Antimicrobial, Antioxidant, and Immunomodulatory Properties of Essential Oils: A Systematic Review

Magdalena Valdivieso-Ugarte, Carolina Gomez-Llorente, Julio Plaza-Díaz, Ángel Gil, Magdalena Valdivieso-Ugarte, Carolina Gomez-Llorente, Julio Plaza-Díaz, Ángel Gil

Abstract

Essential oils (EOs) are a mixture of natural, volatile, and aromatic compounds obtained from plants. In recent years, several studies have shown that some of their benefits can be attributed to their antimicrobial, antioxidant, anti-inflammatory, and also immunomodulatory properties. Therefore, EOs have been proposed as a natural alternative to antibiotics or for use in combination with antibiotics against multidrug-resistant bacteria in animal feed and food preservation. Most of the results come from in vitro and in vivo studies; however, very little is known about their use in clinical studies. A systematic and comprehensive literature search was conducted in PubMed, Embase®, and Scopus from December 2014 to April 2019 using different combinations of the following keywords: essential oils, volatile oils, antimicrobial, antioxidant, immunomodulation, and microbiota. Some EOs have demonstrated their efficacy against several foodborne pathogens in vitro and model food systems; namely, the inhibition of S. aureus, V. cholerae, and C. albicans has been observed. EOs have shown remarkable antioxidant activities when used at a dose range of 0.01 to 10 mg/mL in cell models, which can be attributed to their richness in phenolic compounds. Moreover, selected EOs exhibit immunomodulatory activities that have been mainly attributed to their ability to modify the secretion of cytokines.

Keywords: antimicrobial; antioxidant; biofilm; essential oils; food preservation; immunomodulatory; volatile oils.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
PRISMA flow chart for studies related with antibacterial, antioxidant, and immunomodulatory properties of essential oils.

References

    1. Singh R.L., Mondal S. Food Safety and Human Health. Elsevier; Amsterdam, The Netherlands: 2019. Current Issues in Food Safety With Reference to Human Health; pp. 1–14.
    1. Fung F., Wang H.S., Menon S. Food safety in the 21st century. Biomed. J. 2018;41:88–95. doi: 10.1016/j.bj.2018.03.003.
    1. Sezgin A.C., Ayyıldız S. Science within Food: Up-to-Date Advances on Research and Educational Ideas. Formatex Research Center; Badajoz, Spain: 2017. Food additives: Colorants.
    1. Bouarab Chibane L., Degraeve P., Ferhout H., Bouajila J., Oulahal N. Plant antimicrobial polyphenols as potential natural food preservatives. J. Sci. Food Agric. 2019;99:1457–1474. doi: 10.1002/jsfa.9357.
    1. van den Bogaard A.E., Stobberingh E.E. Epidemiology of resistance to antibiotics: Links between animals and humans. Int. J. Antimicrob. Agents. 2000;14:327–335. doi: 10.1016/S0924-8579(00)00145-X.
    1. Rico-Campa A., Martinez-Gonzalez M.A., Alvarez-Alvarez I., Mendonca R.D., de la Fuente-Arrillaga C., Gomez-Donoso C., Bes-Rastrollo M. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ. 2019;365:l1949. doi: 10.1136/bmj.l1949.
    1. Calo J.R., Crandall P.G., O’Bryan C.A., Ricke S.C. Essential oils as antimicrobials in food systems—A review. Food Control. 2015;54:111–119. doi: 10.1016/j.foodcont.2014.12.040.
    1. Chouhan S., Sharma K., Guleria S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines. 2017;4:58. doi: 10.3390/medicines4030058.
    1. Kon K.V., Rai M.K. Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Rev. Anti-Infect. Ther. 2012;10:775–790. doi: 10.1586/eri.12.57.
    1. Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008;46:446–475. doi: 10.1016/j.fct.2007.09.106.
    1. Zhang Q.W., Lin L.G., Ye W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018;13:20. doi: 10.1186/s13020-018-0177-x.
    1. Stratakos A.C., Koidis A. Essential Oils in Food Preservation, Flavor and Safety. Elsevier; Amsterdam, The Netherlands: 2016. Methods for extracting essential oils; pp. 31–38.
    1. Dhifi W., Bellili S., Jazi S., Bahloul N., Mnif W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines. 2016;3:25. doi: 10.3390/medicines3040025.
