos A., Wahlqvist M.L., Gnardellis C., Lagiou P., Polychronopoulos E., Vassilakou T., Lipworth L., Trichopoulos D. Diet and overall survival in elderly people. BMJ. 1995;311:1457–1460. doi: 10.1136/bmj.311.7018.1457.
    1. Chiuve S.E., Fung T.T., Rimm E.B., Hu F.B., Mccullough M.L., Wang M., Stampfer M.J., Willett W.C. Alternative Dietary Indices Both Strongly Predict Risk of Chronic Disease. J. Nutr. 2012;142:1009–1018. doi: 10.3945/jn.111.157222.
    1. Pellegrini N., Serafini M., Colombi B., Del Rio D., Salvatore S., Bianchi M., Brighenti F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003;133:2812–2819. doi: 10.1093/jn/133.9.2812.
    1. Cavicchia P.P., Steck S.E., Hurley T.G., Hussey J.R., Ma Y., Ockene I.S., Hebert J.R. A New Dietary Inflammatory Index Predicts Interval Changes in Serum High-Sensitivity C-Reactive Protein. J. Nutr. 2009:2365–2372. doi: 10.3945/jn.109.114025.
    1. Willett W.C. Nutritional Epidemiology. Oxford University Press; New York, NY, USA: 2012. 24-hour recall and diet record methods; pp. 49–69.
    1. Willett W.C. Nutritional Epidemiology. Oxford University Press; New York, NY, USA: 2012. Reproducibility and validity of food-frequency questionnaires; pp. 96–141.
    1. Craig C.L., Marshall A.L., Sjöström M., Bauman A.E., Booth M.L., Ainsworth B.E., Pratt M., Ekelund U., Yngve A., Sallis J.F., et al. International physical activity questionnaire: 12-Country reliability and validity. Med. Sci. Sports Exerc. 2003;35:1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. IPAQ Scoring Protocol. [(accessed on 11 March 2021)]; Available online: .
    1. Migueles J.H., Cadenas-Sanchez C., Ekelund U., Delisle Nyström C., Mora-Gonzalez J., Löf M., Labayen I., Ruiz J.R., Ortega F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sport. Med. 2017;47:1821–1845. doi: 10.1007/s40279-017-0716-0.
    1. Helmerhorst H.J.F., Brage S., Warren J., Besson H., Ekelund U. A systematic review of reliability and objective criterion-related validity of physical activity questionnaires. Int. J. Behav. Nutr. Phys. Act. 2012;9:103. doi: 10.1186/1479-5868-9-103.
    1. World Health Organisation (WHO) Obesity and Overweight, Fact Sheet No 311 (Updated August 2014) [(accessed on 11 March 2021)]; Available online:
    1. National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention BMI: Body mass index. [(accessed on 11 March 2021)];Atlanta, GA: Centers for Disease Control and Prevention. 2002 Available online: .
    1. Palta M., Prineas R.J., Berman R., Hannan P. Comparison of self-reported and measured height and weight. Am. J. Epidemiol. 1982;115:223–230. doi: 10.1093/oxfordjournals.aje.a113294.
    1. Willett W.C. Nutritional Epidemiology. Oxford University Press; New York, NY, USA: 2012. Anthropometric measures and body composition; pp. 213–240.
    1. Peralta G.P., Fuertes E., Granell R., Mahmoud O., Roda C., Serra I., Jarvis D., Henderson J., Garcia-Aymerich J. Childhood body composition trajectories and adolescent lung function findings from the ALSPAC study. Am. J. Respir. Crit. Care Med. 2019;200:75–83. doi: 10.1164/rccm.201806-1168OC.
    1. Brozek J., Grande F., Anderson J.T., Keys A. Densitometric analysis of body composition: Revision of some quantitative assumptions. Ann. N.Y. Acad. Sci. 1963;110:113–140. doi: 10.1111/j.1749-6632.1963.tb17079.x.
    1. Roubenoff R., Kehayias J.J., Dawson-Hughes B., Heymsfield S.B. Use of dual-energy x-ray absorptiometry in body-composition studies: Not yet a “gold standard”. Am. J. Clin. Nutr. 1993;58:589–591. doi: 10.1093/ajcn/58.5.589.
    1. Baumgartner R.N. Electrical impedance and total body electrical conductivity. In: Heymsfield S.B., Wang Z.M., Baumgartner R.N., editors. Human Body Composition. Human Kinetics; Champaign, IL, USA: 1996. pp. 79–108.
    1. Willett K., Jiang R., Lenart E., Spiegelman D., Willett W. Comparison of bioelectrical impedance and BMI in predicting obesity-related medical conditions. Obesity. 2006;14:480–490. doi: 10.1038/oby.2006.63.
    1. Sørensen T.I., Stunkard A.J. Does obesity run in families because of genes? An adoption study using silhouettes as a measure of obesity. Acta Psychiatr. Scand. Suppl. 1993;370:67–72. doi: 10.1111/j.1600-0447.1993.tb05363.x.
