The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review

Lee Taylor, Samuel L Watkins, Hannah Marshall, Ben J Dascombe, Josh Foster, Lee Taylor, Samuel L Watkins, Hannah Marshall, Ben J Dascombe, Josh Foster

Abstract

Cognitive function defines performance in objective tasks that require conscious mental effort. Extreme environments, namely heat, hypoxia, and cold can all alter human cognitive function due to a variety of psychological and/or biological processes. The aims of this Focused Review were to discuss; (1) the current state of knowledge on the effects of heat, hypoxic and cold stress on cognitive function, (2) the potential mechanisms underpinning these alterations, and (3) plausible interventions that may maintain cognitive function upon exposure to each of these environmental stressors. The available evidence suggests that the effects of heat, hypoxia, and cold stress on cognitive function are both task and severity dependent. Complex tasks are particularly vulnerable to extreme heat stress, whereas both simple and complex task performance appear to be vulnerable at even at moderate altitudes. Cold stress also appears to negatively impact both simple and complex task performance, however, the research in this area is sparse in comparison to heat and hypoxia. In summary, this focused review provides updated knowledge regarding the effects of extreme environmental stressors on cognitive function and their biological underpinnings. Tyrosine supplementation may help individuals maintain cognitive function in very hot, hypoxic, and/or cold conditions. However, more research is needed to clarify these and other postulated interventions.

Keywords: altitude; cognition; cognitive function; cold; environment; heat; hypoxia.

References

    1. Abraini J. H., Bouquet C., Joulia F., Nicolas M., Kriem B. (1998). Cognitive performance during a simulated climb of Mount Everest: implications for brain function and central adaptive processes under chronic hypoxic stress. Pflügers Archiv. 436, 553–559. 10.1007/s004240050671
    1. Adam G. E., Carter R., III, Cheuvront S. N., Merullo D. J., Castellani J. W., Lieberman H. R., et al. . (2008a). Hydration effects on cognitive performance during military tasks in temperate and cold environments. Physiol. Behav. 93, 748–756. 10.1016/j.physbeh.2007.11.028
    1. Adam G. E., Fulco C. S., Muza S. R. (2008b). Multi-Task Performance at Sea-Level and High Altitude. Natick, MA: DTIC Document.
    1. Ando S., Hatamoto Y., Sudo M., Kiyonaga A., Tanaka H., Higaki Y. (2013). The effects of exercise under hypoxia on cognitive function. PLoS ONE 8:e63630. 10.1371/journal.pone.0063630
    1. Arbury S., Jacklitsch B., Farquah O., Hodgson M., Lamson G., Martin H., et al. . (2014). Heat illness and death among workers - United States, 2012-2013. MMWR Morb. Mortal. Wkly. Rep. 63, 661–665.
    1. Armstrong L. E., Johnson E. C., Casa D. J., Ganio M. S., McDermott B. P., Yamamoto L. M., et al. . (2010). The American football uniform: uncompensable heat stress and hyperthermic exhaustion. J. Athl. Train. 45, 117–127. 10.4085/1062-6050-45.2.117
    1. Avakian E. V., Horvath S. M., Colburn R. W. (1984). Influence of age and cold stress on plasma catecholamine levels in rats. J. Auton. Nerv. Syst. 10, 127–133. 10.1016/0165-1838(84)90051-1
    1. Baker L. (2013). Effects Of dietary constituents on cognitive and motor skill performance in sports. Sports Sci. 26, 1–6. 10.1111/nure.12157
    1. Balakrishnan K., Ramalingham A., Dasu V., Stephen J. C., Sivaperumal M. R., Kumarasamy D., et al. . (2010). Case studies on heat stress related perceptions in different industrial sectors in southern India. Glob. Health Action 3, 1–11. 10.3402/gha.v3i0.5635
    1. Bandelow S., Maughan R., Shirreffs S., Ozgünen K., Kurdak S., Ersöz G., et al. . (2010). The effects of exercise, heat, cooling and rehydration strategies on cognitive function in football players. Scand. J. Med. Sci. Sports 20, 148–160. 10.1111/j.1600-0838.2010.01220.x
    1. Banderet L. E., Lieberman H. R. (1989). Treatment with tyrosine, a neurotransmitter precursor, reduces environmental stress in humans. Brain Res. Bull. 22, 759–762. 10.1016/0361-9230(89)90096-8
    1. Banderet L. E., MacDougall D., Roberts D., Tappan D., Jacey M. (1986). Effects of Hypohydration or Cold Exposure and Restricted Fluid Intake Upon Cognitive Performance. Natick, MA: DTIC Document.