    1. Sharma M., Koul A., Sharma D., Kaul S., Swamy M.K., Dhar M.K. Natural Bio-Active Compounds. Springer; Berlin, Germany: 2019. Metabolic Engineering Strategies for Enhancing the Production of Bio-active Compounds from Medicinal Plants; pp. 287–316.
    1. Pandey A.K., Kumar P., Singh P., Tripathi N.N., Bajpai V.K. Essential Oils: Sources of Antimicrobials and Food Preservatives. Front. Microbiol. 2016;7:2161. doi: 10.3389/fmicb.2016.02161.
    1. Cava-Roda R.M., Taboada-Rodríguez A., Valverde-Franco M.T., Marín-Iniesta F. Antimicrobial activity of vanillin and mixtures with cinnamon and clove essential oils in controlling Listeria monocytogenes and Escherichia coli O157: H7 in milk. Food Bioprocess. Technol. 2012;5:2120–2131. doi: 10.1007/s11947-010-0484-4.
    1. Alfonzo A., Martorana A., Guarrasi V., Barbera M., Gaglio R., Santulli A., Settanni L., Galati A., Moschetti G., Francesca N. Effect of the lemon essential oils on the safety and sensory quality of salted sardines (Sardina pilchardus Walbaum 1792) Food Control. 2017;73:1265–1274. doi: 10.1016/j.foodcont.2016.10.046.
    1. Ojagh S.M., Rezaei M., Razavi S.H., Hosseini S.M.H. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 2010;120:193–198. doi: 10.1016/j.foodchem.2009.10.006.
    1. Huang Z., Liu X., Jia S., Luo Y. Antimicrobial effects of cinnamon bark oil on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets during chilled storage. Food Control. 2017;82:316–324. doi: 10.1016/j.foodcont.2017.07.017.
    1. Miguel M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules. 2010;15:9252–9287. doi: 10.3390/molecules15129252.
    1. Anastasiou C., Buchbauer G. Essential Oils as Immunomodulators: Some Examples. Open Chem. 2017;15:352–370. doi: 10.1515/chem-2017-0037.
    1. Chen L.L., Zhang H.J., Chao J., Liu J.F. Essential oil of Artemisia argyi suppresses inflammatory responses by inhibiting JAK/STATs activation. J. Ethnopharmacol. 2017;204:107–117. doi: 10.1016/j.jep.2017.04.017.
    1. Yang C., Zhang L., Cao G., Feng J., Yue M., Xu Y., Dai B., Han Q., Guo X. Effects of dietary supplementation with essential oils and organic acids on the growth performance, immune system, fecal volatile fatty acids, and microflora community in weaned piglets. J. Anim. Sci. 2019;97:133–143. doi: 10.1093/jas/sky426.
    1. Andrade L.N., De Sousa D.P. A review on anti-inflammatory activity of monoterpenes. Molecules. 2013;18:1227–1254. doi: 10.3390/molecules18011227.
    1. Aghraz A., Benameur Q., Gervasi T., Ait Dra L., Ben-Mahdi M., Larhsini M., Markouk M., Cicero N. Antibacterial activity of Cladanthus arabicus and Bubonium imbricatum essential oils alone and in combination with conventional antibiotics against Enterobacteriaceae isolates. Lett. Appl. Microbiol. 2018;67:175–182. doi: 10.1111/lam.13007.
    1. Alarcon L., Pena A., Velascd J., Baptista J.G., Rojas L., Aparicio R., Usubillaga A. Chemical composition and antibacterial activity of the essential oil of Ruilopezia bracteosa. Nat. Prod. Commun. 2015;10:655–656. doi: 10.1177/1934578X1501000432.
    1. Ashraf S., Anjum A.A., Ahmad A., Firyal S., Sana S., Latif A.A. In vitro activity of Nigella sativa against antibiotic resistant Salmonella enterica. Environ. Toxicol. Pharmacol. 2018;58:54–58. doi: 10.1016/j.etap.2017.12.017.
    1. Alizadeh Behbahani B., Tabatabaei Yazdi F., Vasiee A., Mortazavi S.A. Oliveria decumbens essential oil: Chemical compositions and antimicrobial activity against the growth of some clinical and standard strains causing infection. Microb. Pathog. 2018;114:449–452. doi: 10.1016/j.micpath.2017.12.033.
