The upper respiratory tract microbiome and its potential role in bovine respiratory disease and otitis media

Svetlana F Lima, Andre Gustavo V Teixeira, Catherine H Higgins, Fabio S Lima, Rodrigo C Bicalho, Svetlana F Lima, Andre Gustavo V Teixeira, Catherine H Higgins, Fabio S Lima, Rodrigo C Bicalho

Abstract

The upper respiratory tract (URT) hosts a complex microbial community of commensal microorganisms and potential pathogens. Analyzing the composition and nature of the healthy URT microbiota and how it changes over time will contribute to a better understanding of the pathogenesis of pneumonia and otitis. A longitudinal study was conducted including 174 Holstein calves that were divided in four groups: healthy calves, calves diagnosed with pneumonia, otitis or both diseases. Deep pharyngeal swabs were collected on days 3, 14, 28, and 35 of life, and next-generation sequencing of the 16S rRNA gene as well as quantitative PCR was performed. The URT of Holstein dairy calves aged 3 to 35 days revealed to host a highly diverse bacterial community. The relative abundances of the bacterial genera Mannheimia, Moraxella, and Mycoplasma were significantly higher in diseased versus healthy animals, and the total bacterial load of newborn calves at day 3 was higher for animals that developed pneumonia than for healthy animals. Our results corroborate the existing knowledge that species of Mannheimia and Mycoplasma are important pathogens in pneumonia and otitis. Furthermore, they suggest that species of Moraxella can potentially cause the same disorders (pneumonia and otitis), and that high neonatal bacterial load is a key contributor to the development of pneumonia.

Figures

Figure 1
Figure 1
Bar graphs illustrating the number of reads (A), Chao 1 richness index (B) and Shannon diversity index (C) for different postnatal ages. Error bars represent standard errors. Dunnett’s multiple comparison procedure was used to compare each disease status (otitis, pneumonia, and pneumonia-otitis combined) against the status “healthy” within each sample collection date.
Figure 2. Mean log10 number of the…
Figure 2. Mean log10 number of the 16S rRNA gene identified in upper respiratory tract samples of calves at various postnatal time points (3, 14, 28 and 35 days) and for different health statuses (healthy, pneumonia, and otitis).
Dunnett’s multiple comparison procedure was used to compare each disease status (otitis, pneumonia, and pneumonia-otitis combined) against the status “healthy” within each sample collection date. An asterisk between health statuses represents a significant difference (P < 0.05) for the age sampled.
Figure 3. Mean relative abundance of the…
Figure 3. Mean relative abundance of the most prevalent bacterial phyla identified in upper respiratory tract samples of calves at various postnatal time points (3, 14, 28 and 35 days) and for different health statuses (healthy, pneumonia, otitis, and pneumonia-otitis combined).
Figure 4
Figure 4
Mean relative abundance of the genus Mannheimia (A) and Mycoplasma (B) according to postnatal age at sample collection (3, 14, 28, 35 days) and health status (healthy, otitis, pneumonia, and pneumonia-otitis combined). Error bars are positioned around the means and represent the standard error of the mean. Dunnett’s multiple comparison procedure was used to compare each disease status (otitis, pneumonia, and pneumonia-otitis combined) against the status “healthy” within each sample collection time point. Asterisks on a series of data points indicate a significant difference (P 

Figure 5

Mean relative abundance of the…

Figure 5

Mean relative abundance of the genus Moraxella (A) and Pasteurella (B) according to…

