Impact of flow and temperature on patient comfort during respiratory support by high-flow nasal cannula

Tommaso Mauri, Alessandro Galazzi, Filippo Binda, Laura Masciopinto, Nadia Corcione, Eleonora Carlesso, Marta Lazzeri, Elena Spinelli, Daniela Tubiolo, Carlo Alberto Volta, Ileana Adamini, Antonio Pesenti, Giacomo Grasselli, Tommaso Mauri, Alessandro Galazzi, Filippo Binda, Laura Masciopinto, Nadia Corcione, Eleonora Carlesso, Marta Lazzeri, Elena Spinelli, Daniela Tubiolo, Carlo Alberto Volta, Ileana Adamini, Antonio Pesenti, Giacomo Grasselli

Abstract

Background: The high-flow nasal cannula (HFNC) delivers up to 60 l/min of humidified air/oxygen blend at a temperature close to that of the human body. In this study, we tested whether higher temperature and flow decrease patient comfort. In more severe patients, instead, we hypothesized that higher flow might be associated with improved comfort.

Methods: A prospective, randomized, cross-over study was performed on 40 acute hypoxemic respiratory failure (AHRF) patients (PaO2/FiO2 ≤ 300 + pulmonary infiltrates + exclusion of cardiogenic edema) supported by HFNC. The primary outcome was the assessment of patient comfort during HFNC delivery at increasing flow and temperature. Two flows (30 and 60 l/min), each combined with two temperatures (31 and 37 °C), were randomly applied for 20 min (four steps per patient), leaving clinical FiO2 unchanged. Toward the end of each step, the following were recorded: comfort by Visual Numerical Scale ranging between 1 (extreme discomfort) and 5 (very comfortable), together with respiratory parameters. A subgroup of more severe patients was defined by clinical FiO2 ≥ 45%.

Results: Patient comfort was reported as significantly higher during steps at the lower temperature (31 °C) in comparison to 37 °C, with the HFNC set at both 30 and 60 l/min (p < 0.0001). Higher flow, however, was not associated with poorer comfort. In the subgroup of patients with clinical FiO2 ≥ 45%, both lower temperature (31 °C) and higher HFNC flow (60 l/min) led to higher comfort (p < 0.01).

Conclusions: HFNC temperature seems to significantly impact the comfort of AHRF patients: for equal flow, lower temperature could be more comfortable. Higher flow does not decrease patient comfort; at variance, it improves comfort in the more severely hypoxemic patient.

Keywords: Acute hypoxemic respiratory failure; High-flow nasal oxygen; Nursing; Patient comfort; Spontaneous breathing.

Conflict of interest statement

Ethics approval and consent to participate

The Fondazione Ethical Committee approved the study (193_2017), and informed consent was obtained from each patient according to local regulations.

Competing interests

AP reports personal fees from Maquet, Novalung/Xenios, Baxter, and Boehringer Ingelheim outside the submitted work. TM reports personal fees from Fisher and Paykel outside the submitted work. The remaining authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Impact of temperature and flow on patient comfort. Values reported as median with 10°, 25°, 75°, and 90° percentiles as vertical boxes with error bars. a Whole population, overall p < 0.0001 (GLIMMIX). Post hoc analysis: ***p < 0.001 vs HF30-T31, ###p < 0.001 vs HF60-T31. b Subgroup analyses: grey boxes represent FiO2 < 45% subgroup, while white boxes represent FiO2 ≥ 45% subgroup. p values from GLIMMIX analysis: treatment effect p < 0.001; FiO2 effect = 0.055; interaction = 0.035. Post hoc analysis: *p < 0.05 vs HF30-T31; **p < 0.01 vs HF30-T31; ***p < 0.001 vs HF30-T31; #p < 0.05 vs HF60-T31; ##p < 0.01 vs HF60-T31; ###p < 0.001 vs HF60-T31; ††p < 0.01 vs FiO2 < 45% subgroup (same step). FiO2 inspired oxygen fraction, HF30-T31 gas flow 30 l/min and temperature 31 °C, HF60-T31 gas flow 60 l/min and temperature 31 °C, HF30-T37 gas flow 30 l/min and temperature 37 °C, HF60-T37 gas flow 60 l/min and temperature 37 °C
Fig. 2
Fig. 2
Best and worst comfort. Distribution of “best comfort settings” (a) and “worst comfort settings” (b) expressed as percentage of patients reporting highest or lowest comfort value in that particular study phase (see text for detailed description). HF30-T31 gas flow 30 l/min and temperature 31 °C, HF60-T31 gas flow 60 l/min and temperature 31 °C, HF30-T37 gas flow 30 l/min and temperature 37 °C, HF60-T37 gas flow 60 l/min and temperature 37 °C