    1. Boonyanugomol W., Kraisriwattana K., Rukseree K., Boonsam K., Narachai P. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J. Infect. Public Health. 2017;10:586–592. doi: 10.1016/j.jiph.2017.01.008.
    1. Chaib F., Allali H., Bennaceur M., Flamini G. Chemical Composition and Antimicrobial Activity of Essential Oils from the Aerial Parts of Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC.: Two Asteraceae Herbs Growing Wild in the Hoggar. Chem. Biodivers. 2017;14:e1700092. doi: 10.1002/cbdv.201700092.
    1. Chen C.C., Yan S.H., Yen M.Y., Wu P.F., Liao W.T., Huang T.S., Wen Z.H., Wang H.M.D. Investigations of kanuka and manuka essential oils for in vitro treatment of disease and cellular inflammation caused by infectious microorganisms. J. Microbiol. Immunol. Infect. 2016;49:104–111. doi: 10.1016/j.jmii.2013.12.009.
    1. Chiboub W., Sassi A.B., Amina C.M., Souilem F., El Ayeb A., Djlassi B., Ascrizzi R., Flamini G., Harzallah-Skhiri F. Valorization of the Green Waste from Two Varieties of Fennel and Carrot Cultivated in Tunisia by Identification of the Phytochemical Profile and Evaluation of the Antimicrobial Activities of Their Essentials Oils. Chem. Biodivers. 2019;16:e1800546. doi: 10.1002/cbdv.201800546.
    1. Condò C., Anacarso I., Sabia C., Iseppi R., Anfelli I., Forti L., de Niederhäusern S., Bondi M., Messi P. Antimicrobial activity of spices essential oils and its effectiveness on mature biofilms of human pathogens. Nat. Prod. Res. 2018;25:1–8. doi: 10.1080/14786419.2018.1490904.
    1. de Jesus I.C., Santos Frazao G.G., Blank A.F., de Aquino Santana L.C. Myrcia ovata Cambessedes essential oils: A proposal for a novel natural antimicrobial against foodborne bacteria. Microb. Pathog. 2016;99:142–147. doi: 10.1016/j.micpath.2016.08.023.
    1. Elshafie H.S., Sakr S., Mang S.M., Belviso S., De Feo V., Camele I. Antimicrobial activity and chemical composition of three essential oils extracted from Mediterranean aromatic plants. J. Med. Food. 2016;19:1096–1103. doi: 10.1089/jmf.2016.0066.
    1. Fadil M., Fikri-Benbrahim K., Rachiq S., Ihssane B., Lebrazi S., Chraibi M., Haloui T., Farah A. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Eur. J. Pharm. Biopharm. 2018;126:211–220. doi: 10.1016/j.ejpb.2017.06.002.
    1. Falsafi T., Moradi P., Mahboubi M., Rahimi E., Momtaz H., Hamedi B. Chemical composition and anti-Helicobacter pylori effect of Satureja bachtiarica Bunge essential oil. Phytomedicine. 2015;22:173–177. doi: 10.1016/j.phymed.2014.11.012.
    1. Fournomiti M., Kimbaris A., Mantzourani I., Plessas S., Theodoridou I., Papaemmanouil V., Kapsiotis I., Panopoulou M., Stavropoulou E., Bezirtzoglou E.E., et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015;26:23289. doi: 10.3402/mehd.v26.23289.
    1. Gadisa E., Weldearegay G., Desta K., Tsegaye G., Hailu S., Jote K., Takele A. Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complement. Altern. Med. 2019;19:24. doi: 10.1186/s12906-019-2429-4.
    1. Igwaran A., Iweriebor B.C., Ofuzim Okoh S., Nwodo U.U., Obi L.C., Okoh A.I. Chemical constituents, antibacterial and antioxidant properties of the essential oil flower of Tagetes minuta grown in Cala community Eastern Cape, South Africa. Bmc Complement. Altern. Med. 2017;17:351. doi: 10.1186/s12906-017-1861-6.
    1. Jaradat N., Adwan L., K’Aibni S., Shraim N., Zaid A.N. Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. Bmc Complement. Altern. Med. 2016;16:418. doi: 10.1186/s12906-016-1408-2.
