Effects of Acute Cocoa Supplementation on Postprandial Apolipoproteins, Lipoprotein Subclasses, and Inflammatory Biomarkers in Adults with Type 2 Diabetes after a High-Fat Meal

Dustin W Davis, Rickelle Tallent, James W Navalta, Anthony Salazar, Timothy J Lyons, Arpita Basu, Dustin W Davis, Rickelle Tallent, James W Navalta, Anthony Salazar, Timothy J Lyons, Arpita Basu

Abstract

Dyslipidemia and inflammation exacerbate postprandial metabolic stress in people with diabetes. Acute dietary supplementation with polyphenols shows promise in improving postprandial metabolic stress in type 2 diabetes (T2D). Cocoa is a rich source of dietary polyphenols with demonstrated cardioprotective effects in adults without diabetes. To date, the acute effects of cocoa on postprandial lipids and inflammation have received little attention in the presence of T2D. This report expands on our earlier observation that polyphenol-rich cocoa, given as a beverage with a fast-food-style, high-fat breakfast, increased postprandial high-density lipoprotein-cholesterol (HDL-C) in adults with T2D. We now test whether polyphenol-rich cocoa modulated postprandial apolipoproteins (Apo-A1, B), non-esterified fatty acids, nuclear magnetic resonance (NMR)-derived lipoprotein subclass profiles, and select biomarkers of inflammation following the same dietary challenge. We found that cocoa decreased NMR-derived concentrations of total very low-density lipoprotein and chylomicron particles and increased the concentration of total HDL particles over the 6-hour postprandial phase. Serum interleukin-18 was decreased by cocoa vs. placebo. Thus, polyphenol-rich cocoa may alleviate postprandial dyslipidemia and inflammation following a high-fat dietary challenge in adults with T2D. The study was registered at clinicaltrials.gov as NCT01886989.

Keywords: catechins; chronic disease; dietary polyphenols; dyslipidemia; flavonoids; functional food; inflammation; nutraceuticals; phytochemicals.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Effects of acute polyphenol-rich cocoa supplementation on postprandial lipemia after a fast-food-style, high-fat Western breakfast in adults with obesity and type 2 diabetes. VLDL: very low-density lipoprotein; HDL-C: high density lipoprotein cholesterol; HDL-P: high-density lipoprotein particles.

References

    1. Centers for Diseases Control and Prevention . National Diabetes Statistics Report 2020. Estimates of Diabetes and Its Burden in the United States. CDC; Atlanta, GA, USA: 2020. p. 30.
    1. Statistics About Diabetes|ADA. [(accessed on 22 January 2020)]; Available online: .
    1. U.S. Census Bureau National Population Projections: United States by Age, Gender, Ethnicity and Race for Years 2014–2060. [(accessed on 27 February 2020)]; Available online: .
    1. Geloneze B., Lamounier R.N., Coelho O.R. Postprandial hyperglycemia: Treating its atherogenic potential. Arq. Bras. Cardiol. 2006;87:604–613.
    1. O’Keefe J.H., Bell D.S.H. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am. J. Cardiol. 2007;100:899–904. doi: 10.1016/j.amjcard.2007.03.107.
    1. Miller M., Stone N.J., Ballantyne C., Bittner V., Criqui M.H., Ginsberg H.N., Goldberg A.C., Howard W.J., Jacobson M.S., Kris-Etherton P.M., et al. Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation. 2011;123:2292–2333. doi: 10.1161/CIR.0b013e3182160726.
    1. Van Dieren S., Nöthlings U., van der Schouw Y.T., Spijkerman A.M.W., Rutten G.E.H.M., van der A D.L., Sluik D., Weikert C., Joost H.G., Boeing H., et al. Non-fasting lipids and risk of cardiovascular disease in patients with diabetes mellitus. Diabetologia. 2011;54:73–77. doi: 10.1007/s00125-010-1945-z.