    1. Berg R. J., Inaba K., Sullivan M., Okoye O., Siboni S., Minneti M., et al. . (2015). The impact of heat stress on operative performance and cognitive function during simulated laparoscopic operative tasks. Surgery 157, 87–95. 10.1016/j.surg.2014.06.012
    1. Bjursten H., Ederoth P., Sigurdsson E., Gottfredsson M., Syk I., Einarsson O., et al. . (2010). S100B profiles and cognitive function at high altitude. High Alt. Med. Biol. 11, 31–38. 10.1089/ham.2009.1041
    1. Bouquet C. A., Gardette B., Gortan C., Abraini J. H. (1999). Psychomotor skills learning under chronic hypoxia. Neuroreport 10, 3093–3099. 10.1097/00001756-199909290-00040
    1. Bradley K., Higenbottam C. (2003). Cognitive performance: effect of drug-induced dehydration, in RTO-MP-HFM-086 - Maintaining Hydration: Issues, Guidelines, and Delivery (Boston, MA: RTO Specialists Meeting; ).
    1. Cavaletti G., Tredici G. (1993). Long-lasting neuropsychological changes after a single high altitude climb. Acta Neurol. Scand. 87, 103–105. 10.1111/j.1600-0404.1993.tb04085.x
    1. Champod A. S., Eskes G. A., Foster G. E., Hanly P. J., Pialoux V., Beaudin A. E., et al. . (2013). Effects of acute intermittent hypoxia on working memory in young healthy adults. Am. J. Respir. Crit. Care Med. 187, 1148–1150. 10.1164/rccm.201209-1742LE
    1. Cheung S. S., McLellan T. M., Tenaglia S. (2000). The thermophysiology of uncompensable heat stress. Physiological manipulations and individual characteristics. Sports Med. 29, 329–359. 10.2165/00007256-200029050-00004
    1. Cliff M. A., Green B. G. (1994). Sensory irritation and coolness produced by menthol: evidence for selective desensitization of irritation. Physiol. Behav. 56, 1021–1029. 10.1016/0031-9384(94)90338-7
    1. Coull N. A., Watkins S. L., Aldous J. W., Warren L. K., Chrismas B. C., Dascombe B., et al. . (2015). Effect of tyrosine ingestion on cognitive and physical performance utilising an intermittent soccer performance test (iSPT) in a warm environment. Eur. J. Appl. Physiol. 115, 373–386. 10.1007/s00421-014-3022-7
    1. de Aquino Lemos V., Antunes H. K. M., dos Santos R. V. T., Lira F. S., Tufik S., de Mello M. T. (2012). High altitude exposure impairs sleep patterns, mood, and cognitive functions. Psychophysiology 49, 1298–1306. 10.1111/j.1469-8986.2012.01411.x
    1. Doubt T. J. (1991). Physiology of exercise in the cold. Sports Med. 11, 367–381. 10.2165/00007256-199111060-00003
    1. Eccles R. (2000). Role of cold receptors and menthol in thirst, the drive to breathe and arousal. Appetite 34, 29–35. 10.1006/appe.1999.0291
    1. Ellis H. D. (1982). The effects of cold on the performance of serial choice reaction time and various discrete tasks. Hum. Factors 24, 589–598.