    1. Lee H., Choi H., Lee J.C., Lee Y.C., Woo E.R., Lee D.G. Antibacterial Activity of Hibicuslide C on Multidrug-Resistant Pseudomonas aeruginosa Isolates. Curr. Microbiol. 2016;73:519–526. doi: 10.1007/s00284-016-1092-y.
    1. Linde G., Gazim Z., Cardoso B., Jorge L., Tešević V., Glamočlija J., Soković M., Colauto N. Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genet. Mol. Res. 2016 doi: 10.4238/gmr.15038538.
    1. Mahmoudzadeh M., Hosseini H., Nasrollahzadeh J., Khaneghah A.M., Rismanchi M., Chaves R.D., Shahraz F., Azizkhani M., Mahmoudzadeh L., Haslberger A.G. Antibacterial activity of Carum copticum essential oil against Escherichia coli O157: H7 in meat: Stx genes expression. Curr. Microbiol. 2016;73:265–272. doi: 10.1007/s00284-016-1048-2.
    1. Man A., Santacroce L., Jacob R., Mare A., Man L. Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. Pathogens. 2019;8:15. doi: 10.3390/pathogens8010015.
    1. Marrelli M., Conforti F., Formisano C., Rigano D., Arnold N.A., Menichini F., Senatore F. Composition, antibacterial, antioxidant and antiproliferative activities of essential oils from three Origanum species growing wild in Lebanon and Greece. Nat. Prod. Res. 2016;30:735–739. doi: 10.1080/14786419.2015.1040993.
    1. Meng X., Li D., Zhou D., Wang D., Liu Q., Fan S. Chemical composition, antibacterial activity and related mechanism of the essential oil from the leaves of Juniperus rigida Sieb. et Zucc against Klebsiella pneumoniae. J. Ethnopharmacol. 2016;194:698–705. doi: 10.1016/j.jep.2016.10.050.
    1. Montironi I.D., Cariddi L.N., Reinoso E.B. Evaluation of the antimicrobial efficacy of Minthostachys verticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis. Rev. Argent. Microbiol. 2016;48:210–216. doi: 10.1016/j.ram.2016.04.005.
    1. Mutlu-Ingok A., Karbancioglu-Guler F. Cardamom, Cumin, and Dill Weed Essential Oils: Chemical Compositions, Antimicrobial Activities, and Mechanisms of Action against Campylobacter spp. Molecules. 2017;22:1191. doi: 10.3390/molecules22071191.
    1. Okoh S.O., Iweriebor B.C., Okoh O.O., Okoh A.I. Bioactive constituents, radical scavenging, and antibacterial properties of the leaves and stem essential oils from Peperomia pellucida (L.) Kunth. Pharmacogn. Mag. 2017;13:S392. doi: 10.4103/pm.pm_106_17.
    1. Okoh S.O., Iweriebor B.C., Okoh O.O., Nwodo U.U., Okoh A.I. Antibacterial and Antioxidant Properties of the Leaves and Stem Essential Oils of Jatropha gossypifolia L. Biomed Res. Int. 2016;2016:9392716. doi: 10.1155/2016/9392716.
    1. Oukerrou M.A., Tilaoui M., Mouse H.A., Leouifoudi I., Jaafari A., Zyad A. Chemical composition and cytotoxic and antibacterial activities of the essential oil of Aloysia citriodora palau grown in Morocco. Adv. Pharmacol. Sci. 2017;2017:1–10. doi: 10.1155/2017/7801924.
    1. Paredes A., Leyton Y., Riquelme C., Morales G. A plant from the altiplano of Northern Chile Senecio nutans, inhibits the Vibrio cholerae pathogen. SpringerPlus. 2016;5:1788. doi: 10.1186/s40064-016-3469-6.
    1. Patra J., Baek K.-H. Antibacterial activity and action mechanism of the essential oil from Enteromorpha linza L. against foodborne pathogenic bacteria. Molecules. 2016;21:388. doi: 10.3390/molecules21030388.
    1. Pereira C.A., Costa A.C., Liporoni P.C., Rego M.A., Jorge A.O. Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans. J. Infect. Public Health. 2016;9:324–330. doi: 10.1016/j.jiph.2015.10.012.
    1. Porfírio E.M., Melo H.M., Pereira A.M.G., Cavalcante T.T.A., Gomes G.A., Carvalho M.G.D., Costa R.A., Júnior F.E.A.C. In vitro antibacterial and antibiofilm activity of Lippia alba essential oil, citral, and carvone against Staphylococcus aureus. Sci. World J. 2017;2017:1–7. doi: 10.1155/2017/4962707.