    1. Talayero B.G., Sacks F.M. The role of triglycerides in atherosclerosis. Curr. Cardiol. Rep. 2011;13:544–552. doi: 10.1007/s11886-011-0220-3.
    1. Chapman M.J., Ginsberg H.N., Amarenco P., Andreotti F., Borén J., Catapano A.L., Descamps O.S., Fisher E., Kovanen P.T., Kuivenhoven J.A., et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management. Eur. Heart J. 2011;32:1345–1361. doi: 10.1093/eurheartj/ehr112.
    1. Teno S., Uto Y., Nagashima H., Endoh Y., Iwamoto Y., Omori Y., Takizawa T. Association of postprandial hypertriglyceridemia and carotid intima-media thickness in patients with type 2 diabetes. Diabetes Care. 2000;23:6. doi: 10.2337/diacare.23.9.1401.
    1. Hu Y., Liu W., Huang R., Zhang X. Postchallenge plasma glucose excursions, carotid intima-media thickness, and risk factors for atherosclerosis in Chinese population with type 2 diabetes. Atherosclerosis. 2010;210:302–306. doi: 10.1016/j.atherosclerosis.2009.11.015.
    1. Shige H., Ishikawa T., Suzukawa M., Ito T., Nakajima K., Higashi K., Ayaori M., Tabata S., Ohsuzu F., Nakamura H. Endothelium-dependent flow-mediated vasodilation in the postprandial state in type 2 diabetes mellitus. Am. J. Cardiol. 1999;84:1272–1274. doi: 10.1016/S0002-9149(99)00548-2.
    1. Nappo F., Esposito K., Cioffi M., Giugliano G., Molinari A.M., Paolisso G., Marfella R., Giugliano D. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: Role of fat and carbohydrate meals. J. Am. Coll. Cardiol. 2002;39:1145–1150. doi: 10.1016/S0735-1097(02)01741-2.
    1. Mortensen L., Hartvigsen M., Brader L., Astrup A., Schrezenmeir J., Holst J., Thomsen C., Hermansen K. Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: Comparison of whey, casein, gluten, and cod protein. Am. J. Clin. Nutr. 2009;90:41–48. doi: 10.3945/ajcn.2008.27281.
    1. Devaraj S., Wang-Polagruto J., Polagruto J., Keen C.L., Jialal I. High-fat, energy-dense, fast-food–style breakfast results in an increase in oxidative stress in metabolic syndrome. Metabolism. 2008;57:867–870. doi: 10.1016/j.metabol.2008.02.016.
    1. Esposito K., Nappo F., Giugliano F., Di Palo C., Ciotola M., Barbieri M., Paolisso G., Giugliano D. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am. J. Clin. Nutr. 2003;78:1135–1140. doi: 10.1093/ajcn/78.6.1135.
    1. Thomsen C., Storm H., Holst J.J., Hermansen K. Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes. Am. J. Clin. Nutr. 2003;77:605–611. doi: 10.1093/ajcn/77.3.605.
    1. Neri S., Calvagno S., Mauceri B., Misseri M., Tsami A., Vecchio C., Mastrosimone G., Di Pino A., Maiorca D., Judica A., et al. Effects of antioxidants on postprandial oxidative stress and endothelial dysfunction in subjects with impaired glucose tolerance and type 2 diabetes. Eur. J. Nutr. 2010;49:409–416. doi: 10.1007/s00394-010-0099-6.
    1. Anderson R.A., Evans L.M., Ellis G.R., Khan N., Morris K., Jackson S.K., Rees A., Lewis M.J., Frenneaux M.P. Prolonged deterioration of endothelial dysfunction in response to postprandial lipaemia is attenuated by vitamin C in Type 2 diabetes. Diabet. Med. 2006;23:258–264. doi: 10.1111/j.1464-5491.2005.01767.x.
    1. Burton-Freeman B. Postprandial metabolic events and fruit-derived phenolics: A review of the science. Br. J. Nutr. 2010;104(Suppl. 3):S1–S14. doi: 10.1017/S0007114510003909.
