Biofeedback in rehabilitation

Oonagh M Giggins, Ulrik McCarthy Persson, Brian Caulfield, Oonagh M Giggins, Ulrik McCarthy Persson, Brian Caulfield

Abstract

This paper reviews the literature relating to the biofeedback used in physical rehabilitation. The biofeedback methods used in rehabilitation are based on biomechanical measurements and measurements of the physiological systems of the body. The physiological systems of the body which can be measured to provide biofeedback are the neuromuscular system, the respiratory system and the cardiovascular system. Neuromuscular biofeedback methods include electromyography (EMG) biofeedback and real-time ultrasound imaging (RTUS) biofeedback. EMG biofeedback is the most widely investigated method of biofeedback and appears to be effective in the treatment of many musculoskeletal conditions and in post cardiovascular accident (CVA) rehabilitation. RTUS biofeedback has been demonstrated effective in the treatment of low back pain (LBP) and pelvic floor muscle dysfunction. Cardiovascular biofeedback methods have been shown to be effective in the treatment of a number of health conditions such as hypertension, heart failure, asthma, fibromyalgia and even psychological disorders however a systematic review in this field has yet to be conducted. Similarly, the number of large scale studies examining the use of respiratory biofeedback in rehabilitation is limited. Measurements of movement, postural control and force output can be made using a number of different devices and used to deliver biomechanical biofeedback. Inertial based sensing biofeedback is the most widely researched biomechanical biofeedback method, with a number of studies showing it to be effective in improving measures of balance in a number of populations. Other types of biomechanical biofeedback include force plate systems, electrogoniometry, pressure biofeedback and camera based systems however the evidence for these is limited. Biofeedback is generally delivered using visual displays, acoustic or haptic signals, however more recently virtual reality (VR) or exergaming technology have been used as biofeedback signals. VR and exergaming technology have been primarily investigated in post-CVA rehabilitation, however, more recent work has shown this type of biofeedback to be effective in improving exercise technique in musculoskeletal populations. While a number of studies in this area have been conducted, further large scale studies and reviews investigating different biofeedback applications in different clinical populations are required.

Figures

Figure 1
Figure 1
Categories of biofeedback used in physical rehabilitation.

References

    1. Tate JJ, Milner CE. Real-time kinematic, temporospatial, and kinetic biofeedback during gait retraining in patients: a systematic review. Phys Ther. 2010;90(8):1123–1134. doi: 10.2522/ptj.20080281.
    1. Onate J, Guskiewicz K, Sullivan R. Augmented feedback reduces jump landing forces. J Orthop Sports Phys Ther. 2001;31(9):511.
    1. Zhang Z, Proceedings of The Third International Conference on Biomedical Engineering and Informatics. Yantai, China: IEEE; 2010. A smartphone based respiratory biofeedback system.
    1. Riener R, Colombo G, Lunenburger L. Proceedings of The First International Conference on Biomedical Robotics and Biomechantronics. Pisa, Italy: IEEE; 2006. Overview of robot-aided gait biofeedback and assessment.
    1. Huang H, Wolf SL, He J. Recent developments in biofeedback for neuromotor rehabilitation. J Neuroeng Rehabil. 2006;3:11. doi: 10.1186/1743-0003-3-11.
    1. Basmajian JV. Biofeedback: Principles and practice for clinicians. Oxford, England: Williams & Wilkins; 1979.
    1. Draper V, Ballard L. Electrical stimulation versus electromyographic biofeedback in the recovery of quadriceps femoris muscle function following anterior cruciate ligament surgery. Phys Ther. 1991;71(6):455–461.
    1. Krebs DE. Clinical electromyographic feedback following meniscectomy. A multiple regression experimental analysis. Phys Ther. 1981;61(7):1017–1021.
    1. Akkaya N. et al.Efficacy of electromyographic biofeedback and electrical stimulation following arthroscopic partial meniscectomy: a randomized controlled trial. Clin Rehabil. 2011;26:224–236.
    1. Kirnap M. et al.The efficacy of EMG-biofeedback training on quadriceps muscle strength in patients after arthroscopic meniscectomy. J N Z Med Assoc. 2005;118(1224):U1704.
    1. Yılmaz OO. et al.Efficacy of EMG-biofeedback in knee osteoarthritis. Rheumatol Int. 2010;30(7):887–892. doi: 10.1007/s00296-009-1070-9.