    1. Enander A. (1987). Effects of moderate cold on performance of psychomotor and cognitive tasks. Ergonomics 30, 1431–1445. 10.1080/00140138708966037
    1. Flouris A. D., Westwood D. A., Cheung S. S. (2007). Thermal balance effects on vigilance during 2-hour exposures to -20 degrees C. Aviat. Space Environ. Med. 78, 673–679.
    1. Friston K., Schwartenbeck P., FitzGerald T., Moutoussis M., Behrens T., Dolan R. J. (2014). The anatomy of choice: dopamine and decision-making. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130481. 10.1098/rstb.2013.0481
    1. Gao Y. X., Li P., Jiang C. H., Liu C., Chen Y., Chen L., et al. . (2014). Psychological and cognitive impairment of long-term migrators to high altitudes and the relationship to physiological and biochemical changes. Eur. J. Neurol. 22, 1363–1369. 10.1111/ene.12507
    1. Gaoua N. (2010). Cognitive function in hot environments: a question of methodology. Scand. J. Med. Sci. Sports 20, 60–70. 10.1111/j.1600-0838.2010.01210.x
    1. Gaoua N., Grantham J., Racinais S., El Massioui F. (2012). Sensory displeasure reduces complex cognitive performance in the heat. J. Environ. Psychol. 32, 158–163. 10.1016/j.jenvp.2012.01.002
    1. Gaoua N., Racinais S., Grantham J., El Massioui F. (2011). Alterations in cognitive performance during passive hyperthermia are task dependent. Int. J. Hyperthermia 27, 1–9. 10.3109/02656736.2010.516305
    1. Gavin T. P. (2003). Clothing and thermoregulation during exercise. Sports Med. 33, 941–947. 10.2165/00007256-200333130-00001
    1. Gopinathan P. M., Pichan G., Sharma V. M. (1988). Role of dehydration in heat stress-induced variations in mental performance. Arch. Environ. Health 43, 15–17. 10.1080/00039896.1988.9934367
    1. Hancock P. A. (1982). Task categorization and the limits of human-performance in extreme heat. Aviat. Space Environ. Med. 53, 778–784.
    1. Hancock P. A. (1986). Sustained attention under thermal-stress. Psychol. Bull. 99, 263–281. 10.1037/0033-2909.99.2.263
    1. Hancock P. A., Ross J. M., Szalma J. L. (2007). A meta-analysis of performance response under thermal stressors. Hum. Factors 49, 851–877. 10.1518/001872007X230226
    1. Hancock P. A., Vasmatzidis I. (2003). Effects of heat stress on cognitive performance: the current state of knowledge. Int. J. Hyperthermia 19, 355–372. 10.1080/0265673021000054630
    1. Hewett K. J., Curry I. P., Rath E., Collins S. M. (2009). Subtle Cognitive Effects of Moderate Hypoxia. Natick, MA: DTIC Document.
    1. Hocking C., Silberstein R. B., Lau W. M., Stough C., Roberts W. (2001). Evaluation of cognitive performance in the heat by functional brian imaging and psycometric testing. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 128, 719–734. 10.1016/S1095-6433(01)00278-1
    1. Holland R. L., Sayers J. A., Keatinge W. R., Davis H. M., Peswani R. (1985). Effects of raised body temperature on reasoning, memory, and mood. J. Appl. Physiol. 59, 1823–1827.
    1. Holmér I. (1988). Assessment of cold stress in terms of required clothing insulation—IREQ. Int. J. Ind. Ergon. 3, 159–166. 10.1016/0169-8141(88)90017-0
    1. Jiang Q., Yang X., Liu K., Li B., Li L., Li M., et al. . (2013). Hyperthermia impaired human visual short-term memory: an fMRI study. Int. J. Hyperthermia 29, 219–224. 10.3109/02656736.2013.786141
    1. Kishore K., Ray K., Anand J. P., Thakur L., Kumar S., Panjwani U. (2013). Tyrosine ameliorates heat induced delay in event related potential P300 and contingent negative variation. Brain Cogn. 83, 324–329. 10.1016/j.bandc.2013.09.005
    1. Kobrick J. L., Appleton B. (1971). Effects of extended hypoxia on visual performance and retinal vascular state. J. Appl. Physiol. 31, 357–362.