    1. Garcia-Larsen V., Ierodiakonou D., Jarrold K., Cunha S., Chivinge J., Robinson Z., Geoghegan N., Ruparelia A., Devani P., Trivella M., et al. Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. PLoS Med. 2018;15:e1002507. doi: 10.1371/journal.pmed.1002507.
    1. Beckhaus A.A., Garcia-Marcos L., Forno E., Pacheco-Gonzalez R.M., Celedón J.C., Castro-Rodriguez J.A. Maternal nutrition during pregnancy and risk of asthma, wheeze, and atopic diseases during childhood: A systematic review and meta-analysis. Allergy. 2015;70:1588–1604. doi: 10.1111/all.12729.
    1. Venter C., Agostoni C., Arshad S.H., Ben-Abdallah M., Du Toit G., Fleischer D.M., Greenhawt M., Glueck D.H., Groetch M., Lunjani N., et al. Dietary factors during pregnancy and atopic outcomes in childhood: A systematic review from the European Academy of Allergy and Clinical Immunology. Pediatr. Allergy Immunol. 2020 doi: 10.1111/pai.13303.
    1. Castro-Rodriguez J.A., Garcia-Marcos L. What Are the Effects of a Mediterranean Diet on Allergies and Asthma in Children? Front. Pediatr. 2017;5:72. doi: 10.3389/fped.2017.00072.
    1. Hanson C., Rifas-Shiman S.L., Shivappa N., Wirth M.D., Hebert J.R., Gold D., Camargo C.A., Sen S., Sordillo J.E., Oken E., et al. Associations of Prenatal Dietary Inflammatory Potential with Childhood Respiratory Outcomes in Project Viva. J. Allergy Clin. Immunol. Pract. 2020;8:945–952e4. doi: 10.1016/j.jaip.2019.10.010.
    1. Bisgaard H., Stokholm J., Chawes B.L., Vissing N.H., Bjarnadóttir E., Schoos A.-M.M., Wolsk H.M., Pedersen T.M., Vinding R.K., Thorsteinsdóttir S., et al. Fish Oil–Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring. N. Engl. J. Med. 2016;375:2530–2539. doi: 10.1056/NEJMoa1503734.
    1. Best K.P., Sullivan T., Palmer D., Gold M., Kennedy D.J., Martin J., Makrides M. Prenatal fish oil supplementation and allergy: 6-Year follow-up of a randomized controlled trial. Pediatrics. 2016;137:e20154443. doi: 10.1542/peds.2015-4443.
    1. Bédard A., Northstone K., John Henderson A., Shaheen S.O. Mediterranean diet during pregnancy and childhood respiratory and atopic outcomes: Birth cohort study. Eur. Respir. J. 2020;55:1901215. doi: 10.1183/13993003.01215-2019.
    1. Shaheen S.O., Gissler M., Gissler M., Devereux G., Erkkola M., Kinnunen T.I., Mcardle H., Sheikh A., Hemminki E., Nwaru B.I., et al. Maternal iron supplementation in pregnancy and asthma in the offspring: Follow-up of a randomised trial in Finland. Eur. Respir. J. 2020;55:1902335. doi: 10.1183/13993003.02335-2019.
    1. Bédard A., Northstone K., Henderson A.J., Shaheen S.O. Maternal intake of sugar during pregnancy and childhood respiratory and atopic outcomes. Eur. Respir. J. 2017;50:1700073. doi: 10.1183/13993003.00073-2017.
    1. Wright L.S., Rifas-Shiman S.L., Oken E., Litonjua A.A., Gold D.R. Prenatal and early life fructose, fructose-containing beverages, and midchildhood asthma. Ann. Am. Thorac. Soc. 2018;15:217–224. doi: 10.1513/AnnalsATS.201707-530OC.
    1. Chen L.W., Lyons B., Navarro P., Shivappa N., Mehegan J., Murrin C.M., Hébert J.R., Kelleher C.C., Phillips C.M. Maternal dietary inflammatory potential and quality are associated with offspring asthma risk over 10-year follow-up: The Lifeways Cross-Generation Cohort Study. Am. J. Clin. Nutr. 2020;111:440–447. doi: 10.1093/ajcn/nqz297.
    1. Leynaert B., Le Moual N., Neukirch C., Siroux V., Varraso R. Environmental risk factors for asthma developement. La Presse Médicale. 2019;48:262–273. doi: 10.1016/j.lpm.2019.02.022.
    1. Papamichael M.M., Shrestha S.K., Itsiopoulos C., Erbas B. The role of fish intake on asthma in children: A meta-analysis of observational studies. Pediatr. Allergy Immunol. 2018;29:350–360. doi: 10.1111/pai.12889.
    1. Tromp I.I.M., Kiefte-de Jong J.C., de Vries J.H., Jaddoe V.W.V., Raat H., Hofman A., de Jongste J.C., Moll H.A. Dietary patterns and respiratory symptoms in pre-school children: The Generation R Study. Eur. Respir. J. 2012;40:681–689. doi: 10.1183/09031936.00119111.
