Long term enzyme replacement therapy for Fabry disease: effectiveness on kidney, heart and brain

Saskia M Rombach, Bouwien E Smid, Machtelt G Bouwman, Gabor E Linthorst, Marcel G W Dijkgraaf, Carla E M Hollak, Saskia M Rombach, Bouwien E Smid, Machtelt G Bouwman, Gabor E Linthorst, Marcel G W Dijkgraaf, Carla E M Hollak

Abstract

Background: Fabry disease is an X-linked lysosomal storage disorder caused by α-galactosidase A deficiency leading to renal, cardiac, cerebrovascular disease and premature death. Treatment with α-galactosidase A (enzyme replacement therapy, ERT) stabilises disease in some patients, but long term effectiveness is unclear.

Methods: Renal, cardiac, and cerebral outcomes were prospectively studied in males and females with Fabry disease treated with ERT. Additionally, the occurrence of major cardiac events, stroke, end-stage renal disease and death was compared to a natural history (NH) cohort meeting treatment criteria.

Results: Of 75 patients on ERT (median treatment duration 5.2 years, range 0.05-11.0), prospective follow-up was available for 57 adult patients (30 males) and 6 adolescents. Renal function declined in males (-3.4 ml/min/1.73 m2 per year, SE 0.2; p < 0.001) despite ERT, but followed the normal course in females (-0.8 ml/min/1.73 m2 per year, SE 0.3; p = 0.001). Cardiac mass increased during ERT in males (+ 1.2 gram/m2.7, SE 0.3; p < 0.001), but remained stable in females (-0.3 gram/m2.7 per year, SE 0.4; p = 0.52). ERT did not prevent the occurrence of cerebral white matter lesions. Comparison of ERT treated to untreated patients revealed that the odds to develop a first complication increased with age (OR 1.05 (95% CI: 1.0-1.1) per year, p = 0.012). For development of a first or second complication the odds declined with longer treatment duration (OR 0.81 (95% CI: 0.68-0.96) per year of ERT, p = 0.015;OR 0.52 (0.31-0.88), p = 0.014 respectively).

Conclusions: Long term ERT does not prevent disease progression, but the risk of developing a first or second complication declines with increasing treatment duration. ERT in advanced Fabry disease seems of doubtful benefit.

Trial registration: ClinicalTrials.gov NCT00701415.

Figures

Figure 1
Figure 1
Overview of ERT and non-ERT cohort. A. The flow-chart shows the patients in the ERT cohort for the prospective analysis of renal function, left ventricular mass and cerebral white matter lesions; B. the flow-chart demonstrates all patients with complete medical records and the cohorts used for the analysis of the age to the first complication.
Figure 2
Figure 2
Developing a first complication. The curves show the percentage without a first complication during follow-up. The small vertical lines represent censored data (follow-up till the vertical line without development of a complication). A. Age at time of the first complication is depicted for the NH cohort and the ERT cohort. B. The time to the first complication is shown based on the median ERT duration for the ERT cohort only: patients receiving ERT more than 4.2 years (13M/16F, age at start of ERT 40.1 (15.9-71.5) years) or less than 4.2 years (14M/15F, age at start of ERT 41.2 (15.2-60.5 years)). Of note, in the analysis ERT duration was included as a continuous variable.