    1. Puškárová A., Bučková M., Kraková L., Pangallo D., Kozics K. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci. Rep. 2017;7:8211. doi: 10.1038/s41598-017-08673-9.
    1. Sakkas H., Gousia P., Economou V., Sakkas V., Petsios S., Papadopoulou C. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates. J. Intercult. Ethnopharmacol. 2016;5:212. doi: 10.5455/jice.20160331064446.
    1. Salem M.Z., Elansary H.O., Ali H.M., El-Settawy A.A., Elshikh M.S., Abdel-Salam E.M., Skalicka-Woźniak K. Bioactivity of essential oils extracted from Cupressus macrocarpa branchlets and Corymbia citriodora leaves grown in Egypt. Bmc Complement. Altern. Med. 2018;18:23. doi: 10.1186/s12906-018-2085-0.
    1. Semeniuc C.A., Pop C.R., Rotar A.M. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J. Food Drug Anal. 2017;25:403–408. doi: 10.1016/j.jfda.2016.06.002.
    1. Sharafati Chaleshtori F., Saholi M., Sharafati Chaleshtori R. Chemical Composition, Antioxidant and Antibacterial Activity of Bunium persicum, Eucalyptus globulus, and Rose Water on Multidrug-Resistant Listeria Species. J. Evid.-Based Integr. Med. 2018;23:2515690X17751314. doi: 10.1177/2515690X17751314.
    1. Sharifi A., Mohammadzadeh A., Salehi T.Z., Mahmoodi P. Antibacterial, antibiofilm and antiquorum sensing effects of Thymus daenensis and Satureja hortensis essential oils against Staphylococcus aureus isolates. J. Appl. Microbiol. 2018;124:379–388. doi: 10.1111/jam.13639.
    1. Sharifi-Rad J., Hoseini-Alfatemi S., Sharifi-Rad M., Sharifi-Rad M., Iriti M., Sharifi-Rad M., Sharifi-Rad R., Raeisi S. Phytochemical compositions and biological activities of essential oil from Xanthium strumarium L. Molecules. 2015;20:7034–7047. doi: 10.3390/molecules20047034.
    1. Smeriglio A., Denaro M., Barreca D., Calderaro A., Bisignano C., Ginestra G., Bellocco E., Trombetta D. In Vitro Evaluation of the Antioxidant, Cytoprotective, and Antimicrobial Properties of Essential Oil from Pistacia vera L. Variety Bronte Hull. Int. J. Mol. Sci. 2017;18:1212. doi: 10.3390/ijms18061212.
    1. Snoussi M., Dehmani A., Noumi E., Flamini G., Papetti A. Chemical composition and antibiofilm activity of Petroselinum crispum and Ocimum basilicum essential oils against Vibrio spp. strains. Microb. Pathog. 2016;90:13–21. doi: 10.1016/j.micpath.2015.11.004.
    1. Soliman S.S.M., Alsaadi A.I., Youssef E.G., Khitrov G., Noreddin A.M., Husseiny M.I., Ibrahim A.S. Calli Essential Oils Synergize with Lawsone against Multidrug Resistant Pathogens. Molecules. 2017;22:2223. doi: 10.3390/molecules22122223.
    1. Tibyangye J., Okech M.A., Nyabayo J.M., Nakavuma J.L. In vitro antibacterial activity of Ocimum suave essential oils against uropathogens isolated from patients in selected hospitals in Bushenyi district, Uganda. Br. Microbiol. Res. J. 2015;8:489. doi: 10.9734/BMRJ/2015/17526.
    1. Touihri I., Boukhris M., Marrakchi N., Luis J., Hanchi B., Kallech-Ziri O. Chemical Composition and Biological Activities of Allium roseum L. var. grandiflorum Briq. Essential Oil. J. Oleo Sci. 2015;2015:ess15055. doi: 10.5650/jos.ess15055.
    1. Ušjak L., Petrović S., Drobac M., Soković M., Stanojković T., Ćirić A., Niketić M. Edible wild plant Heracleum pyrenaicum subsp. orsinii as a potential new source of bioactive essential oils. J. Food Sci. Technol. 2017;54:2193–2202. doi: 10.1007/s13197-017-2610-z.