Figure 5
Mean relative abundance of the genus Moraxella (A) and Pasteurella (B) according to postnatal age at sample collection (3, 14, 28, 35 days) and health status (healthy, otitis, pneumonia, and pneumonia-otitis combined). Error bars are positioned around the means and represent the standard error of the mean. Dunnett’s multiple comparison procedure was used to compare each disease status (otitis, pneumonia, and pneumonia-otitis combined) against the status “healthy” within each sample collection time point. Asterisks on a series of data points indicate a significant difference (P 
Similar articles
Cited by
References
    1. Angen O. et al. Respiratory disease in calves: microbiological investigations on trans-tracheally aspirated bronchoalveolar fluid and acute phase protein response. Vet Microbiol 137, 165–171, doi: 10.1016/j.vetmic.2008.12.024 (2009). - DOI - PMC - PubMed
    1. Confer A. W. Update on bacterial pathogenesis in BRD. Anim Health Res Rev 10, 145–148, doi: 10.1017/S1466252309990193 (2009). - DOI - PubMed
    1. Pardon B. et al. Prevalence of respiratory pathogens in diseased, non-vaccinated, routinely medicated veal calves. Vet Rec 169, 278, doi: 10.1136/vr.d4406 (2011). - DOI - PubMed
    1. Chase C. C., Hurley D. J. & Reber A. J. Neonatal immune development in the calf and its impact on vaccine response. Vet Clin North Am Food Anim Pract 24, 87–104, doi: 10.1016/j.cvfa.2007.11.001 (2008). - DOI - PMC - PubMed
    1. Gorden P. J. & Plummer P. Control, management, and prevention of bovine respiratory disease in dairy calves and cows. Vet Clin North Am Food Anim Pract 26, 243–259, doi: 10.1016/j.cvfa.2010.03.004 (2010). - DOI - PMC - PubMed
Show all 72 references
MeSH terms
Related information
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 5
Figure 5
Mean relative abundance of the genus Moraxella (A) and Pasteurella (B) according to postnatal age at sample collection (3, 14, 28, 35 days) and health status (healthy, otitis, pneumonia, and pneumonia-otitis combined). Error bars are positioned around the means and represent the standard error of the mean. Dunnett’s multiple comparison procedure was used to compare each disease status (otitis, pneumonia, and pneumonia-otitis combined) against the status “healthy” within each sample collection time point. Asterisks on a series of data points indicate a significant difference (P 