    1. Guilleminault L., Williams E.J., Scott H.A., Berthon B.S., Jensen M., Wood L.G. Diet and asthma: Is it time to adapt our message? Nutrients. 2017;9:1227. doi: 10.3390/nu9111227.
    1. Andrianasolo R.M., Hercberg S., Kesse-Guyot E., Druesne-Pecollo N., Touvier M., Galan P., Varraso R. Association between dietary fibre intake and asthma (symptoms and control): Results from the French national e-cohort NutriNet-Santé. Br. J. Nutr. 2019;122:1040–1051. doi: 10.1017/S0007114519001843.
    1. Li Z., Rava M., Bédard A., Dumas O., Garcia-Aymerich J., Leynaert B., Pison C., Le Moual N., Romieu I., Siroux V., et al. Cured meat intake is associated with worsening asthma symptoms. Thorax. 2017;72:206–212. doi: 10.1136/thoraxjnl-2016-208375.
    1. Andrianasolo R.M., Hercberg S., Touvier M., Druesne-Pecollo N., Adjibade M., Kesse-Guyot E., Galan P., Varraso R. Association between processed meat intake and asthma symptoms in the French NutriNet-Santé cohort. Eur. J. Nutr. 2020;59:1553–1562. doi: 10.1007/s00394-019-02011-7.
    1. Li Z., Kesse-Guyot E., Dumas O., Garcia-Aymerich J., Leynaert B., Pison C., Le Moual N., Romieu I., Siroux V., Camargo C.A., et al. Longitudinal study of diet quality and change in asthma symptoms in adults, according to smoking status. Br. J. Nutr. 2017;117:562–571. doi: 10.1017/S0007114517000368.
    1. Andrianasolo R.M., Kesse-Guyot E., Adjibade M., Hercberg S., Galan P., Varraso R. Associations between dietary scores with asthma symptoms and asthma control in adults. Eur. Respir. J. 2018;52:1702572. doi: 10.1183/13993003.02572-2017.
    1. Varraso R., Jiang R., Barr R.G., Willett W.C., Camargo C. a Prospective study of cured meats consumption and risk of chronic obstructive pulmonary disease in men. Am. J. Epidemiol. 2007;166:1438–1445. doi: 10.1093/aje/kwm235.
    1. Jiang R., Camargo C.A., Varraso R., Paik D.C., Willett W.C., Barr R.G. Consumption of cured meats and prospective risk of chronic obstructive pulmonary disease in women. Am. J. Clin. Nutr. 2008;87:1002–1008. doi: 10.1093/ajcn/87.4.1002.
    1. Varraso R., Chiuve S.E., Fung T.T., Barr R.G., Hu F.B., Willett W.C., Camargo C.A. Alternate Healthy Eating Index 2010 and risk of chronic obstructive pulmonary disease among US women and men: Prospective study. BMJ. 2015;350:1–11. doi: 10.1136/bmj.h286.
    1. DeChristopher L.R., Tucker K.L. Excess free fructose, high-fructose corn syrup and adult asthma: The Framingham Offspring Cohort. Br. J. Nutr. 2018;119:1157–1167. doi: 10.1017/S0007114518000417.
    1. Cassim R., Russell M.A., Lodge C.J., Lowe A.J., Koplin J.J., Dharmage S.C. The role of circulating 25 hydroxyvitamin D in asthma: A systematic review. Allergy Eur. J. Allergy Clin. Immunol. 2015;70:339–354. doi: 10.1111/all.12583.
    1. Varraso R., Kauffmann F., Leynaert B., Le Moual N., Boutron-Ruault M.C., Clavel-Chapelon F., Romieu I. Dietary patterns and asthma in the E3N study. Eur. Respir. J. 2009;33:33–41. doi: 10.1183/09031936.00130807.
    1. el Bilbeisi A.H.H., Albelbeisi A., Hosseini S., Djafarian K. Dietary Pattern and Their Association With Level of Asthma Control Among Patients with Asthma at Al-Shifa Medical Complex in Gaza Strip, Palestine. Nutr. Metab. Insights. 2019;12 doi: 10.1177/1178638819841394.
    1. Barros R., Moreira A., Fonseca J., de Oliveira J.F., Delgado L., Barros R., Haahtela T., Lopes C., Castel-Branco M.G., Moreira P. Adherence to the Mediterranean diet and fresh fruit intake are associated with improved asthma control. Allergy. 2008;63:917–923. doi: 10.1111/j.1398-9995.2008.01665.x.
    1. Sexton P., Black P., Metcalf P., Wall C.R., Ley S., Wu L., Sommerville F., Brodie S., Kolbe J. Influence of mediterranean diet on asthma symptoms, lung function, and systemic inflammation: A randomized controlled trial. J. Asthma. 2013;50:75–81. doi: 10.3109/02770903.2012.740120.