    1. Utegenova G.A., Pallister K.B., Kushnarenko S.V., Ozek G., Ozek T., Abidkulova K.T., Kirpotina L.N., Schepetkin I.A., Quinn M.T., Voyich J.M. Chemical Composition and Antibacterial Activity of Essential Oils from Ferula L. Species against Methicillin-Resistant Staphylococcus aureus. Molecules. 2018;23:1679. doi: 10.3390/molecules23071679.
    1. Vieira M., Bessa L.J., Martins M.R., Arantes S., Teixeira A.P., Mendes A., Martins da Costa P., Belo A.D. Chemical composition, antibacterial, antibiofilm and synergistic properties of essential oils from Eucalyptus globulus Labill. and seven Mediterranean aromatic plants. Chem. Biodivers. 2017;14:e1700006. doi: 10.1002/cbdv.201700006.
    1. Xu J.-G., Liu T., Hu Q.-P., Cao X.-M. Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules. 2016;21:1194. doi: 10.3390/molecules21091194.
    1. Zhao J., Jiang L., Tang X., Peng L., Li X., Zhao G., Zhong L. Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum. Molecules. 2018;23:182. doi: 10.3390/molecules23010182.
    1. Bag A., Chattopadhyay R.R. Evaluation of Synergistic Antibacterial and Antioxidant Efficacy of Essential Oils of Spices and Herbs in Combination. PLoS ONE. 2015;10:e0131321. doi: 10.1371/journal.pone.0131321.
    1. Djenane D. Chemical Profile, Antibacterial and Antioxidant Activity of Algerian Citrus Essential Oils and Their Application in Sardina pilchardus. Foods. 2015;4:208–228. doi: 10.3390/foods4020208.
    1. Ehsani A., Alizadeh O., Hashemi M., Afshari A., Aminzare M. Phytochemical, antioxidant and antibacterial properties of Melissa officinalis and Dracocephalum moldavica essential oils. Vet. Res. Forum. 2017;8:223–229.
    1. Hu Q.P., Cao X.M., Hao D.L., Zhang L.L. Chemical Composition, Antioxidant, DNA Damage Protective, Cytotoxic and Antibacterial Activities of Cyperus rotundus Rhizomes Essential Oil against Foodborne Pathogens. Sci. Rep. 2017;7:45231. doi: 10.1038/srep45231.
    1. Jaradat N., Adwan L., K’Aibni S., Zaid A.N., Shtaya M.J.Y., Shraim N., Assali M. Variability of Chemical Compositions and Antimicrobial and Antioxidant Activities of Ruta chalepensis Leaf Essential Oils from Three Palestinian Regions. Biomed Res. Int. 2017;2017:2672689. doi: 10.1155/2017/2672689.
    1. Kazemi M. Chemical composition and antimicrobial, antioxidant activities and anti-inflammatory potential of Achillea millefolium L., Anethum graveolens L., and Carum copticum L. essential oils. J. Herb. Med. 2015;5:217–222. doi: 10.1016/j.hermed.2015.09.001.
    1. Marin I., Sayas-Barbera E., Viuda-Martos M., Navarro C., Sendra E. Chemical Composition, Antioxidant and Antimicrobial Activity of Essential Oils from Organic Fennel, Parsley, and Lavender from Spain. Foods. 2016;5:18. doi: 10.3390/foods5010018.
    1. Marrelli M., Araniti F., Abenavoli M.R., Statti G., Conforti F. Potential Health Benefits of Origanum heracleoticum Essential Oil: Phytochemical and Biological Variability among Different Calabrian Populations. Nat. Prod. Commun. 2018;13 doi: 10.1177/1934578X1801300921.
    1. Okoh S.O., Iweriegbor B.C., Okoh O.O., Nwodo U.U., Okoh A.I. Bactericidal and antioxidant properties of essential oils from the fruits Dennettia tripetala G. Baker. BMC Complement. Altern. Med. 2016;16:486. doi: 10.1186/s12906-016-1459-4.
    1. Ouedrhiri W., Balouiri M., Bouhdid S., Harki E.H., Moja S., Greche H. Antioxidant and antibacterial activities of Pelargonium asperum and Ormenis mixta essential oils and their synergistic antibacterial effect. Environ. Sci. Pollut. Res. Int. 2018;25:29860–29867. doi: 10.1007/s11356-017-9739-1.