    1. McConnell J. Management of patellofemoral problems. Man Ther. 1996;1(2):60–66. doi: 10.1054/math.1996.0251.
    1. Wise HH, Fiebert I, Kates JL. EMG Biofeedback as Treatment for Patellofemoral Pain Syndrome. J Orthop Sports Phys Ther. 1984;6(2):95–103.
    1. Dursun N, Dursun E. Electromyographic biofeedback controlled exercise versus conservative care for patellofemoral pain syndrome. Arch Phys Med Rehabil. 2001;82(12):1692–1695. doi: 10.1053/apmr.2001.26253.
    1. Yip SL, Ng GY. Biofeedback supplementation to physiotherapy exercise programme for rehabilitation of patellofemoral pain syndrome: a randomized controlled pilot study. Clin Rehabil. 2006;20(12):1050–1057. doi: 10.1177/0269215506071259.
    1. Ng GY, Zhang AQ, Li CK. Biofeedback exercise improved the EMG activity ratio of the medial and lateral vasti muscles in subjects with patellofemoral pain syndrome. J Electromyogr Kinesiol. 2008;18(1):128–33. doi: 10.1016/j.jelekin.2006.08.010.
    1. Dellve L. et al.Myofeedback training and intensive muscular strength training to decrease pain and improve work ability among female workers on long-term sick leave with neck pain: a randomized controlled trial. Int Arch Occup Environ Health. 2011;84:1–12. doi: 10.1007/s00420-010-0599-y.
    1. Ma C. et al.Comparing Biofeedback With Active Exercise and Passive Treatment for the Management of Work-Related Neck and Shoulder Pain: A Randomized Controlled Trial. Arch Phys Med Rehabil. 2011;92(6):849–858. doi: 10.1016/j.apmr.2010.12.037.
    1. Voerman GE. et al.Effects of ambulant myofeedback training and ergonomic counselling in female computer workers with work-related neck-shoulder complaints: a randomized controlled trial. J Occup Rehabil. 2007;17(1):137–152. doi: 10.1007/s10926-007-9066-3.
    1. Voerman GE, Vollenbroek-Hutten MM, Hermens HJ. Changes in pain, disability, and muscle activation patterns in chronic whiplash patients after ambulant myofeedback training. Clin J Pain. 2006;22(7):656–63. doi: 10.1097/01.ajp.0000210911.88041.df.
    1. Ehrenborg C, Archenholtz B. Is surface EMG biofeedback an effective training method for persons with neck and shoulder complaints after whiplash-associated disorders concerning activities of daily living and pain – a randomized controlled trial. Clin Rehabil. 2010;24(8):715–26. doi: 10.1177/0269215510362325.
    1. Armagan O, Tascioglu F, Oner C. Electromyographic biofeedback in the treatment of the hemiplegic hand: a placebo-controlled study. Am J Phys Med Rehabil. 2003;82(11):856. doi: 10.1097/01.PHM.0000091984.72486.E0.
    1. Aiello E, Proceedings of The 27th Annual Conference on Engineering in Medicine and Biology. Shanghai, China: IEEE; 2005. Visual EMG biofeedback to improve ankle function in hemiparetic gait.
    1. Inglis J. et al.Electromyographic biofeedback and physical therapy of the hemiplegic upper limb. Arch Phys Med Rehabil. 1984;65(12):755.
    1. Dogan-Aslan M. et al.The Effect of Electromyographic Biofeedback Treatment in Improving Upper Extremity Functioning of Patients with Hemiplegic Stroke. J Stroke Cerebrovasc Dis. 2010;21(3):187–192.
    1. Lourencao MI. et al.Effect of biofeedback accompanying occupational therapy and functional electrical stimulation in hemiplegic patients. Int J Rehabil Res. 2008;31(1):33–41. doi: 10.1097/MRR.0b013e3282f4524c.
    1. Hemmen B, Seelen HA. Effects of movement imagery and electromyography-triggered feedback on arm hand function in stroke patients in the subacute phase. Clin Rehabil. 2007;21(7):587–94. doi: 10.1177/0269215507075502.
    1. Bradley L. et al.Electromyographic biofeedback for gait training after stroke. Clin Rehabil. 1998;12(1):11–22. doi: 10.1191/026921598677671932.