References

    1. Angen O. et al. Respiratory disease in calves: microbiological investigations on trans-tracheally aspirated bronchoalveolar fluid and acute phase protein response. Vet Microbiol 137, 165–171, doi: 10.1016/j.vetmic.2008.12.024 (2009).
    1. Confer A. W. Update on bacterial pathogenesis in BRD. Anim Health Res Rev 10, 145–148, doi: 10.1017/S1466252309990193 (2009).
    1. Pardon B. et al. Prevalence of respiratory pathogens in diseased, non-vaccinated, routinely medicated veal calves. Vet Rec 169, 278, doi: 10.1136/vr.d4406 (2011).
    1. Chase C. C., Hurley D. J. & Reber A. J. Neonatal immune development in the calf and its impact on vaccine response. Vet Clin North Am Food Anim Pract 24, 87–104, doi: 10.1016/j.cvfa.2007.11.001 (2008).
    1. Gorden P. J. & Plummer P. Control, management, and prevention of bovine respiratory disease in dairy calves and cows. Vet Clin North Am Food Anim Pract 26, 243–259, doi: 10.1016/j.cvfa.2010.03.004 (2010).
    1. Lago A., McGuirk S. M., Bennett T. B., Cook N. B. & Nordlund K. V. Calf respiratory disease and pen microenvironments in naturally ventilated calf barns in winter. J Dairy Sci 89, 4014–4025, doi: 10.3168/jds.S0022-0302(06)72445-6 (2006).
    1. Webster A. J. Environmental stress and the physiology, performance and health of ruminants. J Anim Sci 57, 1584–1593 (1983).
    1. Virtala A. M., Mechor G. D., Gröhn Y. T. & Erb H. N. The effect of calfhood diseases on growth of female dairy calves during the first 3 months of life in New York State. J Dairy Sci 79, 1040–1049, doi: 10.3168/jds.S0022-0302(96)76457-3 (1996).
    1. Waltner-Toews D., Martin S. W. & Meek A. H. The effect of early calfhood health status on survivorship and age at first calving. Can J Vet Res 50, 314–317 (1986).
    1. Warnick L. D., Erb H. N. & White M. E. Lack of association between calf morbidity and subsequent first lactation milk production in 25 New York Holstein herds. J Dairy Sci 78, 2819–2830, doi: 10.3168/jds.S0022-0302(95)76912-0 (1995).
    1. USDA. United States Department of Agriculture. Part I: Reference of dairy health and management practices in the United States. Fort Collins (CO): USDA: APHIS: VS, CEAH, National Animal Health Monitoring System. #N480.1007 (2007).
    1. Fulton R. W. et al. Evaluation of health status of calves and the impact on feedlot performance: assessment of a retained ownership program for postweaning calves. Can J Vet Res 66, 173–180 (2002).
    1. Griffin D., Chengappa M. M., Kuszak J. & McVey D. S. Bacterial pathogens of the bovine respiratory disease complex. Vet Clin North Am Food Anim Pract 26, 381–394, doi: 10.1016/j.cvfa.2010.04.004 (2010).
    1. Chase C. C., Hurley D. J. & Reber A. J. Neonatal immune development in the calf and its impact on vaccine response. Vet Clin North Am Food Anim Pract 24, 87–104, doi: 10.1016/j.cvfa.2007.11.001 (2008).
    1. Babiuk L. A., Lawman M. J. & Ohmann H. B. Viral-bacterial synergistic interaction in respiratory disease. Adv Virus Res 35, 219–249 (1988).
    1. Czuprynski C. J. et al. Complexities of the pathogenesis of Mannheimia haemolytica and Haemophilus somnus infections: challenges and potential opportunities for prevention? Anim Health Res Rev 5, 277–282 (2004).
    1. Bosch A. A., Biesbroek G., Trzcinski K., Sanders E. A. & Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog 9, e1003057, doi: 10.1371/journal.ppat.1003057 (2013).
    1. Thomson R. G., Chander S., Savan M. & Fox M. L. Investigation of factors of probable significance in the pathogenesis of pneumonic pasteurellosis in cattle. Can J Comp Med 39, 194–207 (1975).
    1. Allen J. W., Viel L., Bateman K. G., Rosendal S., Shewen P. E. & Physick-Sheard P. The microbial flora of the respiratory tract in feedlot calves: associations between nasopharyngeal and bronchoalveolar lavage cultures. Can J Vet Res 55, 341–346 (1991).
    1. Haines D. M., Martin K. M., Clark E. G., Jim G. K. & Janzen E. D. The immunohistochemical detection of Mycoplasma bovis and bovine viral diarrhea virus in tissues of feedlot cattle with chronic, unresponsive respiratory disease and/or arthritis. Can Vet J 42, 857–860 (2001).
    1. Shahriar F. M., Clark E. G., Janzen E., West K. & Wobeser G. Coinfection with bovine viral diarrhea virus and Mycoplasma bovis in feedlot cattle with chronic pneumonia. Can Vet J 43, 863–868 (2002).