    1. Oracz J., Zyzelewicz D., Nebesny E. The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: A review. Crit. Rev. Food Sci. Nutr. 2015;55:1176–1192. doi: 10.1080/10408398.2012.686934.
    1. Blumberg J.B., Ding E.L., Dixon R., Pasinetti G.M., Villarreal F. The science of cocoa flavanols: Bioavailability, emerging evidence, and proposed mechanisms. Adv. Nutr. 2014;5:547–549. doi: 10.3945/an.114.006478.
    1. Arranz S., Valderas-Martinez P., Chiva-Blanch G., Casas R., Urpi-Sarda M., Lamuela-Raventos R.M., Estruch R. Cardioprotective effects of cocoa: Clinical evidence from randomized clinical intervention trials in humans. Mol. Nutr. Food Res. 2013;57:936–947. doi: 10.1002/mnfr.201200595.
    1. Shrime M.G., Bauer S.R., McDonald A.C., Chowdhury N.H., Coltart C.E.M., Ding E.L. Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. J. Nutr. 2011;141:1982–1988. doi: 10.3945/jn.111.145482.
    1. Westphal S., Luley C. Flavanol-rich cocoa ameliorates lipemia-induced endothelial dysfunction. Heart Vessels. 2011;26:511–515. doi: 10.1007/s00380-010-0085-1.
    1. Gutiérrez-Salmeán G., Ortiz-Vilchis P., Vacaseydel C.M., Rubio-Gayosso I., Meaney E., Villarreal F., Ramírez-Sánchez I., Ceballos G. Acute effects of an oral supplement of (−)-epicatechin on postprandial fat and carbohydrate metabolism in normal and overweight subjects. Food Funct. 2014;5:521–527. doi: 10.1039/c3fo60416k.
    1. Basu A., Betts N.M., Leyva M.J., Fu D., Aston C.E., Lyons T.J. Acute cocoa supplementation increases postprandial hdl cholesterol and insulin in obese adults with type 2 diabetes after consumption of a high-fat breakfast. J. Nutr. 2015;145:2325–2332. doi: 10.3945/jn.115.215772.
    1. Grundy S.M., Stone N.J., Bailey A.L., Beam C., Birtcher K.K., Blumenthal R.S., Braun L.T., de Ferranti S., Faiella-Tommasino J., Forman D.E., et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/ APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol. J. Am. Coll. Cardiol. 2019;73:e285–e350. doi: 10.1016/j.jacc.2018.11.003.
    1. Sachdeva A., Cannon C.P., Deedwania P.C., LaBresh K.A., Smith S.C., Dai D., Hernandez A., Fonarow G.C. Lipid levels in patients hospitalized with coronary artery disease: An analysis of 136,905 hospitalizations in Get with The Guidelines. Am. Heart J. 2009;157:111–117. doi: 10.1016/j.ahj.2008.08.010.
    1. Eren E., Yilmaz N., Aydin O. High density lipoprotein and it’s dysfunction. Open Biochem. J. 2012;6:78–93. doi: 10.2174/1874091X01206010078.
    1. Ramjee V., Sperling L.S., Jacobson T.A. Non–high-density lipoprotein cholesterol versus apolipoprotein b in cardiovascular risk stratification: Do the math. J. Am. Coll. Cardiol. 2011;58:457–463. doi: 10.1016/j.jacc.2011.05.009.
    1. Varvel S.A., Dayspring T.D., Edmonds Y., Thiselton D.L., Ghaedi L., Voros S., McConnell J.P., Sasinowski M., Dall T., Warnick G.R. Discordance between apolipoprotein B and low-density lipoprotein particle number is associated with insulin resistance in clinical practice. J. Clin. Lipidol. 2015;9:247–255. doi: 10.1016/j.jacl.2014.11.005.