    1. Crow JL. et al.The effectiveness of EMG biofeedback in the treatment of arm function after stroke. Int Disabil Stud. 1989;11(4):155–60. doi: 10.3109/03790798909166667.
    1. Woodford H, Price C. EMG biofeedback for the recovery of motor function after stroke. Cochrane Database Syst Rev. 2007;2:CD004585.
    1. Colborne G, Wright F, Naumann S. Feedback of triceps surae EMG in gait of children with cerebral palsy: a controlled study. Arch Phys Med Rehabil. 1994;75(1):40.
    1. Bolek JE. A preliminary study of modification of gait in real-time using surface electromyography. Appl Psychophysiol Biofeedback. 2003;28(2):129–138. doi: 10.1023/A:1023810608949.
    1. Dursun E, Dursun N, Alican D. Effects of biofeedback treatment on gait in children with cerebral palsy. Disabil Rehabil. 2004;26(2):116–120. doi: 10.1080/09638280310001629679.
    1. Bloom R, Przekop A, Sanger TD. Prolonged electromyogram biofeedback improves upper extremity function in children with cerebral palsy. J Child Neurol. 2010;25(12):1480–4. doi: 10.1177/0883073810369704.
    1. Hides JA, Richardson CA, Jull GA. Use of real-time ultrasound imaging for feedback in rehabilitation. Man Ther. 1998;3(3):125–131. doi: 10.1016/S1356-689X(98)80002-7.
    1. Potter CL, Cairns MC, Stokes M. Use of ultrasound imaging by physiotherapists: a pilot study to survey use, skills and training. Man Ther. 2012;17(1):39–46. doi: 10.1016/j.math.2011.08.005.
    1. Worth SGA, Henry S, Bunn J. Real-time ultrasound feedback and abdonninal hollowing exercises for people with low back pain Real-time ultrasound gives immediate visual feedback of abdominal hollowing exercise. N Z J Physiother. 2007;35(1):4–11.
    1. Henry SM, Westervelt KC. The use of real-time ultrasound feedback in teaching abdominal hollowing exercises to healthy subjects. J Orthop Sports Phys Ther. 2005;35(6):338–345.
    1. Teyhen DS. et al.The use of ultrasound imaging of the abdominal drawing-in maneuver in subjects with low back pain. J Orthop Sports Phys Ther. 2005;35(6):346–55.
    1. Van K, Hides JA, Richardson CA. The use of real-time ultrasound imaging for biofeedback of lumbar multifidus muscle contraction in healthy subjects. J Orthop Sports Phys Ther. 2006;36(12):920–5. doi: 10.2519/jospt.2006.2304.
    1. Dietz H, Wilson P, Clarke B. The use of perineal ultrasound to quantify levator activity and teach pelvic floor muscle exercises. Int Urogynecol J. 2001;12(3):166–169. doi: 10.1007/s001920170059.
    1. Ariail A, Sears T, Hampton E. Use of transabdominal ultrasound imaging in retraining the pelvic-floor muscles of a woman postpartum. Phys Ther. 2008;88(10):1208–17. doi: 10.2522/ptj.20070330.
    1. Goldstein DS, Ross RS, Brady JV. Biofeedback heart rate training during exercise. Appl Psychophysiol Biofeedback. 1977;2(2):107–125.
    1. Fredrikson M, Engel BT. Learned control of heart rate during exercise in patients with borderline hypertension. Eur J Appl Physiol Occup Physiol. 1985;54(3):315–20. doi: 10.1007/BF00426152.
    1. Moleiro MA, Cid FV. Effects of biofeedback training on voluntary heart rate control during dynamic exercise. Appl Psychophysiol Biofeedback. 2001;26(4):279–292. doi: 10.1023/A:1013149703402.
    1. Palomba D. et al.Biofeedback-Assisted Cardiovascular Control in Hypertensives Exposed to Emotional Stress: A Pilot Study. Appl Psychophysiol Biofeedback. 2011;36:1–8. doi: 10.1007/s10484-010-9140-z.
    1. Giardino ND, Chan L, Borson S. Combined heart rate variability and pulse oximetry biofeedback for chronic obstructive pulmonary disease: preliminary findings. Appl Psychophysiol Biofeedback. 2004;29(2):121–133.