    1. Jensen R. et al. Cause and pathogenesis of middle ear infection in young feedlot cattle. J Am Vet Med Assoc 182, 967–972 (1983).
    1. Yeruham I., Elad D. & Liberboim M. Clinical and microbiological study of an otitis media outbreak in calves in a dairy herd. Zentralbl Veterinarmed B 46, 145–150 (1999).
    1. Van Biervliet J. et al. Clinical signs, computed tomographic imaging, and management of chronic otitis media/interna in dairy calves. J Vet Intern Med 18, 907–910 (2004).
    1. Pardon B. et al. Impact of respiratory disease, diarrhea, otitis and arthritis on mortality and carcass traits in white veal calves. BMC Vet Res 9, 79, doi: 10.1186/1746-6148-9-79 (2013).
    1. García-Rodríguez J. A. & Fresnadillo Martínez M. J. Dynamics of nasopharyngeal colonization by potential respiratory pathogens. J Antimicrob Chemother 50 Suppl S2, 59–73 (2002).
    1. Murphy T. F., Bakaletz L. O. & Smeesters P. R. Microbial interactions in the respiratory tract. Pediatr Infect Dis J 28, S121–126, doi: 10.1097/INF.0b013e3181b6d7ec (2009).
    1. McEwen S. A. & Hulland T. J. Haemophilus somnus-induced otitis and meningitis in a Heifer. Can Vet J 26, 7–8 (1985).
    1. Francoz D., Fecteau G., Desrochers A. & Fortin M. Otitis media in dairy calves: a retrospective study of 15 cases (1987 to 2002). Can Vet J 45, 661–666 (2004).
    1. Walz P. H. et al. Otitis media in preweaned Holstein dairy calves in Michigan due to Mycoplasma bovis. J Vet Diagn Invest 9, 250–254 (1997).
    1. Maeda T. et al. Mycoplasma bovis-associated suppurative otitis media and pneumonia in bull calves. J Comp Pathol 129, 100–110 (2003).
    1. Baba A. I., Rotaru O. & Rapuntean G. Middle ear infection in suckling and weaned calves. Morphol Embryol (Bucur) 34, 271–275 (1988).
    1. Arcangioli M. A., Aslan H., Tardy F., Poumarat F. & Le Grand D. The use of pulsed-field gel electrophoresis to investigate the epidemiology of Mycoplasma bovis in French calf feedlots. Vet J 192, 96–100, doi: 10.1016/j.tvjl.2011.05.004 (2012).
    1. D’Argenio V. & Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta 451, 97–102, doi: 10.1016/j.cca.2015.01.003 (2015).
    1. Khafipour E., Li S., Plaizier J. C. & Krause D. O. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl Environ Microbiol 75, 7115–7124, doi: 10.1128/AEM.00739-09 (2009).
    1. Oikonomou G., Machado V. S., Santisteban C., Schukken Y. H. & Bicalho R. C. Microbial diversity of bovine mastitic milk as described by pyrosequencing of metagenomic 16s rDNA. PLoS One 7, e47671, doi: 10.1371/journal.pone.0047671 (2012).
    1. Holman D. B., McAllister T. A., Topp E., Wright A. D. & Alexander T. W. The nasopharyngeal microbiota of feedlot cattle that develop bovine respiratory disease. Vet Microbiol 180, 90–95, doi: 10.1016/j.vetmic.2015.07.031 (2015).
    1. Amann R. I., Ludwig W. & Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143–169 (1995).
    1. Schloss P. D. & Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71, 1501–1506, doi: 10.1128/AEM.71.3.1501-1506.2005 (2005).
    1. Kolbert C. P. & Persing D. H. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol 2, 299–305, doi: 10.1016/S1369-5274(99)80052-6 (1999).
    1. Chao A. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of statistics. 1, 265–270 (1984).
    1. Laurenzi G. A., Potter R. T. & Kass E. H. Bacteriologic flora of the lower respiratory tract. N Engl J Med 265, 1273–1278, doi: 10.1056/NEJM196112282652601 (1961).
    1. USDA. United States Department of Agriculture. Part I: Reference of dairy health and management in the United States. Fort Collins (CO): USDA: APHIS: VS, CEAH, National Animal Health Monitoring System. #N377.1202 (2002).
    1. Anderson N. G. Experiences with free-access acidified-milk feeding in Ontario. In Proceedings of the 41st Annual Meeting of the American Association of Bovine Practitioners, Charlotte (NC). Stillwater (OK): Frontier Printers Inc, 12–24 (2008).
    1. Svensson C., Lundborg K., Emanuelson U. & Olsson S. O. Morbidity in Swedish dairy calves from birth to 90 days of age and individual calf-level risk factors for infectious diseases. Prev Vet Med 58, 179–197 (2003).
    1. Signoret J. P. in Welfare and Husbandry of Calves. Current Topics in Veterinary Medicine and animal Science. Vol. 19, 226–234 (Springer Science & Business Media, 1982).