    1. Koh S. X. T., Lee J. K. W. (2014). S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med. 44, 369–385. 10.1007/s40279-013-0119-9
    1. Kourtidou-Papadeli C., Papadelis C., Koutsonikolas D., Boutzioukas S., Styliadis C., Guiba-Tziampiri O. (2008). High altitude cognitive performance and COPD interaction. Hippokratia 12, 84–90.
    1. Kramer A. F., Coyne J. T., Strayer D. L. (1993). Cognitive function at high altitude. Hum. Factors 35, 329–344.
    1. Lamport D. J., Saunders C., Butler L. T., Spencer J. P. E. (2014). Fruits, vegetables, 100% juices, and cognitive function. Nutr. Rev. 72, 774–789. 10.1111/nure.12149
    1. Lee J. K., Koh A. C., Koh S. X., Liu G. J., Nio A. Q., Fan P. W. (2014). Neck cooling and cognitive performance following exercise-induced hyperthermia. Eur. J. Appl. Physiol. 114, 375–384. 10.1007/s00421-013-2774-9
    1. Lenzuni P., Capone P., Freda D., Del Gaudio M. (2014). Is driving in a hot vehicle safe? Int. J. Hyperthermia 30, 250–257. 10.3109/02656736.2014.922222
    1. Lezak M. D. (2004). Neuropsychological Assessment. New York, NY: Oxford University Press.
    1. Li X. Y., Wu X. Y., Fu C., Shen X. F., Yang C. B., Wu Y. H. (2000). Effects of acute exposure to mild or moderate hypoxia on human psychomotor performance and visual-reaction time. Space Med. Med. Eng. (Beijing: ) 13, 235–239. 10.1016/S0219-4279(00)00018-1
    1. Lieberman H. R., Tharion W. J., Shukitt-Hale B., Speckman K. L., Tulley R. (2002). Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Psychopharmacology (Berl) 164, 250–261. 10.1007/s00213-002-1217-9
    1. Liu K., Sun G., Li B., Jiang Q., Yang X., Li M., et al. . (2013). The impact of passive hyperthermia on human attention networks: an fMRI study. Behav. Brain Res. 243, 220–230. 10.1016/j.bbr.2013.01.013
    1. Macleod J. W., Lawrence M. A., McConnell M. M., Eskes G. A., Klein R. M., Shore D. I. (2010). Appraising the ANT: psychometric and theoretical considerations of the attention network test. Neuropsychology 24, 637. 10.1037/a0019803
    1. Mahoney C. R., Castellani J., Kramer F. M., Young A., Lieberman H. R. (2007). Tyrosine supplementation mitigates working memory decrements during cold exposure. Physiol. Behav. 92, 575–582. 10.1016/j.physbeh.2007.05.003
    1. Mäkinen T. M., Palinkas L. A., Reeves D. L., Pääkkönen T., Rintamäki H., Leppäluoto J., et al. . (2006). Effect of repeated exposures to cold on cognitive performance in humans. Physiol. Behav. 87, 166–176. 10.1016/j.physbeh.2005.09.015
    1. Malle C., Quinette P., Laisney M., Bourrilhon C., Boissin J., Desgranges B., et al. . (2013). Working memory impairment in pilots exposed to acute hypobaric hypoxia. Aviat. Space Environ. Med. 84, 773–779. 10.3357/ASEM.3482.2013
    1. Marrao C., Tikuisis P., Keefe A. A., Gil V., Giesbrecht G. G. (2005). Physical and cognitive performance during long-term cold weather operations. Aviat. Space Environ. Med. 76, 744–752.