    1. Ma J., Strub P., Lv N., Xiao L., Camargo C.A., Buist A.S., Lavori P.W., Wilson S.R., Nadeau K.C., Rosas L.G. Pilot randomised trial of a healthy eating behavioural intervention in uncontrolled asthma. Eur. Respir. J. 2016;47:122–132. doi: 10.1183/13993003.00591-2015.
    1. Eijkemans M., Mommers M., Draaisma J.M.T., Thijs C., Prins M.H. Physical activity and asthma: A systematic review and meta-analysis. PLoS ONE. 2012;7:e50775. doi: 10.1371/journal.pone.0050775.
    1. Lochte L., Nielsen K.G., Petersen P.E., Platts-Mills T.A.E. Childhood asthma and physical activity: A systematic review with meta-analysis and graphic appraisal tool for epidemiology assessment. BMC Pediatr. 2016;16:1–13. doi: 10.1186/s12887-016-0571-4.
    1. Freeman A.T., Staples K.J., Wilkinson T.M.A. Defining a role for exercise training in the management of asthma. Eur. Respir. Rev. 2020;29:190106. doi: 10.1183/16000617.0106-2019.
    1. Freitas P.D., Ferreira P.G., Silva A.G., Stelmach R., Carvalho-Pinto R.M., Fernandes F.L.A., Mancini M.C., Sato M.N., Martins M.A., Carvalho C.R.F. The role of exercise in a weight-loss program on clinical control in obese adults with Asthma: A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2017;195:32–42. doi: 10.1164/rccm.201603-0446OC.
    1. Türk Y., Theel W., Van Huisstede A., Van De Geijn G.J.M., Birnie E., Hiemstra P.S., Sont J.K., Taube C., Braunstahl G.J. Short-term and long-term effect of a high-intensity pulmonary rehabilitation programme in obese patients with asthma: A randomised controlled trial. Eur. Respir. J. 2020;56 doi: 10.1183/13993003.01820-2019.
    1. Camargo C.A., Weiss S.T., Zhang S., Willett W.C., Speizer F.E. Prospective study of body mass index, weight change, and risk of adult-onset asthma in women. Arch. Intern. Med. 1999;159:2582–2588. doi: 10.1001/archinte.159.21.2582.
    1. Burgess J.A., Walters E.H., Byrnes G.B., Giles G.G., Jenkins M.A., Abramson M.J., Hopper J.L., Dharmage S.C. Childhood adiposity predicts adult-onset current asthma in females: A 25-yr prospective study. Eur. Respir. J. 2007;29:668–675. doi: 10.1183/09031936.00080906.
    1. Scholtens S., Wijga A.H., Seidell J.C., Brunekreef B., de Jongste J.C., Gehring U., Postma D.S., Kerkhof M., Smit H.A. Overweight and changes in weight status during childhood in relation to asthma symptoms at 8 years of age. J. Allergy Clin. Immunol. 2009;123:1312–1318.e2. doi: 10.1016/j.jaci.2009.02.029.
    1. Romieu I., Avenel V., Leynaert B., Kauffmann F., Clavel-Chapelon F. Body mass index, change in body silhouette, and risk of asthma in the E3N cohort study. Am. J. Epidemiol. 2003;158:165–174. doi: 10.1093/aje/kwg131.
    1. Dumas O., Varraso R., Gillman M.W., Field A.E., Camargo C.A. Longitudinal study of maternal body mass index, gestational weight gain, and offspring asthma. Allergy. 2016 doi: 10.1111/all.12876.
    1. Liu S., Zhou B., Wang Y., Wang K., Zhang Z., Niu W. Pre-pregnancy maternal weight and gestational weight gain increase the risk for childhood asthma and wheeze: An updated meta-analysis. Front. Pediatr. 2020;8 doi: 10.3389/fped.2020.00134.
    1. Beuther D.A., Sutherland E.R. Overweight, obesity, and incident asthma: A meta-analysis of prospective epidemiologic studies. Am. J. Respir. Crit. Care Med. 2007;175:661–666. doi: 10.1164/rccm.200611-1717OC.
    1. Chen Z., Salam M.T., Alderete T.L., Habre R., Bastain T.M., Berhane K., Gilliland F.D. Effects of childhood asthma on the development of obesity among school-aged children. Am. J. Respir. Crit. Care Med. 2017;195:1181–1188. doi: 10.1164/rccm.201608-1691OC.
    1. Contreras Z.A., Chen Z., Roumeliotaki T., Annesi-Maesano I., Baïz N., von Berg A., Bergström A., Crozier S., Duijts L., Ekström S., et al. Does early onset asthma increase childhood obesity risk? A pooled analysis of 16 European cohorts. Eur. Respir. J. 2018;52 doi: 10.1183/13993003.00504-2018.
    1. Juel C.T.B., Ali Z., Nilas L., Ulrik C.S. Asthma and obesity: Does weight loss improve asthma control? A systematic review. J. Asthma Allergy. 2012:21–26. doi: 10.2147/JAA.S32232.