    1. Maatje K., Verhoeff J., Kremer W. D., Cruijsen A. L. & Van Den Ingh T. S. Automated feeding of milk replacer and health control of group-housed veal calves. Vet Rec 133, 266–270 (1993).
    1. Hepola H. Milk feeding systems for dairy calves in groups: effects on feed intake, growth and health. Appl Anim Behav Sci, 80, Issue 3, 233–243 (2003).
    1. Oikonomou G. et al. Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS One 8, e63157, doi: 10.1371/journal.pone.0063157 (2013).
    1. Angelos J. A., Spinks P. Q., Ball L. M. & George L. W. Moraxella bovoculi sp. nov., isolated from calves with infectious bovine keratoconjunctivitis. Int J Syst Evol Microbiol 57, 789–795, doi: 10.1099/ijs.0.64333-0 (2007).
    1. Galvão K. N. & Angelos J. A. Ulcerative blepharitis and conjunctivitis in adult dairy cows and association with Moraxella bovoculi. Can Vet J 51, 400–402 (2010).
    1. Divers T. J. & Peek S. F. Diseases of dairy cattle. 2nd edn. Ch. 13, 576–579 (Saunders Elsevier, 2008).
    1. Catry B. et al. Recovery of Moraxella ovis from the bovine respiratory tract and differentiation of Moraxella species by tDNA-intergenic spacer PCR. Vet Microbiol 120, 375–380, doi: 10.1016/j.vetmic.2006.10.037 (2007).
    1. Corbeil L. B., Woodward W., Ward A. C., Mickelsen W. D. & Paisley L. Bacterial interactions in bovine respiratory and reproductive infections. J Clin Microbiol 21, 803–807 (1985).
    1. Rice J. A., Carrasco-Medina L., Hodgins D. C. & Shewen P. E. Mannheimia haemolytica and bovine respiratory disease. Anim Health Res Rev 8, 117–128, doi: 10.1017/S1466252307001375 (2007).
    1. Maunsell F. P. & Donovan G. A. Mycoplasma bovis Infections in young calves. Vet Clin North Am Food Anim Pract 25, 139–177, vii, doi: 10.1016/j.cvfa.2008.10.011 (2009).
    1. Fulton R. W. et al. Lung pathology and infectious agents in fatal feedlot pneumonias and relationship with mortality, disease onset, and treatments. J Vet Diagn Invest 21, 464–477 (2009).
    1. Klima C. L. et al. Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements. J Clin Microbiol 52, 438–448, doi: 10.1128/JCM.02485-13 (2014).
    1. Snowder G. D., Van Vleck L. D., Cundiff L. V. & Bennett G. L. Bovine respiratory disease in feedlot cattle: environmental, genetic, and economic factors. J Anim Sci 84, 1999–2008, doi: 10.2527/jas.2006-046 (2006).
    1. Maunsell F. et al. Oral inoculation of young dairy calves with Mycoplasma bovis results in colonization of tonsils, development of otitis media and local immunity. PLoS One 7, e44523, doi: 10.1371/journal.pone.0044523 (2012).
    1. Faden H., Duffy L., Williams A., Krystofik D. A. & Wolf J. Epidemiology of nasopharyngeal colonization with nontypeable Haemophilus influenzae in the first 2 years of life. J Infect Dis 172, 132–135 (1995).
    1. Washington H.G. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water research 18(6), 653–694 (1984).
    1. Charlson E. S. et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184, 957–963, doi: 10.1164/rccm.201104-0655OC (2011).
    1. Huang Y. J. et al. A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations. OMICS 14, 9–59, doi: 10.1089/omi.2009.0100 (2010).
    1. Boutin S. et al. Comparison of microbiomes from different niches of upper and lower airways in children and adolescents with cystic fibrosis. PLoS One 10, e0116029, doi: 10.1371/journal.pone.0116029 (2015).
    1. ACUP 518 Dairy Cattle Husbandry. Available at: . (Accessed: 29th April 2016)
    1. Nonnenmacher C., Dalpke A., Mutters R. & Heeg K. Quantitative detection of periodontopathogens by real-time PCR. J Microbiol Methods 59, 117–125, doi: 10.1016/j.mimet.2004.06.006 (2004).
    1. Caporaso J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6, 1621–1624, doi: 10.1038/ismej.2012.8 (2012).
    1. Gilbert J. A. et al. Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Stand Genomic Sci 3, 243–248, doi: 10.4056/sigs.1433550 (2010).
    1. Bokulich N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10, 57–59, doi: 10.1038/nmeth.2276 (2013).
    1. Edgar R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461, doi: 10.1093/bioinformatics/btq461 (2010).
    1. McDonald D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6, 610–618, doi: 10.1038/ismej.2011.139 (2012).

Source: PubMed

Подписаться