    1. Ahuja N, Heart rate variability and its clinical application for biofeedback. Bethesda, MD, USA: IEEE; 2004. (Proceedings of the 17th Conference on Computer-Based Medical Systems).
    1. Lehrer PM. et al.Biofeedback Treatment for Asthma. Chest. 2004;126(2):352–361. doi: 10.1378/chest.126.2.352.
    1. Hassett AL. et al.A pilot study of the efficacy of heart rate variability (HRV) biofeedback in patients with fibromyalgia. Appl Psychophysiol Biofeedback. 2007;32(1):1–10. doi: 10.1007/s10484-006-9028-0.
    1. Karavidas MK. et al.Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression. Appl Psychophysiol Biofeedback. 2007;32(1):19–30. doi: 10.1007/s10484-006-9029-z.
    1. Zucker TL. et al.The effects of respiratory sinus arrhythmia biofeedback on heart rate variability and posttraumatic stress disorder symptoms: a pilot study. Appl Psychophysiol Biofeedback. 2009;34(2):135–143. doi: 10.1007/s10484-009-9085-2.
    1. Nolan RP. et al.Heart rate variability biofeedback as a behavioral neurocardiac intervention to enhance vagal heart rate control. Am Heart J. 2005;149(6):1137.
    1. Luskin F. et al.A controlled pilot study of stress management training of elderly patients with congestive heart failure. Prev Cardiol. 2002;5(4):168–174. doi: 10.1111/j.1520.037X.2002.01029.x.
    1. Kaushik R. et al.Biofeedback assisted diaphragmatic breathing and systematic relaxation versus propranolol in long term prophylaxis of migraine. Complement Ther Med. 2005;13(3):165–174. doi: 10.1016/j.ctim.2005.04.004.
    1. Delk KK. et al.The effects of biofeedback assisted breathing retraining on lung functions in patients with cystic fibrosis. Chest. 1994;105(1):23–28. doi: 10.1378/chest.105.1.23.
    1. Grossman E. et al.Breathing-control lowers blood pressure. J Hum Hypertens. 2001;15(4):263–269. doi: 10.1038/sj.jhh.1001147.
    1. Schein M. et al.Treating hypertension with a device that slows and regularises breathing: a randomised, double-blind controlled study. J Hum Hypertens. 2001;15(4):271–278. doi: 10.1038/sj.jhh.1001148.
    1. Morarend QA. et al.The use of a Respiratory Rate Biofeedback Device to Reduce Dental Anxiety: An Exploratory Investigation. Appl Psychophysiol Biofeedback. 2011;36:1–8. doi: 10.1007/s10484-010-9140-z.
    1. Kapitza KP. et al.First non-contingent respiratory biofeedback placebo versus contingent biofeedback in patients with chronic low back pain: a randomized, controlled, double-blind trial. Appl Psychophysiol Biofeedback. 2010;35(3):207–17. doi: 10.1007/s10484-010-9130-1.
    1. Meuret AE. et al.Feedback of end-tidal pCO2 as a therapeutic approach for panic disorder. J Psychiatr Res. 2008;42(7):560–568. doi: 10.1016/j.jpsychires.2007.06.005.
    1. Schepers, M., Ambulatory assessment of human body kinematics and kinetics. Thesis. University of Twente. The Netherlands: Enschede; 2009.
    1. Davis JR. et al.Trunk sway reductions in young and older adults using multi-modal biofeedback. Gait Posture. 2010;31(4):465–472. doi: 10.1016/j.gaitpost.2010.02.002.
    1. Verhoeff LL. et al.Effects of biofeedback on trunk sway during dual tasking in the healthy young and elderly. Gait Posture. 2009;30(1):76–81. doi: 10.1016/j.gaitpost.2009.03.002.
    1. Dozza M. et al.Influence of a portable audio-biofeedback device on structural properties of postural sway. J Neuroeng Rehabil. 2005;2(13):0003–2.
    1. Dozza M, Chiari L, Horak FB. Audio-biofeedback improves balance in patients with bilateral vestibular loss. Arch Phys Med Rehabil. 2005;86(7):1401–1403. doi: 10.1016/j.apmr.2004.12.036.
    1. Nicolai S. et al.Improvement of balance after audio-biofeedback. A 6-week intervention study in patients with progressive supranuclear palsy. Z Gerontol Geriatr. 2010;43(4):224–8. doi: 10.1007/s00391-010-0125-6.