    1. McGawley K., Bishop D. (2006). Reliability of a 5 x 6-s maximal cycling repeated-sprint test in trained female team-sport athletes. Eur. J. Appl. Physiol. 98, 383–393. 10.1007/s00421-006-0284-8
    1. McMorris T., Swain J., Smith M., Corbett J., Delves S., Sale C., et al. . (2006). Heat stress, plasma concentrations of adrenaline, noradrenaline, 5-hydroxytryptamine and cortisol, mood state and cognitive performance. Int. J. Psychophysiol. 61, 204–215. 10.1016/j.ijpsycho.2005.10.002
    1. Meeusen R. (2014). Exercise, nutrition and the brain. Sports Med. 44(Suppl. 1), S47–S56. 10.1007/s40279-014-0150-5
    1. Merz T. M., Bosch M. M., Barthelmes D., Pichler J., Hefti U., Schmitt K.-U., et al. . (2013). Cognitive performance in high-altitude climbers: a comparative study of saccadic eye movements and neuropsychological tests. Eur. J. Appl. Physiol. 113, 2025–2037. 10.1007/s00421-013-2635-6
    1. Morley J., Beauchamp G., Suyama J., Guyette F. X., Reis S. E., Callaway C. W., et al. . (2012). Cognitive function following treadmill exercise in thermal protective clothing. Eur. J. Appl. Physiol. 112, 1733–1740. 10.1007/s00421-011-2144-4
    1. Muller M. D., Gunstad J., Alosco M. L., Miller L. A., Updegraff J., Spitznagel M. B., et al. . (2012). Acute cold exposure and cognitive function: evidence for sustained impairment. Ergonomics 55, 792–798. 10.1080/00140139.2012.665497
    1. Nelson M. (1982). Psychological testing at high altitudes. Aviat. Space Environ. Med. 53, 122–126.
    1. Neuhaus C., Hinkelbein J. (2014). Cognitive responses to hypobaric hypoxia: implications for aviation training. Psychol. Res. Behav. Manag. 7, 297–302. 10.2147/PRBM.S51844
    1. Nunneley S. A., Dowd P. J., Myhre L. G., Stribley R. F., McNee R. C. (1979). Tracking-task performance during heat stress simulating cockpit conditions in high-performance aircraft. Ergonomics 22, 549–555. 10.1080/00140137908924639
    1. Nunneley S. A., Reader D. C., Maldonado R. J. (1982). Head-temperature effects on physiology, comfort, and performance during hyperthermia. Aviat. Space Environ. Med. 53, 623–628.
    1. O'Brien C., Mahoney C., Tharion W. J., Sils I. V., Castellani J. W. (2007). Dietary tyrosine benefits cognitive and psychomotor performance during body cooling. Physiol. Behav. 90, 301–307. 10.1016/j.physbeh.2006.09.027
    1. Palinkas L. A. (2001). Mental and cognitive performance in the cold. Int. J. Circumpolar Health 60, 430–439.
    1. Palinkas L. A., Mäkinen T. M., Pääkkönen T., Rintamäki H., Leppäluoto J., Hassi J. (2005). Influence of seasonally adjusted exposure to cold and darkness on cognitive performance in circumpolar residents. Scand. J. Psychol. 46, 239–246. 10.1111/j.1467-9450.2005.00453.x
    1. Paola M. D., Bozzali M., Fadda L., Musicco M., Sabatini U., Caltagirone C. (2008). Reduced oxygen due to high-altitude exposure relates to atrophy in motor-function brain areas. Eur. J. Neurol. 15, 1050–1057. 10.1111/j.1468-1331.2008.02243.x
    1. Parker S. M., Erin J. R., Pryor R. R., Khorana P., Suyama J., Guyette F. X., et al. . (2013). The effect of prolonged light intensity exercise in the heat on executive function. Wilderness Environ. Med. 24, 203–210. 10.1016/j.wem.2013.01.010
    1. Patil P. G., Apfelbaum J. L., Zacny J. P. (1995). Effects of a cold-water stressor on psychomotor and cognitive functioning in humans. Physiol. Behav. 58, 1281–1286. 10.1016/0031-9384(95)02071-3
    1. Pavlicek V., Schirlo C., Nebel A., Regard M., Koller E. A., Brugger P. (2005). Cognitive and emotional processing at high altitude. Aviat. Space Environ. Med. 76, 28–33.