    1. Tamang H.K., Timilsina U., Singh K.P., Shrestha S., Raman R.K., Panta P., Karna P., Khadka L., Dahal C. Apo b/apo a-i ratio is statistically a better predictor of cardiovascular disease (CVD) than conventional lipid profile: A study from Kathmandu Valley, Nepal. J. Clin. Diagn. Res. 2014;8:34–36. doi: 10.7860/JCDR/2014/7588.4000.
    1. Kaneva A.M., Potolitsyna N.N., Bojko E.R., Odland J.Ø. The apolipoprotein b/apolipoprotein a-i ratio as a potential marker of plasma atherogenicity. Dis. Mark. 2015;2015 doi: 10.1155/2015/591454.
    1. Krintus M., Bergmann K., Sypniewska G., Sawicki M. Comparison of apolipoprotein concentrations and values of APOB: APOAI with traditional lipid measures in women diagnosed with acute cornonary syndromes—A preliminary report. J. Int. Fed. Clin. Chem. 2010;21:8.
    1. Upadhyay R.K. Emerging risk biomarkers in cardiovascular diseases and disorders. Lipids. 2015;2015 doi: 10.1155/2015/971453.
    1. Xiong Z., Xu H., Huang X., Ärnlöv J., Qureshi A.R., Cederholm T., Sjögren P., Lindholm B., Risérus U., Carrero J.J. Nonesterified fatty acids and cardiovascular mortality in elderly men with CKD. Clin. J. Am. Soc. Nephrol. 2015;10:584–591. doi: 10.2215/CJN.08830914.
    1. Karpe F., Dickmann J.R., Frayn K.N. Fatty acids, obesity, and insulin resistance: Time for a reevaluation. Diabetes. 2011;60:2441–2449. doi: 10.2337/db11-0425.
    1. Otvos J.D., Jeyarajah E.J., Bennett D.W. Quantification of plasma lipoproteins by proton nuclear magnetic resonance spectroscopy. Clin. Chem. 1991;37:377–386. doi: 10.1093/clinchem/37.3.377.
    1. Lee K.W., Kim Y.J., Lee H.J., Lee C.Y. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J. Agric. Food Chem. 2003;51:7292–7295. doi: 10.1021/jf0344385.
    1. Amor A.J., Catalan M., Pérez A., Herreras Z., Pinyol M., Sala-Vila A., Cofán M., Gilabert R., Ros E., Ortega E. Nuclear magnetic resonance lipoprotein abnormalities in newly-diagnosed type 2 diabetes and their association with preclinical carotid atherosclerosis. Atherosclerosis. 2016;247:161–169. doi: 10.1016/j.atherosclerosis.2016.02.014.
    1. Mora S., Otvos J.D., Rifai N., Rosenson R.S., Buring J.E., Ridker P.M. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation. 2009;119:931–939. doi: 10.1161/CIRCULATIONAHA.108.816181.
    1. Würtz P., Havulinna A.S., Soininen P., Tynkkynen T., Prieto-Merino D., Tillin T., Ghorbani A., Artati A., Wang Q., Tiainen M., et al. Metabolite profiling and cardiovascular event risk. Circulation. 2015;131:774–785. doi: 10.1161/CIRCULATIONAHA.114.013116.
    1. Huang P.L. A comprehensive definition for metabolic syndrome. Dis. Models Mech. 2009;2:231–237. doi: 10.1242/dmm.001180.
    1. Koo S.I., Noh S.K. Green tea as inhibitor of the intestinal absorption of lipids: Potential mechanism for its lipid-lowering effect. J. Nutr. Biochem. 2007;18:179–183. doi: 10.1016/j.jnutbio.2006.12.005.
    1. Raederstorff D.G., Schlachter M.F., Elste V., Weber P. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J. Nutr. Biochem. 2003;14:326–332. doi: 10.1016/S0955-2863(03)00054-8.