    1. Mirelman A. et al.Audio-biofeedback training for posture and balance in patients with Parkinson's disease. J Neuroeng Rehabil. 2011;8:35. doi: 10.1186/1743-0003-8-35.
    1. Soon KS, Proceedings of the 2011 International Conference on System Science and Engineering. Macao, China: IEEE; 2011. A new trunk sway assessment protocol using biofeedback inertial-based sensing modality for stroke patients.
    1. Breen PP, Nisar A, ÓLaighin G. Proceedings of the 31st Annual international Conference on Engineering in Medicine and Biology. Minneapolis: IEEE; 2009. Evaluation of a single accelerometer based biofeedback system for real-time correction of neck posture in computer users.
    1. Crowell HP. et al.Reducing impact loading during running with the use of real-time visual feedback. J Orthop Sports Phys Ther. 2010;40(4):206.
    1. Yamanouchi K. et al.Daily walking combined with diet therapy is a useful means for obese NIDDM patients not only to reduce body weight but also to improve insulin sensitivity. Diabetes Care. 1995;18(6):775–8. doi: 10.2337/diacare.18.6.775.
    1. Fogelholm M, Kukkonen-Harjula K, Oja P. Eating control and physical activity as determinants of short-term weight maintenance after a very-low-calorie diet among obese women. Int J Obes. 1999;23(2):203–210. doi: 10.1038/sj.ijo.0800825.
    1. Hoodless D. et al.Reduced customary activity in chronic heart failure: assessment with a new shoe-mounted pedometer. Int J Cardiol. 1994;43(1):39–42. doi: 10.1016/0167-5273(94)90088-4.
    1. Steele BG. et al.Bodies in motion: monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease. J Rehabil Res Dev. 2003;40(5 Suppl 2):45–58.
    1. Koizumi D. et al.Efficacy of an accelerometer-guided physical activity intervention in community-dwelling older women. J Phys Act Health. 2009;6(4):467.
    1. Winstein C. et al.Standing balance training: effect on balance and locomotion in hemiparetic adults. Arch Phys Med Rehabil. 1989;70(10):755.
    1. Sackley CM, Lincoln NB. Single blind randomized controlled trial of visual feedback after stroke: effects on stance symmetry and function. Disabil Rehabil. 1997;19(12):536–546. doi: 10.3109/09638289709166047.
    1. Geiger RA. et al.Balance and mobility following stroke: effects of physical therapy interventions with and without biofeedback/forceplate training. Phys Ther. 2001;81(4):995–1005.
    1. Nichols DS. Balance retraining after stroke using force platform biofeedback. Phys Ther. 1997;77(5):553–558.
    1. Barclay-Goddard R. et al.Force platform feedback for standing balance training after stroke. Cochrane Database Syst Rev. 2004;4
    1. Van Peppen RPS. et al.Effects of visual feedback therapy on postural control in bilateral standing after stroke: a systematic review. J Rehabil Med. 2006;38(1):3–9. doi: 10.1080/16501970500344902.
    1. White SC, Lifeso RM. Altering asymmetric limb loading after hip arthroplasty using real-time dynamic feedback when walking. Arch Phys Med Rehabil. 2005;86(10):1958–63. doi: 10.1016/j.apmr.2005.04.010.
    1. Dingwell JB, Davis BL, Frazier DM. Use of an instrumented treadmill for real-time gait symmetry evaluation and feedback in normal and trans-tibial amputee subjects. Prosthet Orthot Int. 1996;20(2):101–10.
    1. Sihvonen S. et al.Fall incidence in frail older women after individualized visual feedback-based balance training. Gerontology. 2004;50(6):411–6. doi: 10.1159/000080180.
    1. Sihvonen SE, Sipila S, Era PA. Changes in postural balance in frail elderly women during a 4-week visual feedback training: a randomized controlled trial. Gerontology. 2004;50(2):87–95. doi: 10.1159/000075559.
    1. Hatzitaki V. et al.Direction-induced effects of visually guided weight-shifting training on standing balance in the elderly. Gerontology. 2009;55(2):145–152. doi: 10.1159/000142386.
    1. Ceceli E, Dursun E, Cakci A. Comparison of joint-position biofeedback and conventional therapy methods in genu recurvatum after stroke-6 months' follow-up. European journal of physical medicine & rehabilitation. 1996;6(5):141–144.