    1. Petersen S. E., Posner M. I. (2012). The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89. 10.1146/annurev-neuro-062111-150525
    1. Petrassi F. A., Hodkinson P. D., Walters P. L., Gaydos S. J. (2012). Hypoxic hypoxia at moderate altitudes: review of the state of the science. Aviat. Space Environ. Med. 83, 975–984. 10.3357/ASEM.3315.2012
    1. Pickard J. (2002). The atmosphere and respiration. Fund Aerospace Med. 3, 19–38.
    1. Pilcher J. J., Nadler E., Busch C. (2002). Effects of hot and cold temperature exposure on performance: a meta-analytic review. Ergonomics 45, 682–698. 10.1080/00140130210158419
    1. Poehlman E. T., Després J. P., Bessette H., Fontaine E., Tremblay A., Bouchard C. (1985). Influence of caffeine on the resting metabolic rate of exercise-trained and inactive subjects. Med. Sci. Sports Exerc. 17, 689–694.
    1. Qian S., Sun G., Jiang Q., Liu K., Li B., Li M., et al. . (2013). Altered topological patterns of large-scale brain functional networks during passive hyperthermia. Brain Cogn. 83, 121–131. 10.1016/j.bandc.2013.07.013
    1. Racinais S., Gaoua N., Grantham J. (2008). Hyperthermia impairs short-term memory and peripheral motor drive transmission. J. Physiol. 586, 4751–4762. 10.1113/jphysiol.2008.157420
    1. Rahmani A., Shoae-Hassani A., Keyhanvar P., Kheradmand D., Darbandi-Azar A. (2013). Dehydroepiandrosterone stimulates nerve growth factor and brain derived neurotrophic factor in cortical neurons. Adv. Pharmacol. Sci. 2013:506191. 10.1155/2013/506191
    1. Rainford D. J., Gradwell D. P. (2006). Ernsting's Aviation Medicine: Hypoxia and Hyperventilation. Boca Raton, FL: Taylor and Francis.
    1. Ramsey J. D., Burford C. L., Beshir M. Y., Jensen R. C. (1983). Effects of workplace thermal conditions on safe work behavior. J. Safety Res. 14, 105–114. 10.1016/0022-4375(83)90021-X
    1. Ramsey J. D., Kwon Y. G. (1992). Recommended alert limits for perceptual motor loss in hot environments. Int. J. Ind. Ergon. 9, 245–257. 10.1016/0169-8141(92)90018-U
    1. Rauch T. M., Lieberman H. R. (1990). Tyrosine pretreatment reverses hypothermia-induced behavioral depression. Brain Res. Bull. 24, 147–150. 10.1016/0361-9230(90)90299-F
    1. Regard M., Oelz O., Brugger P., Landis T. (1989). Persistent cognitive impairment in climbers after repeated exposure to extreme altitude. Neurology 39, 210–210. 10.1212/WNL.39.2.210
    1. Rektor I., Kaiiovský P., Bares M., Brázdil M., Streitová H., Klajblová H., et al. . (2003). A SEEG study of ERP in motor and premotor cortices and in the basal ganglia. Clin. Neurophysiol. 114, 463–471. 10.1016/S1388-2457(02)00388-7
    1. Rothermundt M., Peters M., Prehn J. H., Arolt V. (2003). S100B in brain damage and neurodegeneration. Microsc. Res. Tech. 60, 614–632. 10.1002/jemt.10303
    1. Sakr H. F., Khalil K. I., Hussein A. M., Zaki M. S., Eid R. A., Alkhateeb M. (2014). Effect of dehydroepiandrosterone (DHEA) on memory and brain derived neurotrophic factor (BDNF) in a rat model of vascular dementia. J. Physiol. Pharmacol. 65, 41–53.