    1. Marchesi J.R., Adams D.H., Fava F., Hermes G.D.A., Hirsch G.M., Hold G., Quraishi M.N., Kinross J., Smidt H., Tuohy K.M., et al. The gut microbiota and host health: A new clinical frontier. Gut. 2016;65:330–339. doi: 10.1136/gutjnl-2015-309990.
    1. Trompette A., Gollwitzer E.S., Yadava K., Sichelstiel A.K., Sprenger N., Ngom-bru C., Blanchard C., Junt T., Nicod L.P., Harris N.L., et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014;20:159–168. doi: 10.1038/nm.3444.
    1. Denou E., Marcinko K., Surette M.G., Steinberg G.R., Schertzer J.D. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am. J. Physiol. Endocrinol. Metab. 2016;310:982–993. doi: 10.1152/ajpendo.00537.2015.
    1. Enaud R., Prevel R., Ciarlo E., Beaufils F. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front. Cell. Infect. Microbiol. 2020;10:1–11. doi: 10.3389/fcimb.2020.00009.
    1. Alemao C.A., Budden K.F., Gomez H.M., Rehman S.F., Marshall J.E., Shukla S.D., Donovan C., Forster S.C., Yang I.A., Keely S., et al. Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy Eur. J. Allergy Clin. Immunol. 2020:1–21. doi: 10.1111/all.14548.
    1. Alsharairi N.A. The infant gut microbiota and risk of asthma: The effect of maternal nutrition during pregnancy and lactation. Microorganisms. 2020;8:1119. doi: 10.3390/microorganisms8081119.
    1. Boulet L.-P. Asthma and obesity. Clin. Exp. Allergy. 2013;43:8–21. doi: 10.1111/j.1365-2222.2012.04040.x.
    1. Chapman D.G., Salome C.M. Lifestyles of the fat and lazy. Clin. Exp. Allergy. 2013;43:2–4. doi: 10.1111/cea.12041.
    1. Lucas S.R., Platts-Mills T.A.E. Physical activity and exercise in asthma: Relevance to etiology and treatment. J. Allergy Clin. Immunol. 2005;115:928–934. doi: 10.1016/j.jaci.2005.01.033.
    1. Sharma S., Litonjua A. Asthma, allergy, and responses to methyl donor supplements and nutrients. J. Allergy Clin. Immunol. 2014;133:1246–1254. doi: 10.1016/j.jaci.2013.10.039.
    1. Camargo C.A.J. Vitamin D, acute respiratory infection, and asthma/chronic obstructive pulmonary disease. In: Feldman D., Pike J.W., Bouillon R., editors. Vitamin D. 4th ed. Elsevier Academic Press; Cambridge, MA, USA: 2018. pp. 1096–1120.
    1. Nyenhuis S.M., Dixon A.E., Ma J. Impact of Lifestyle Interventions Targeting Healthy Diet, Physical Activity, and Weight Loss on Asthma in Adults: What Is the Evidence? J. Allergy Clin. Immunol. Pract. 2018;6:751–763. doi: 10.1016/j.jaip.2017.10.026.
    1. Ma J., Strub P., Xiao L., Lavori P.W., Camargo C.A., Wilson S.R., Gardner C.D., Buist A.S., Haskell W.L., Lv N. Behavioral weight loss and physical activity intervention in obese adults with asthma: A randomized trial. Ann. Am. Thorac. Soc. 2015;12:1–11. doi: 10.1513/AnnalsATS.201406-271OC.
    1. Toennesen L.L., Meteran H., Hostrup M., Wium Geiker N.R., Jensen C.B., Porsbjerg C., Astrup A., Bangsbo J., Parker D., Backer V. Effects of Exercise and Diet in Nonobese Asthma Patients—A Randomized Controlled Trial. J. Allergy Clin. Immunol. Pract. 2018;6:803–811. doi: 10.1016/j.jaip.2017.09.028.
    1. Garcia-Marcos L., Canflanca I.M., Garrido J.B., Varela A.L.-S., Garcia-Hernandez G., Guillen Grima F., Gonzalez-Diaz C., Carvajal-Urueña I., Arnedo-Pena A., Busquets-Monge R.M., et al. Relationship of asthma and rhinoconjunctivitis with obesity, exercise and Mediterranean diet in Spanish schoolchildren. Thorax. 2007;62:503–508. doi: 10.1136/thx.2006.060020.
    1. Romieu I., Mannino D.M., Redd S.C., McGeehin M.A. Dietary intake, physical activity, body mass index, and childhood asthma in the Third National Health and Nutrition Survey (NHANES III) Pediatr. Pulmonol. 2004;38:31–42. doi: 10.1002/ppul.20042.
    1. Corbo G.M., Forastiere F., De Sario M., Brunetti L., Bonci E., Bugiani M., Chellini E., La Grutta S., Migliore E., Pistelli R., et al. Wheeze and asthma in children: Associations with body mass index, sports, television viewing, and diet. Epidemiology. 2008;19:747–755. doi: 10.1097/EDE.0b013e3181776213.