References

    1. Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L. Enzymatic defect in Fabry's disease. Ceramidetrihexosidase deficiency. N Engl J Med. 1967;276(21):1163–1167. doi: 10.1056/NEJM196705252762101.
    1. Kint JA. Fabry’s disease: alpha-galactosidase deficiency. Science. 1970;167(922):1268–1269. doi: 10.1126/science.167.3922.1268.
    1. Desnick RJ, Ioannou YA, Eng CM. In: The metabolic and molecular bases of inherited disease. Volume 3. 8. Scriver CR, Beaudet AL, Sly WS, editor. McGraw-Hill New York: ; Alpha-Galactosidase A deficiency: Fabry disease; pp. 3733–3774.
    1. MacDermot KD, Holmes A, Miners AH. Anderson-Fabry disease: clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J Med Genet. pp. 769–775.
    1. Nakao S, Takenaka T, Maeda M, Kodama C, Tanaka A, Tahara M. An atypical variant of Fabry's disease in men with left ventricular hypertrophy. N Engl J Med. 1995;333(5):288–293. doi: 10.1056/NEJM199508033330504.
    1. Rombach SM, Dekker N, Bouwman MG, Linthorst GE, Zwinderman AH, Wijburg FA. Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease. Biochim Biophys Acta. 2010;1802(9):741–748. doi: 10.1016/j.bbadis.2010.05.003.
    1. Schiffmann R, Kopp JB, Austin HA III, Sabnis S, Moore DF, Weibel T. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA. 2001;285(21):2743–2749. doi: 10.1001/jama.285.21.2743.
    1. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S. Safety and efficacy of recombinant human alpha-galactosidase A–replacement therapy in Fabry's disease. N Engl J Med. 2001;345(1):9–16. doi: 10.1056/NEJM200107053450102.
    1. Banikazemi M, Bultas J, Waldek S, Wilcox WR, Whitley CB, McDonald M. Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med. 2007;146(2):77–86. doi: 10.7326/0003-4819-146-2-200701160-00148.
    1. Hollak CE, Aerts JM, Ayme S, Manuel J. Limitations of drug registries to evaluate orphan medicinal products for the treatment of lysosomal storage disorders. Orphanet J Rare Dis. 2011;6:16. doi: 10.1186/1750-1172-6-16.
    1. Schiffmann R, Ries M, Timmons M, Flaherty JT, Brady RO. Long-term therapy with agalsidase alfa for Fabry disease: safety and effects on renal function in a home infusion setting. Nephrol Dial Transplant. 2006;21(2):345–354. doi: 10.1093/ndt/gfi152.
    1. Germain DP, Waldek S, Banikazemi M, Bushinsky DA, Charrow J, Desnick RJ. Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J Am Soc Nephrol. 2007;18(5):1547–1557. doi: 10.1681/ASN.2006080816.
    1. Weidemann F, Niemann M, Breunig F, Herrmann S, Beer M, Stork S. Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation. 2009;119(4):524–529. doi: 10.1161/CIRCULATIONAHA.108.794529.
    1. Wyatt K, Henley W, Anderson L, Anderson R, Nikolaou V, Stein K. The effectiveness and cost-effectiveness of enzyme and substrate replacement therapies: a longitudinal cohort study of people with lysosomal storage disorders. Health Technol Assess. 2012;16(39):1–543.
    1. Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci USA. 2008;105(8):2812–2817. doi: 10.1073/pnas.0712309105.
    1. Vedder AC, Linthorst GE, Houge G, Groener JE, Ormel EE, Bouma BJ. Treatment of Fabry disease: outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoS One. 2007;2(7):e598. doi: 10.1371/journal.pone.0000598.
    1. Sirrs S, Clarke JT, Bichet DG, Casey R, Lemoine K, Flowerdew G. Baseline characteristics of patients enrolled in the Canadian Fabry Disease Initiative. Mol Genet Metab. 2010;99(4):367–373. doi: 10.1016/j.ymgme.2009.11.001.
    1. Schiffmann R, Warnock DG, Banikazemi M, Bultas J, Linthorst GE, Packman S. Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant. 2009;24(7):2102–2111. doi: 10.1093/ndt/gfp031.
    1. Patel MR, Cecchi F, Cizmarik M, Kantola I, Linhart A, Nicholls K. Cardiovascular events in patients with fabry disease natural history data from the fabry registry. J Am Coll Cardiol. 2011;57(9):1093–1099. doi: 10.1016/j.jacc.2010.11.018.
