Dose-escalation using intensity-modulated radiotherapy for prostate cancer - evaluation of quality of life with and without (18)F-choline PET-CT detected simultaneous integrated boost

Michael Pinkawa, Marc D Piroth, Richard Holy, Jens Klotz, Victoria Djukic, Nuria Escobar Corral, Mariana Caffaro, Oliver H Winz, Thomas Krohn, Felix M Mottaghy, Michael J Eble, Michael Pinkawa, Marc D Piroth, Richard Holy, Jens Klotz, Victoria Djukic, Nuria Escobar Corral, Mariana Caffaro, Oliver H Winz, Thomas Krohn, Felix M Mottaghy, Michael J Eble

Abstract

Background: In comparison to the conventional whole-prostate dose escalation, an integrated boost to the macroscopic malignant lesion might potentially improve tumor control rates without increasing toxicity. Quality of life after radiotherapy (RT) with vs. without (18)F-choline PET-CT detected simultaneous integrated boost (SIB) was prospectively evaluated in this study.

Methods: Whole body image acquisition in supine patient position followed 1 h after injection of 178-355MBq (18)F-choline. SIB was defined by a tumor-to-background uptake value ratio > 2 (GTV(PET)). A dose of 76Gy was prescribed to the prostate (PTV(prostate)) in 2Gy fractions, with or without SIB up to 80Gy. Patients treated with (n = 46) vs. without (n = 21) SIB were surveyed prospectively before (A), at the last day of RT (B) and a median time of two (C) and 19 month (D) after RT to compare QoL changes applying a validated questionnaire (EPIC - expanded prostate cancer index composite).

Results: With a median cut-off standard uptake value (SUV) of 3, a median GTV(PET) of 4.0 cm(3) and PTV(boost) (GTV(PET) with margins) of 17.3 cm(3) was defined. No significant differences were found for patients treated with vs. without SIB regarding urinary and bowel QoL changes at times B, C and D (mean differences ≤3 points for all comparisons). Significantly decreasing acute urinary and bowel score changes (mean changes > 5 points in comparison to baseline level at time A) were found for patients with and without SIB. However, long-term urinary and bowel QoL (time D) did not differ relative to baseline levels - with mean urinary and bowel function score changes < 3 points in both groups (median changes = 0 points). Only sexual function scores decreased significantly (> 5 points) at time D.

Conclusions: Treatment planning with (18)F-choline PET-CT allows a dose escalation to a macroscopic intraprostatic lesion without significantly increasing toxicity.

Figures

Figure 1
Figure 1
Simultaneous integrated boost concept for two patients with a PET-CT slice (images on the left, PET signal demonstrates the malignant lesion above a fixed standard uptake value threshold) and the corresponding contours and isodose lines in a treatment plan (images on the right).