    1. Mitchell E.A., Beasley R., Björkstén B., Crane J., García-Marcos L., Keil U. The association between BMI, vigorous physical activity and television viewing and the risk of symptoms of asthma, rhinoconjunctivitis and eczema in children and adolescents: ISAAC Phase Three. Clin. Exp. Allergy. 2013;43:73–84. doi: 10.1111/cea.12024.
    1. Lawson J.A., Rennie D.C., Dosman J.A., Cammer A.L., Senthilselvan A. Obesity, diet, and activity in relation to asthma and wheeze among rural dwelling children and adolescents. J. Obes. 2013;2013:315096. doi: 10.1155/2013/315096.
    1. Beckett W.S., Jacobs D.R., Yu X., Iribarren C., Williams O.D. Asthma is associated with weight gain in females but not males, independent of physical activity. Am. J. Respir. Crit. Care Med. 2001;164:2045–2050. doi: 10.1164/ajrccm.164.11.2004235.
    1. Kilpeläinen M., Terho E.O., Helenius H., Koskenvuo M. Body mass index and physical activity in relation to asthma and atopic diseases in young adults. Respir. Med. 2006;100:1518–1525. doi: 10.1016/j.rmed.2006.01.011.
    1. Chen Y.-C., Tu Y.-K., Huang K.-C., Chen P.-C., Chu D.-C., Lee Y.L. Pathway From Central Obesity to Childhood Asthma: Physical Fitness and Sedentary Time Are Leading Factors. Am. J. Respir. Crit. Care Med. 2014;189:1194–1203. doi: 10.1164/rccm.201401-0097OC.
    1. Morales E., Strachan D., Asher I., Ellwood P., Pearce N., Garcia-Marcos L. Combined impact of healthy lifestyle factors on risk of asthma, rhinoconjunctivitis and eczema in school children: ISAAC phase III. Thorax. 2019;74:531–538. doi: 10.1136/thoraxjnl-2018-212668.
    1. Shrier I., Platt R.W. Reducing bias through directed acyclic graphs. BMC Med. Res. Methodol. 2008;8:70. doi: 10.1186/1471-2288-8-70.
    1. Schisterman E.F., Cole S.R., Platt R.W. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology. 2009;20:488–495. doi: 10.1097/EDE.0b013e3181a819a1.
    1. Lange T., Vansteelandt S., Bekaert M. A Simple Unified Approach for Estimating Natural Direct and Indirect Effects. Am. J. Epidemiol. 2012;176:190–195. doi: 10.1093/aje/kwr525.
    1. Valeri L., VanderWeele T.J. Mediation analysis allowing for exposure–mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychol. Methods. 2013;18:137–150. doi: 10.1037/a0031034.
    1. Audureau E., Pouchot J., Coste J. Gender-related differential effects of obesity on health-related quality of life via obesity-related comorbidities. Circ. Cardiovasc. Qual. Outcomes. 2016;9:246–256. doi: 10.1161/CIRCOUTCOMES.115.002127.
    1. He H., Wang B., Zhou M., Cao L., Qiu W., Mu G., Chen A., Yang S., Chen W. Systemic inflammation mediates the associations between abdominal obesity indices and lung function decline in a chinese general population. Diabetes Metab. Syndr. Obes. Targets Ther. 2020;13:141–150. doi: 10.2147/DMSO.S229749.
    1. Fuertes E., Carsin A.E., Garcia-Larsen V., Guerra S., Pin I., Leynaert B., Accordini S., Martinez-Moratalla J., Antó J.M., Urrutia I., et al. The role of C-reactive protein levels on the association of physical activity with lung function in adults. PLoS ONE. 2019;14:e0222578. doi: 10.1371/journal.pone.0222578.
    1. Van Nimwegen F.A., Penders J., Stobberingh E.E., Postma D.S., Koppelman G.H., Kerkhof M., Reijmerink N.E., Dompeling E., Van Den Brandt P.A., Ferreira I., et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J. Allergy Clin. Immunol. 2011;128:948–955e3. doi: 10.1016/j.jaci.2011.07.027.
    1. Campbell B., Simpson J.A., Bui D.S., Lodge C.J., Lowe A.J., Matheson M.C., Bowatte G., Burgess J.A., Hamilton G.S., Leynaert B., et al. Early menarche is associated with lower adult lung function: A longitudinal cohort study from the first to sixth decade of life. Respirology. 2020;25:289–297. doi: 10.1111/resp.13643.
    1. Assmann K.E., Ruhunuhewa I., Adjibade M., Li Z., Varraso R., Hercberg S., Galan P., Kesse-Guyot E. The mediating role of overweight and obesity in the prospective association between overall dietary quality and healthy aging. Nutrients. 2018;10:515. doi: 10.3390/nu10040515.
    1. Robins J.M., Hernán M.A., Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–560. doi: 10.1097/00001648-200009000-00011.
    1. Hernan M.A. A definition of causal effect for epidemiological research. J. Epidemiol. Community Heal. 2004;58:265–271. doi: 10.1136/jech.2002.006361.