    1. Morris M. et al.Electrogoniometric feedback: its effect on genu recurvatum in stroke. Arch Phys Med Rehabil. 1992;73(12):1147.
    1. Colborne G, Olney S, Griffin M. Feedback of ankle joint angle and soleus electromyography in the rehabilitation of hemiplegic gait. Arch Phys Med Rehabil. 1993;74(10):1100. doi: 10.1016/0003-9993(93)90069-M.
    1. Kuiken TA, Amir H, Scheidt RA. Computerized biofeedback knee goniometer: acceptance and effect on exercise behavior in post-total knee arthroplasty rehabilitation. Arch Phys Med Rehabil. 2004;85(6):1026–1030. doi: 10.1016/j.apmr.2003.08.088.
    1. Cairns MC, Harrison K, Wright C. Pressure Biofeedback: A useful tool in the quantification of abdominal muscular dysfunction? Physiotherapy. 2000;86(3):127–138. doi: 10.1016/S0031-9406(05)61155-8.
    1. Chiu TT, Law EY, Chiu TH. Performance of the craniocervical flexion test in subjects with and without chronic neck pain. J Orthop Sports Phys Ther. 2005;35(9):567–71.
    1. Hudswell S, von Mengersen M, Lucas N. The cranio-cervical flexion test using pressure biofeedback: A useful measure of cervical dysfunction in the clinical setting? International Journal of Osteopathic Medicine. 2005;8(3):98–105. doi: 10.1016/j.ijosm.2005.07.003.
    1. Cynn HS. et al.Effects of lumbar stabilization using a pressure biofeedback unit on muscle activity and lateral pelvic tilt during hip abduction in sidelying. Arch Phys Med Rehabil. 2006;87(11):1454–1458. doi: 10.1016/j.apmr.2006.08.327.
    1. Kim B, Gong W, Lee S. The effect of push-up plus exercise with visual biofeedback on the activity of shoulder stabilizer muscles for winged scapula. Journal of Physical Therapy Science. 2010;22(4):355–358. doi: 10.1589/jpts.22.355.
    1. Gilmore PE, Spaulding SJ. Motor learning and the use of videotape feedback after stroke. Top Stroke Rehabil. 2007;14(5):28–36. doi: 10.1310/tsr1405-28.
    1. Teasell R. et al.Stroke rehabilitation: an international perspective. Top Stroke Rehabil. 2009;16(1):44–56. doi: 10.1310/tsr1601-44.
    1. Merians AS. et al.Virtual reality–augmented rehabilitation for patients following stroke. Phys Ther. 2002;82(9):898–915.
    1. Broeren J, Rydmark M, Sunnerhagen KS. Virtual reality and haptics as a training device for movement rehabilitation after stroke: A single-case study. Arch Phys Med Rehabil. 2004;85(8):1247–1250. doi: 10.1016/j.apmr.2003.09.020.
    1. Betker AL. et al.Video game–based exercises for balance rehabilitation: a single-subject design. Arch Phys Med Rehabil. 2006;87(8):1141–1149. doi: 10.1016/j.apmr.2006.04.010.
    1. Piron L. et al.Virtual environment training therapy for arm motor rehabilitation. Presence: Teleoperators & Virtual Environments. 2005;14(6):732–740. doi: 10.1162/105474605775196580.
    1. Piron L, Proceedings of Virtual Rehbailitation Conference. Venice, Italy: IEEE; 2007. Reinforced feedback in virtual environment facilitates the arm motor recovery in patients after a recent stroke.
    1. Crosbie J, Proc. 7th ICDVRAT with ArtAbilitation. Maia, Portugal; 2008. Virtual reality in the rehabilitation of the upper limb after hemiplegic stroke: a randomised pilot study; pp. 229–235.
    1. Doyle J, Proceedings of VIrtual Rehabilitation Conference. Zurich, Switzerland: IEEE; 2011. The effects of visual feedback in therapeutic exergaming on motor task accuracy.
    1. Fitzgerald DD. et al.Effects of a wobble board-based therapeutic exergaming system for balance training on dynamic postural stability and intrinsic motivation levels. J Orthop Sports Phys Ther. 2010;40(1):11–19.

Source: PubMed

Подписаться