    1. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666. doi: 10.1136/bmj.c3666.
    1. Linthorst GE, Germain DP, Hollak CE, Hughes D, Rolfs A, Wanner C. Expert opinion on temporary treatment recommendations for Fabry disease during the shortage of enzyme replacement therapy (ERT) Mol Genet Metab. 2011;102(1):99–102. doi: 10.1016/j.ymgme.2010.11.155.
    1. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. Modification of Diet in Renal Disease Study Group. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130(6):461–470. doi: 10.7326/0003-4819-130-6-199903160-00002.
    1. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–637. doi: 10.1681/ASN.2008030287.
    1. Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139(2):137–147. doi: 10.7326/0003-4819-139-2-200307150-00013.
    1. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57(6):450–458. doi: 10.1016/0002-9149(86)90771-X.
    1. Devereux RB, Koren MJ, de Simone G, Roman MJ, Laragh JH. Left ventricular mass as a measure of preclinical hypertensive disease. Am J Hypertens. 1992;5(6 Pt 2):175S–181S.
    1. Kampmann C, Wiethoff CM, Wenzel A, Stolz G, Betancor M, Wippermann CF. Normal values of M-mode echocardiographic measurements of more than 2000 healthy infants and children in central Europe. Heart. 2000;83:667–672. doi: 10.1136/heart.83.6.667.
    1. Gold H, Mirzaian M, Dekker N, Joao FM, Lugtenburg J, Codee JD. Quantification of Globotriaosylsphingosine in Plasma and Urine of Fabry Patients by Stable Isotope Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. Clin Chem. 2012;59(3):1–10.
    1. Wetzels JF, Kiemeney LA, Swinkels DW, Willems HL, den HM. Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. Kidney Int. 2007;72(5):632–637. doi: 10.1038/sj.ki.5002374.
    1. Hughes DA, Barba Romero MA, Hollak CE, Giugliani R, Deegan PB. Response of women with Fabry disease to enzyme replacement therapy: Comparison with men, using data from FOS-the Fabry Outcome Survey. Mol Genet Metab. 2011;103(3):207–14. doi: 10.1016/j.ymgme.2011.03.022.
    1. Warnock DG, Ortiz A, Mauer M, Linthorst GE, Oliveira JP, Serra AL. Renal outcomes of agalsidase beta treatment for Fabry disease: role of proteinuria and timing of treatment initiation. Nephrol Dial Transplant. 2012;27(3):1042–1049. doi: 10.1093/ndt/gfr420.
    1. Cioffi G, Faggiano P, Lucci D, Di LA, Mureddu GF, Tarantini L. Inappropriately high left ventricular mass in patients with type 2 diabetes mellitus and no overt cardiac disease. The DYDA study. J Hypertens. 2011;29(10):1994–2003. doi: 10.1097/HJH.0b013e32834acc6d.
    1. Schroeder AP, Kristensen BO, Nielsen CB, Pedersen EB. Heart function in patients with chronic glomerulonephritis and mildly to moderately impaired renal function. An echocardiographic study. Blood Press. 1997;6(5):286–293. doi: 10.3109/08037059709062084.
    1. Weidemann F, Breunig F, Beer M, Sandstede J, Stork S, Voelker W. The variation of morphological and functional cardiac manifestation in Fabry disease: potential implications for the time course of the disease. Eur Heart J. 2005;26(12):1221–1227. doi: 10.1093/eurheartj/ehi143.
    1. Beer M, Weidemann F, Breunig F, Knoll A, Koeppe S, Machann W. Impact of enzyme replacement therapy on cardiac morphology and function and late enhancement in Fabry's cardiomyopathy. Am J Cardiol. 2006;97(10):1515–1518. doi: 10.1016/j.amjcard.2005.11.087.
    1. Rombach SM, Aerts JM, Poorthuis BJ, Groener JE, Donker-Koopman W, Hendriks E. Long-term effect of antibodies against infused alpha-galactosidase A in Fabry disease on plasma and urinary (lyso)Gb3 reduction and treatment outcome. PLoS One. 2012;7(10):e47805. doi: 10.1371/journal.pone.0047805.
    1. Mehta A, Beck M, Elliott P, Giugliani R, Linhart A, Sunder-Plassmann G. Enzyme replacement therapy with agalsidase alfa in patients with Fabry's disease: an analysis of registry data. Lancet. 2009;374(9706):1986–1996. doi: 10.1016/S0140-6736(09)61493-8.

Source: PubMed

Подписаться