    1. Sparks J.A., Lin T.C., Camargo C.A., Barbhaiya M., Tedeschi S.K., Costenbader K.H., Raby B.A., Choi H.K., Karlson E.W. Rheumatoid arthritis and risk of chronic obstructive pulmonary disease or asthma among women: A marginal structural model analysis in the Nurses’ Health Study. Semin. Arthritis Rheum. 2018;47:639–648. doi: 10.1016/j.semarthrit.2017.09.005.
    1. Dumas O., Le Moual N., Siroux V., Heederik D., Garcia-Aymerich J., Varraso R., Kauffmann F., Basagaña X. Work related asthma. A causal analysis controlling the healthy worker effect. Occup. Environ. Med. 2013;70:603–610. doi: 10.1136/oemed-2013-101362.
    1. Garcia-Aymerich J., Lange P., Serra I., Schnohr P., Antó J.M. Time-dependent confounding in the study of the effects of regular physical activity in chronic obstructive pulmonary disease: An application of the marginal structural model. Ann. Epidemiol. 2008;18:775–783. doi: 10.1016/j.annepidem.2008.05.003.
    1. Bédard A., Serra I., Dumas O., Basaganã X., Clavel-Chapelon F., Le Moual N., Sanchez M., Siroux V., Varraso R., Garcia-Aymerich J. Time-Dependent Associations between Body Composition, Physical Activity, and Current Asthma in Women: A Marginal Structural Modeling Analysis. Am. J. Epidemiol. 2017;186:21–28. doi: 10.1093/aje/kwx038.
    1. Bédard A., Carsin A.E., Fuertes E., Accordini S., Dharmage S.C., Garcia-Larsen V., Heinrich J., Janson C., Johannessen A., Leynaert B., et al. Physical activity and lung function-Cause or consequence? PLoS ONE. 2020;15:e0237769. doi: 10.1371/journal.pone.0237769.
    1. Tager I.B., Haight T., Sternfeld B., Yu Z., van Der Laan M. Effects of Physical Activity and Body Composition on Functional Limitation in the Elderly. Epidemiology. 2004;15:479–493. doi: 10.1097/01.ede.0000128401.55545.c6.
    1. Robins J. A new approach to causal inference in mortality studies with a sustained exposure period—Application to control of the healthy worker survivor effect. Math Mod. 1986;7:1393–1512. doi: 10.1016/0270-0255(86)90088-6.
    1. Williamson E.J., Polak J., Simpson J.A., Giles G.G., English D.R., Hodge A., Gurrin L., Forbes A.B. Sustained adherence to a Mediterranean diet and physical activity on all-cause mortality in the Melbourne Collaborative Cohort Study: Application of the g-formula. BMC Public Health. 2019;19:1733. doi: 10.1186/s12889-019-7919-2.
    1. Dickerman B.A., Giovannucci E., Pernar C.H., Mucci L.A., Hernán M.A. Guideline-based physical activity and survival among US men with nonmetastatic prostate cancer. Am. J. Epidemiol. 2019;188:579–586. doi: 10.1093/aje/kwy261.
    1. Nascimento G.G., Peres M.A., Mittinty M.N., Peres K.G., Do L.G., Horta B.L., Gigante D.P., Corrêa M.B., Demarco F.F. Diet-induced overweight and obesity and periodontitis risk: An application of the parametric g-formula in the 1982 pelotas birth cohort. Am. J. Epidemiol. 2017;185:442–451. doi: 10.1093/aje/kww187.
    1. Taubman S.L., Robins J.M., Mittleman M.A., Hernán M.A. Intervening on risk factors for coronary heart disease: An application of the parametric g-formula. Int. J. Epidemiol. 2009;38:1599–1611. doi: 10.1093/ije/dyp192.
    1. Lajous M., Willett W.C., Robins J., Young J.G., Rimm E., Mozaffarian D., Hernán M.A. Changes in fish consumption in midlife and the risk of coronary heart disease in men and women. Am. J. Epidemiol. 2013;178:382–391. doi: 10.1093/aje/kws478.
    1. Danaei G., Robins J.M., Young J., Hu F.B., Manson J.E., Hernán M.A. Estimated effect of weight loss on risk of coronary heart disease and mortality in middle-aged or older women: Sensitivity analysis analysis for Unmeasured Confounding By Undiagnosed Disease. Epidemiology. 2017;27:302–310. doi: 10.1097/EDE.0000000000000428.
    1. Garcia-Aymerich J., Varraso R., Danaei G., Camargo C.A., Hernán M.A. Incidence of adult-onset asthma after hypothetical interventions on body mass index and physical activity: An application of the parametric g-formula. Am. J. Epidemiol. 2014;179:20–26. doi: 10.1093/aje/kwt229.
    1. Ferguson J.M., Costello S., Elser H., Neophytou A.M., Picciotto S., Silverman D.T., Eisen E.A. Chronic obstructive pulmonary disease mortality: The Diesel Exhaust in Miners Study (DEMS) Environ. Res. 2020;180:108876. doi: 10.1016/j.envres.2019.108876.