References

    1. Hernandez G, Roca O, Colinas L. High-flow nasal cannula support therapy: new insights and improving performance. Crit Care. 2017;21(1):62. doi: 10.1186/s13054-017-1640-2.
    1. Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, Prat G, Boulain T, Morawiec E, Cottereau A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–2196. doi: 10.1056/NEJMoa1503326.
    1. Papazian L, Corley A, Hess D, Fraser JF, Frat JP, Guitton C, Jaber S, Maggiore SM, Nava S, Rello J, et al. Use of high-flow nasal cannula oxygenation in ICU adults: a narrative review. Intensive Care Med. 2016;42(9):1336–1349. doi: 10.1007/s00134-016-4277-8.
    1. Mauri T, Cambiaghi B, Spinelli E, Langer T, Grasselli G. Spontaneous breathing: a double-edged sword to handle with care. Ann Transl Med. 2017;5(14):292. doi: 10.21037/atm.2017.06.55.
    1. Mauri T, Grasselli G, Jaber S. Respiratory support after extubation: noninvasive ventilation or high-flow nasal cannula, as appropriate. Ann Intensive Care. 2017;7(1):52. doi: 10.1186/s13613-017-0271-8.
    1. Delorme M, Bouchard PA, Simon M, Simard S, Lellouche F. Effects of high-flow nasal cannula on the work of breathing in patients recovering from acute respiratory failure. Crit Care Med. 2017;45(12):1981–1988. doi: 10.1097/CCM.0000000000002693.
    1. Mauri T, Turrini C, Eronia N, Grasselli G, Volta CA, Bellani G, Pesenti A. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195(9):1207–1215. doi: 10.1164/rccm.201605-0916OC.
    1. Mauri T, Alban L, Turrini C, Cambiaghi B, Carlesso E, Taccone P, Bottino N, Lissoni A, Spadaro S, Volta CA, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med. 2017;43(10):1453–1463. doi: 10.1007/s00134-017-4890-1.
    1. Kolcaba K, Tilton C, Drouin C. Comfort Theory: a unifying framework to enhance the practice environment. J Nurs Adm. 2006;36(11):538–544. doi: 10.1097/00005110-200611000-00010.
    1. Krinsky R, Murillo I, Johnson J. A practical application of Katharine Kolcaba's comfort theory to cardiac patients. Appl Nurs Res. 2014;27(2):147–150. doi: 10.1016/j.apnr.2014.02.004.
    1. Azoulay E, Pickkers P, Soares M, Perner A, Rello J, Bauer PR, van de Louw A, Hemelaar P, Lemiale V, Taccone FS, et al. Acute hypoxemic respiratory failure in immunocompromised patients: the Efraim multinational prospective cohort study. Intensive Care Med. 2017;43(12):1808–1819. doi: 10.1007/s00134-017-4947-1.
    1. Hernandez G, Vaquero C, Colinas L, Cuena R, Gonzalez P, Canabal A, Sanchez S, Rodriguez ML, Villasclaras A, Fernandez R. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA. 2016;316(15):1565–1574. doi: 10.1001/jama.2016.14194.
    1. Mundel T, Feng S, Tatkov S, Schneider H. Mechanisms of nasal high flow on ventilation during wakefulness and sleep. J Appl Physiol (1985) 2013;114(8):1058–1065. doi: 10.1152/japplphysiol.01308.2012.
    1. Parke RL, McGuinness SP. Pressures delivered by nasal high flow oxygen during all phases of the respiratory cycle. Respir Care. 2013;58(10):1621–1624. doi: 10.4187/respcare.02358.
    1. Pisani L, Fasano L, Corcione N, Comellini V, Musti MA, Brandao M, Bottone D, Calderini E, Navalesi P, Nava S. Change in pulmonary mechanics and the effect on breathing pattern of high flow oxygen therapy in stable hypercapnic COPD. Thorax. 2017;72(4):373–375. doi: 10.1136/thoraxjnl-2016-209673.
    1. Britos M, Smoot E, Liu KD, Thompson BT, Checkley W, Brower RG. National Institutes of Health Acute Respiratory Distress Syndrome Network I. The value of positive end-expiratory pressure and Fio(2) criteria in the definition of the acute respiratory distress syndrome. Crit Care Med. 2011;39(9):2025–2030. doi: 10.1097/CCM.0b013e31821cb774.
    1. Wallace D, Cooper NR, Paulmann S, Fitzgerald PB, Russo R. Perceived comfort and blinding efficacy in randomised sham-controlled transcranial direct current stimulation (tDCS) trials at 2 mA in young and older healthy adults. PLoS One. 2016;11(2):e0149703. doi: 10.1371/journal.pone.0149703.