    1. Aranaz P., Romo-Hualde A., Navarro-Herrera D., Zabala M., López-Yoldi M., González-Ferrero C., Gil A.G., Martínez J.A., Vizmanos J.L., Milagro F.I., et al. Low doses of cocoa extract supplementation ameliorate diet-induced obesity and insulin resistance in rats. Food Funct. 2019;10:4811–4822. doi: 10.1039/C9FO00918C.
    1. Jalil A.M.M., Ismail A., Chong P.P., Hamid M., Kamaruddin S.H.S. Effects of cocoa extract containing polyphenols and methylxanthines on biochemical parameters of obese-diabetic rats. J. Sci. Food Agric. 2009;89:130–137. doi: 10.1002/jsfa.3419.
    1. Gu Y., Hurst W.J., Stuart D.A., Lambert J.D. Inhibition of key digestive enzymes by cocoa extracts 1 and procyanidins. J. Agric. Food Chem. 2011;59:5305–5311. doi: 10.1021/jf200180n.
    1. Kontush A. HDL particle number and size as predictors of cardiovascular disease. Front. Pharmacol. 2015;6 doi: 10.3389/fphar.2015.00218.
    1. Otvos J.D., Collins D., Freedman D.S., Shalaurova I., Schaefer E.J., McNamara J.R., Bloomfield H.E., Robins S.J. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation. 2006;113:1556–1563. doi: 10.1161/CIRCULATIONAHA.105.565135.
    1. Kuller L.H., Grandits G., Cohen J.D., Neaton J.D., Ronald P. Lipoprotein particles, insulin, adiponectin, c-reactive protein and risk of coronary heart disease among men with metabolic syndrome. Atherosclerosis. 2007;195:122–128. doi: 10.1016/j.atherosclerosis.2006.09.001.
    1. El Harchaoui K., Arsenault B.J., Franssen R., Després J.-P., Hovingh G.K., Stroes E.S.G., Otvos J.D., Wareham N.J., Kastelein J.J.P., Khaw K.-T., et al. High-density lipoprotein particle size and concentration and coronary risk. Ann. Int. Med. 2009;150:84–93. doi: 10.7326/0003-4819-150-2-200901200-00006.
    1. Libby P., Ridker P.M., Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–1143. doi: 10.1161/hc0902.104353.
    1. Dimina L., Mariotti F. The postprandial appearance of features of cardiometabolic risk: Acute induction and prevention by nutriens and other dietary substances. Nutrients. 2019;11:1963. doi: 10.3390/nu11091963.
    1. Schell J., Betts N.M., Foster M., Hal Scofield R., Basu A. Cranberries improve postprandial glucose excursions in type 2 diabetes. Food Funct. 2017;8:3083–3090. doi: 10.1039/C7FO00900C.
    1. Schell J., Betts N.M., Lyons T.J., Basu A. Raspberries improve postprandial glucose and acute and chronic inflammation in adults with type 2 diabetes. ANM. 2019;74:165–174. doi: 10.1159/000497226.
    1. Oh E.S., Petersen K.S., Kris-Etherton P.M., Rogers C.J. Spices in a high-saturated-fat, high-carbohydrate meal reduce postprandial proinflammatory cytokine secretion in men with overweight or obesity: A 3-period, crossover, randomized controlled trial. J. Nutr. 2020;150:1600–1609. doi: 10.1093/jn/nxaa063.
    1. Ellinger S., Stehle P. Impact of cocoa consumption on inflammation processes—A critical review of randomized controlled trials. Nutrients. 2016;8:321. doi: 10.3390/nu8060321.
    1. Stote K.S., Clevidence B.A., Novotny J.A., Henderson T., Radecki S.V., Baer D.J. Effect of cocoa and green tea on biomarkers of glucose regulation, oxidative stress, inflammation and hemostasis in obese adults at risk for insulin resistance. Eur. J. Clin. Nutr. 2012;66:1153–1159. doi: 10.1038/ejcn.2012.101.

Source: PubMed

Подписаться