    1. Sharma V. K., Das S. K., Dhar P., Hota K. B., Mahapatra B. B., Vashishtha V., et al. . (2014). Domain specific changes in cognition at high altitude and its correlation with hyperhomocysteinemia. PLoS ONE 9:e101448. 10.1371/journal.pone.0101448
    1. Shukitt B., Burse R., Banderet L., Knight D., Cymerman A. (1988). Cognitive Performance, Mood States, and Altitude Symptomatology in 13–21% Oxygen Environments. Natick, MA: DTIC Document.
    1. Shurtleff D., Thomas J. R., Ahlers S. T., Schrot J. (1993). Tyrosine ameliorates a cold-induced delayed matching-to-sample performance decrement in rats. Psychopharmacology (Berl). 112, 228–232. 10.1007/BF02244915
    1. Shurtleff D., Thomas J. R., Schrot J., Kowalski K., Harford R. (1994). Tyrosine reverses a cold-induced working-memory deficit in humans. Pharmacol. Biochem. Behav. 47, 935–941. 10.1016/0091-3057(94)90299-2
    1. Simmons S. E., Saxby B. K., Mcglone F. P., Jones D. A. (2008). The effect of passive heating and head cooling on perception, cardiovascular function and cognitive performance in the heat. Eur. J. Appl. Physiol. 104, 271–280. 10.1007/s00421-008-0677-y
    1. Spitznagel M. B., Updegraff J., Pierce K., Walter K. H., Collinsworth T., Glickman E., et al. . (2009). Cognitive function during acute cold exposure with or without sleep deprivation lasting 53 hours. Aviat. Space Environ. Med. 80, 703–708. 10.3357/ASEM.2507.2009
    1. Starcke K., Brand M. (2012). Decision making under stress: a selective review. Neurosci. Biobehav. Rev. 36, 1228–1248. 10.1016/j.neubiorev.2012.02.003
    1. Sun G., Qian S., Jiang Q., Liu K., Li B., Li M., et al. . (2013). Hyperthermia-induced disruption of functional connectivity in the human brain network. PLoS ONE 8:e61157. 10.1371/journal.pone.0061157
    1. Sun G., Yang X., Jiang Q., Liu K., Li B., Li L., et al. . (2012). Hyperthermia impairs the executive function using the attention network test. Int. J. Hyperthermia 28, 621–626. 10.3109/02656736.2012.705217
    1. Tawatsupa B., Yiengprugsawan V., Kjellstrom T., Berecki-Gisolf J., Seubsman S. A., Sleigh A. (2013). Association between heat stress and occupational injury among Thai workers: findings of the Thai Cohort Study. Ind. Health 51, 34–46. 10.2486/indhealth.2012-0138
    1. Taylor L., Fitch N., Castle P., Watkins S., Aldous J., Sculthorpe N., et al. (2014). Exposure to hot and cold environmental conditions does not affect the decision making ability of soccer referees following an intermittent sprint protocol. Front. Physiol. 5:185 10.3389/fphys.2014.00185
    1. Teichner W. H. (1958). Reaction time in the cold. J. Appl. Psychol. 42, 54 10.1037/h0049145
    1. Thomas J. R., Ahlers S. T., House J. F., Schrot J. (1989). Repeated exposure to moderate cold impairs matching-to-sample performance. Aviat. Space Environ. Med. 60, 1063–1067.
    1. Tripathi K., Apte C., Mukundan C. (2005). Temporal adjustments in working memory and vigilance function during 6 days of acclimatization at 10,500 feet altitude. Ind. J. Aerospace. Med. 49, 20–28.