    1. Hernandez-Jimenez C, Garcia-Torrentera R, Olmos-Zuniga JR, Jasso-Victoria R, Gaxiola-Gaxiola MO, Baltazares-Lipp M, Gutierrez-Gonzalez LH. Respiratory mechanics and plasma levels of tumor necrosis factor alpha and interleukin 6 are affected by gas humidification during mechanical ventilation in dogs. PLoS One. 2014;9(7):e101952. doi: 10.1371/journal.pone.0101952.
    1. Foxman EF, Storer JA, Fitzgerald ME, Wasik BR, Hou L, Zhao H, Turner PE, Pyle AM, Iwasaki A. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc Natl Acad Sci U S A. 2015;112(3):827–832. doi: 10.1073/pnas.1411030112.
    1. Tseng CM, Chen YT, Ou SM, Hsiao YH, Li SY, Wang SJ, Yang AC, Chen TJ, Perng DW. The effect of cold temperature on increased exacerbation of chronic obstructive pulmonary disease: a nationwide study. PLoS One. 2013;8(3):e57066. doi: 10.1371/journal.pone.0057066.
    1. Graff TD, Benson DW. Systemic and pulmonary changes with inhaled humid atmospheres: clinical application. Anesthesiology. 1969;30(2):199–207. doi: 10.1097/00000542-196902000-00017.
    1. Sleigh MA, Blake JR, Liron N. The propulsion of mucus by cilia. Am Rev Respir Dis. 1988;137(3):726–741. doi: 10.1164/ajrccm/137.3.726.
    1. Williams R, Rankin N, Smith T, Galler D, Seakins P. Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit Care Med. 1996;24(11):1920–1929. doi: 10.1097/00003246-199611000-00025.
    1. Stéphan F, Bérard L, Rézaiguia-Delclaux S, Amaru P, BiPOP Study Group High-flow nasal cannula therapy versus intermittent noninvasive ventilation in obese subjects after cardiothoracic surgery. Respir Care. 2017;62(9):1193–1202. doi: 10.4187/respcare.05473.
    1. Longhini F, Pan C, Xie J, Cammarota G, Bruni A, Garofalo E, Yang Y, Navalesi P, Qiu H. New setting of neurally adjusted ventilatory assist for noninvasive ventilation by facial mask: a physiologic study. Crit Care. 2017;21(1):170. doi: 10.1186/s13054-017-1761-7.
    1. Messika J, Hajage D, Panneckoucke N, Villard S, Martin Y, Renard E, Blivet A, Reignier J, Maquigneau N, Stoclin A, et al. Effect of a musical intervention on tolerance and efficacy of non-invasive ventilation in the ICU: study protocol for a randomized controlled trial (MUSique pour l'Insuffisance Respiratoire Aigue—Mus-IRA) Trials. 2016;17(1):450. doi: 10.1186/s13063-016-1574-z.
    1. Frat JP, Ragot S, Coudroy R, Constantin JM, Girault C, Prat G, Boulain T, Demoule A, Ricard JD, Razazi K, et al. Predictors of intubation in patients with acute hypoxemic respiratory failure treated with a noninvasive oxygenation strategy. Crit Care Med. 2018;46(2):208–215. doi: 10.1097/CCM.0000000000002818.
    1. Manning HL, Molinary EJ, Leiter JC. Effect of inspiratory flow rate on respiratory sensation and pattern of breathing. Am J Respir Crit Care Med. 1995;151(3 Pt 1):751–757. doi: 10.1164/ajrccm/151.3_Pt_1.751.
    1. Schwartzstein RM, Simon PM, Weiss JW, Fencl V, Weinberger SE. Breathlessness induced by dissociation between ventilation and chemical drive. Am Rev Respir Dis. 1989;139(5):1231–1237. doi: 10.1164/ajrccm/139.5.1231.
    1. Mauri T, Grasselli G, Pesenti A. Systematic assessment of advanced respiratory physiology: precision medicine entering real-life ICU? Crit Care. 2017;21(1):143. doi: 10.1186/s13054-017-1720-3.
    1. Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS. Crit Care. 2017;21(Suppl 3):312. doi: 10.1186/s13054-017-1905-9.
    1. Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB. Matthay MA; NHLBI ARDS Network. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2(8):611–620. doi: 10.1016/S2213-2600(14)70097-9.
    1. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–755. doi: 10.1056/NEJMsa1410639.
    1. Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD, Thompson BT. Calfee CS; ARDS Network. Acute Respiratory Distress Syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195(3):331–338.
    1. Goligher EC, Amato MBP, Slutsky AS. Applying precision medicine to trial design using physiology. Extracorporeal CO2 removal for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196(5):558–568. doi: 10.1164/rccm.201701-0248CP.

Source: PubMed

Подписаться