References

    1. Viani GA, Stefano EJ, Alfonso SL. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys. 2009;74:1405–1418. doi: 10.1016/j.ijrobp.2008.10.091.
    1. Pinkawa M, Piroth MD, Fischedick K, Nussen S, Klotz J, Holy R, Eble MJ. Self-assessed bowel toxicity after external beam radiotherapy for prostate cancer--predictive factors on irritative symptoms, incontinence and rectal bleeding. Radiat Oncol. 2009;4:36. doi: 10.1186/1748-717X-4-36.
    1. Pinkawa M, Holy R, Piroth MD, Fischedick K, Schaar S, Székely-Orbànm Eble MJ. Consequential late effets after radiotherapy for prostate cancer - a prospective longitudianl quality of life study. Radiat Oncol. 2010;5:27. doi: 10.1186/1748-717X-5-27.
    1. Cellini N, Morganti AG, Mattiucci GC, Valentini V, Leone M, Luzi S, Manfredi R, Dinapoli N, Digesu C, Smaniotto D. Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. Int J Radiat Oncol Biol Phys. 2002;53:595–599. doi: 10.1016/S0360-3016(02)02795-5.
    1. Chen ME, Johnston DA, Tang K, Babaian RJ, Troncoso P. Detailed mapping of prostate carcinoma foci: biopsy strategy implications. Cancer. 2000;89:1800–1809. doi: 10.1002/1097-0142(20001015)89:8<1800::AID-CNCR21>;2-D.
    1. Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, Canini R, Grigioni W, Boschi S, Marengo M, Pettinato C, Salizzoni E, Monetti N, Franchi R, Fanti S. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med. 2005;46:1642–1649.
    1. Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med. 2006;47:262–269.
    1. Pinkawa M, Attieh C, Piroth MD, Holy R, Nussen S, Klotz J, Hawickhorst R, Schäfer W, Eble MJ. Dose-escalation using intensity-modulated radiotherapy for prostate cancer--evaluation of the dose distribution with and without 18F-choline PET-CT detected simultaneous integrated boost. Radiother Oncol. 2009;93:213–219. doi: 10.1016/j.radonc.2009.07.014.
    1. Pinkawa M, Pursch-Lee M, Asadpour B, Gagel B, Piroth MD, Klotz J, Nussen S, Eble MJ. Image-guided radiotherapy for prostate cancer. Implementation of ultrasound-based prostate localization for the analysis of inter- and intrafraction motion. Strahlenther Onkol. 2008;184:679–685. doi: 10.1007/s00066-008-1902-7.
    1. Burman C, Kutcher GJ, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991;21:123–135.
    1. Emami B, Lyman JT, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–122.
    1. Wei JT, Dunn RL, Litwin MS, Sandler HM, Sanda MG. Development and validation of the expanded prostate cancer index composite (epic) for comprehensive assessment of health-related quality of life in men with prostate cancer. Urology. 2000;56:899–905. doi: 10.1016/S0090-4295(00)00858-X.
    1. Volz-Sidiropoulou E, Pinkawa M, Fischedick K, Jakse G, Gauggel S, Eble MJ. Factor analysis of the Expanded Prostate Cancer Index Composite (EPIC) in a patient group after primary (external beam radiotherapy and permanent iodine-125 brachytherapy) and postoperative radiotherapy for prostate cancer. Curr Urol. 2008;2:122–129. doi: 10.1159/000189652.
    1. Pinkawa M, Holy R, Piroth DM, Klotz J, Pfister D, Heidenreich A, Eble MJ. Interpreting the clinical significance of quality of life score changes after radiotherapy for localized prostate cancer. Curr Urol. 2011;5:137–144. doi: 10.1159/000327467.
    1. Pinkawa M, Eble MJ, Mottaghy FM. PET and PET/CT in radiation treatment planning for prostate cancer. Expert Rev Anticancer Ther. 2011;7:1035–1041.
    1. Fonteyne V, Villeirs G, Speleers B, De Neve W, De Wagter C, Lumen N, De Meerleer G. Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys. 2008;72:799–807. doi: 10.1016/j.ijrobp.2008.01.040.
    1. Rinnab L, Mottaghy FM, Blumstein NM, Resje SN, Hautmann RE, Hohl K, Möller P, Wiegel T, Kuefer R, Gschwend JE. Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int. 2007;100:786–93. doi: 10.1111/j.1464-410X.2007.07083.x.
    1. Emonds KM, Swinnen JV, Mortelmanns L, Mottaghy FM. Molecular imaging of prostate cancer. Methods. 2009;48:193–199. doi: 10.1016/j.ymeth.2009.03.021.
    1. Wang J, Bai S, Chen N, Xu F, Jiang X, Li Y, Xu Q, Shen Y, Zhang H, Gong Y, Zhong R, Jiang Q. The clinical feasibility of online cone beam computer tomography-guided intensity-modulated radiotherapy for nasopharyngeal cancer. Radiother Oncol. 2009;90:221–227. doi: 10.1016/j.radonc.2008.08.017.
    1. Bartelink H, Horiot JC, Poortmans PM, Struikmans H, Van den Bogaert W, Fourquet A, Jager JJ, Hoogenraad WJ, Oei SB, Wárlám-Rodenhuis CC, Pierart M, Collette L. Impact of higher radiation dose on local control and survival after breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881-10882 trial. J Clin Oncol. 2007;25:3259–3265. doi: 10.1200/JCO.2007.11.4991.
    1. Pinkawa M, Holy R, Piroth DM, Klotz J, Nussen S, Krohn T, Mottaghy FM, Weibrecht M, Eble MJ. Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol. 2011;186:600–606.
    1. Sutinen E, Nurmi M, Roivainen A, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, Minn H. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31:317–324. doi: 10.1007/s00259-003-1377-9.
    1. Piert M, Park H, Khan A, Siddiqui J, Hussain H, Chenevert T, Wood D, Johnson T, Shah RB, Meyer C. Detection of aggressive primary prostate cancer with 11C-choline PET/CT using multimodality fusion techniques. J Nucl Med. 2009;50:1585–1593. doi: 10.2967/jnumed.109.063396.
    1. De Meerleer G, Villeirs G, Bral S, Paelinck L, De Gersem W, Dekuyper P, De Neve W. The magnetic resonance detected intraprostatic lesion in prostate cancer: planning and delivery of intensity-modulated radiotherapy. Radiother Oncol. 2005;75:325–333. doi: 10.1016/j.radonc.2005.04.014.

Source: PubMed

Подписаться