    1. Neophytou A.M., Costello S., Picciotto S., Noth E.M., Liu S., Lutzker L., Balmes J.R., Hammond K., Cullen M.R., Eisen E.A. Accelerated lung function decline in an aluminium manufacturing industry cohort exposed to pm 2.5: An application of the parametric g-formula. Occup. Environ. Med. 2019;76:888–894. doi: 10.1136/oemed-2019-105908.
    1. VanderWeele T.J., Tchetgen Tchetgen E.J. Mediation analysis with time varying exposures and mediators. J. R. Stat. Soc. Ser. B Stat. Methodol. 2017;79:917–938. doi: 10.1111/rssb.12194.
    1. Pinto Pereira S.M., De Stavola B.L., Rogers N.T., Hardy R., Cooper R., Power C. Adult obesity and mid-life physical functioning in two British birth cohorts: Investigating the mediating role of physical inactivity. Int. J. Epidemiol. 2020;49:845–856. doi: 10.1093/ije/dyaa014.
    1. Islam T., Berhane K., McConnell R., Gauderman W.J., Avol E., Peters J.M., Gilliland F.D. Glutathione-S-transferase (GST) P1, GSTM1, exercise, ozone and asthma incidence in school children. Thorax. 2009;64:197–202. doi: 10.1136/thx.2008.099366.
    1. Romieu I., Sienra-Monge J.J., Ramírez-Aguilar M., Moreno-Macías H., Reyes-Ruiz N.I., Estela del Río-Navarro B., Hernández-Avila M., London S.J. Genetic polymorphism of GSTM1 and antioxidant supplementation influence lung function in relation to ozone exposure in asthmatic children in Mexico City. Thorax. 2004;59:8–10.
    1. Gref A., Rautiainen S., Gruzieva O., Håkansson N., Kull I., Pershagen G., Wickman M., Wolk A., Melén E., Bergström A. Dietary total antioxidant capacity in early school age and subsequent allergic disease. Clin. Exp. Allergy. 2017;47:751–759. doi: 10.1111/cea.12911.
    1. Limaye S., Salvi S. Obesity and Asthma: The Role of Environmental Pollutants. Immunol. Allergy Clin. North Am. 2014;34:839–855. doi: 10.1016/j.iac.2014.07.005.
    1. Romieu I., Barraza-Villarreal A., Escamilla-Núñez C., Texcalac-Sangrador J.L., Hernandez-Cadena L., Díaz-Sánchez D., De Batlle J., Del Rio-Navarro B.E. Dietary intake, lung function and airway inflammation in Mexico City school children exposed to air pollutants. Respir. Res. 2009;10:122. doi: 10.1186/1465-9921-10-122.
    1. de Castro Mendes F., Paciência I., Cavaleiro Rufo J., Silva D., Cunha P., Farraia M., Delgado L., Garcia-Larsen V., Severo M., Moreira A., et al. The inflammatory potential of diet impacts the association between air pollution and childhood asthma. Pediatr. Allergy Immunol. 2020;31:290–296. doi: 10.1111/pai.13185.
    1. Brigham E.P., Woo H., McCormack M., Rice J., Koehler K., Vulcain T., Wu T., Koch A., Sharma S., Kolahdooz F., et al. Omega-3 and omega-6 intake modifies asthma severity and response to indoor air pollution in children. Am. J. Respir. Crit. Care Med. 2019;199:1478–1486. doi: 10.1164/rccm.201808-1474OC.
    1. Fisher J.E., Loft S., Ulrik C.S., Raaschou-Nielsen O., Hertel O., Tjønneland A., Overvad K., Nieuwenhuijsen M.J., Andersen Z.J. Physical activity, air pollution, and the risk of asthma and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2016;194:855–865. doi: 10.1164/rccm.201510-2036OC.
    1. Chiolero A., Faeh D., Paccaud F., Cornuz J. Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am. J. Clin. Nutr. 2008;87:801–809. doi: 10.1093/ajcn/87.4.801.
    1. McEvoy C.T., Schilling D., Clay N., Jackson K., Go M.D., Spitale P., Bunten C., Leiva M., Gonzales D., Hollister-Smith J., et al. Vitamin C Supplementation for Pregnant Smoking Women and Pulmonary Function in Their Newborn Infants. JAMA. 2014;311:2074. doi: 10.1001/jama.2014.5217.
    1. Varraso R. Nutrition and asthma. Curr. Allergy Asthma Rep. 2012;12:201–210. doi: 10.1007/s11882-012-0253-8.
    1. Guillien A., Lepeule J., Seyve E., Le Moual N., Pin I., Degano B., Garcia-Aymerich J., Pépin J.L., Pison C., Dumas O., et al. Profile of exposures and lung function in adults with asthma: An exposome approach in the EGEA study. Environ. Res. 2020:110422. doi: 10.1016/j.envres.2020.110422.

Source: PubMed

Подписаться