    1. Turner C. E., Byblow W. D., Gant N. (2015). Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. J. Neurosci. 35, 1773–1780. 10.1523/JNEUROSCI.3113-14.2015
    1. Virués-Ortega J., Buela-Casal G., Garrido E., Alcázar B. (2004). Neuropsychological functioning associated with high-altitude exposure. Neuropsychol. Rev. 14, 197–224. 10.1007/s11065-004-8159-4
    1. Watkins S. L., Castle P., Mauger A. R., Sculthorpe N., Fitch N., Aldous J., et al. . (2014). The effect of different environmental conditions on the decision-making performance of soccer goal line officials. Res. Sports Med. 22, 425–437. 10.1080/15438627.2014.948624
    1. Watson P., Enever S., Page A., Stockwell J., Maughan R. J. (2012). Tyrosine supplementation does not influence the capacity to perform prolonged exercise in a warm environment. Int. J. Sport Nutr. Exerc. Metab. 22, 363–373.
    1. Wijayanto T., Toramoto S., Tochihara Y. (2013). Passive heat exposure induced by hot water leg immersion increased oxyhemoglobin in pre-frontal cortex to preserve oxygenation and did not contribute to impaired cognitive functioning. Int. J. Biometeorol. 57, 557–567. 10.1007/s00484-012-0583-1
    1. Wilkinson R. T., Fox R. H., Goldsmith F. R., Hampton I. F., Lewis H. E. (1964). Psychological and physiological responses to raised body temperature. J. Appl. Physiol. 19, 287–291.
    1. Wilson M. H., Newman S., Imray C. H. (2009). The cerebral effects of ascent to high altitudes. Lancet Neurol. 8, 175–191. 10.1016/S1474-4422(09)70014-6
    1. Winter C. D., Whyte T. R., Cardinal J., Rose S. E., O'rourke P. K., Kenny R. G. (2014). Elevated plasma S100B levels in high altitude hypobaric hypoxia do not correlate with acute mountain sickness. Neurol. Res. 36, 779–785. 10.1179/1743132814Y.0000000337
    1. Wright C. B., Lee H. S., Paik M. C., Stabler S. P., Allen R. H., Sacco R. L. (2004). Total homocysteine and cognition in a tri-ethnic cohort: the Northern Manhattan Study. Neurology 63, 254–260. 10.1212/01.WNL.0000129986.19019.5D
    1. Wurtman R. J., Hefti F., Melamed E. (1980). Precursor control of neurotransmitter synthesis. Pharmacol. Rev. 32, 315–335.
    1. Xu L., Wu Y., Zhao T., Liu S. H., Zhu L. L., Fan M., et al. . (2014). Effect of high altitude hypoxia on cognitive flexibility. Zhongguo Ying Yong Sheng Li Xue Za Zhi 30, 106–109.
    1. Yan X., Zhang J., Gong Q., Weng X. (2011). Prolonged high-altitude residence impacts verbal working memory: an fMRI study. Exp. Brain Res. 208, 437–445. 10.1007/s00221-010-2494-x
    1. Yeghiayan S. K., Luo S., Shukitt-Hale B., Lieberman H. R. (2001). Tyrosine improves behavioral and neurochemical deficits caused by cold exposure. Physiol. Behav. 72, 311–316. 10.1016/S0031-9384(00)00398-X
    1. Yosipovitch G., Szolar C., Hui X. Y., Maibach H. (1996). Effect of topically applied menthol on thermal, pain and itch sensations and biophysical properties of the skin. Arch. Dermatol. Res. 288, 245–248. 10.1007/BF02530092
    1. Zhang J., Liu H., Yan X., Weng X. (2011). Minimal effects on human memory following long-term living at moderate altitude. High Alt. Med. Biol. 12, 37–43. 10.1089/ham.2009.1085
    1. Zhang J., Yan X., Shi J., Gong Q., Weng X., Liu Y. (2010). Structural modifications of the brain in acclimatization to high-altitude. PLoS ONE 5:e11449. 10.1371/journal.pone.0011449
    1. Zhang Y., Balilionis G., Casaru C., Geary C., Schumacker R. E., Neggers Y. H., et al. . (2014). Effects of caffeine and menthol on cognition and mood during simulated firefighting in the heat. Appl. Ergon. 45, 510–514. 10.1016/j.apergo.2013.07.005

Source: PubMed

Подписаться