    1. Ghasemi Pirbalouti A., Izadi A., Malek Poor F., Hamedi B. Chemical composition, antioxidant and antibacterial activities of essential oils from Ferulago angulata. Pharm. Biol. 2016;54:2515–2520. doi: 10.3109/13880209.2016.1162816.
    1. Poaty B., Lahlah J., Porqueres F., Bouafif H. Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest. World J. Microbiol. Biotechnol. 2015;31:907–919. doi: 10.1007/s11274-015-1845-y.
    1. Semeniuc C.A., Socaciu M.I., Socaci S.A., Muresan V., Fogarasi M., Rotar A.M. Chemometric Comparison and Classification of Some Essential Oils Extracted from Plants Belonging to Apiaceae and Lamiaceae Families Based on Their Chemical Composition and Biological Activities. Molecules. 2018;23:2261. doi: 10.3390/molecules23092261.
    1. Shakeri A., Akhtari J., Soheili V., Taghizadeh S.F., Sahebkar A., Shaddel R., Asili J. Identification and biological activity of the volatile compounds of Glycyrrhiza triphylla Fisch. & C.A.Mey. Microb. Pathog. 2017;109:39–44. doi: 10.1016/j.micpath.2017.05.022.
    1. Snoussi M., Noumi E., Trabelsi N., Flamini G., Papetti A., De Feo V. Mentha spicata Essential Oil: Chemical Composition, Antioxidant and Antibacterial Activities against Planktonic and Biofilm Cultures of Vibrio spp. Strains. Molecules. 2015;20:14402–14424. doi: 10.3390/molecules200814402.
    1. Chen H.C., Chang W.T., Hseu Y.C., Chen H.Y., Chuang C.H., Lin C.C., Lee M.S., Lin M.K. Immunosuppressive Effect of Litsea cubeba L. Essential Oil on Dendritic Cell and Contact Hypersensitivity Responses. Int. J. Mol. Sci. 2016;17:1319. doi: 10.3390/ijms17081319.
    1. Cheng C., Zou Y., Peng J. Oregano Essential Oil Attenuates RAW264.7 Cells from Lipopolysaccharide-Induced Inflammatory Response through Regulating NADPH Oxidase Activation-Driven Oxidative Stress. Molecules. 2018;23:1857. doi: 10.3390/molecules23081857.
    1. Krifa M., El Mekdad H., Bentouati N., Pizzi A., Ghedira K., Hammami M., El Meshri S.E., Chekir-Ghedira L. Immunomodulatory and anticancer effects of Pituranthos tortuosus essential oil. Tumour Biol. 2015;36:5165–5170. doi: 10.1007/s13277-015-3170-3.
    1. Ma Q., Jiang J.G., Yuan X., Qiu K., Zhu W. Comparative antitumor and anti-inflammatory effects of flavonoids, saponins, polysaccharides, essential oil, coumarin and alkaloids from Cirsium japonicum DC. Food Chem. Toxicol. 2019;125:422–429. doi: 10.1016/j.fct.2019.01.020.
    1. Oüzek G., Schepetkin I.A., Utegenova G.A., Kirpotina L.N., Andrei S.R., Oüzek T., Baser K.H.C., Abidkulova K.T., Kushnarenko S.V., Khlebnikov A.I., et al. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils. J. Leukoc. Biol. 2017;101:1361–1371. doi: 10.1189/jlb.3A1216-518RR.
    1. Park Y., Yoo S.-A., Kim W.-U., Cho C.-S., Woo J.-M., Yoon C.-H., Yoo S., Kim W., Cho C., Woo J., et al. Anti-inflammatory effects of essential oils extracted from Chamaecyparis obtusa on murine models of inflammation and RAW 264.7 cells. Mol. Med. Rep. 2016;13:3335–3341. doi: 10.3892/mmr.2016.4905.
    1. Wang Y.-T., Zhu L., Zeng D., Long W., Zhu S.-M. Chemical composition and anti-inflammatory activities of essential oil from Trachydium roylei. J. Food Drug Anal. 2016;24:602–609. doi: 10.1016/j.jfda.2016.02.009.
    1. Adaszyńska-Skwirzyńska M., Szczerbińska D. The effect of lavender (Lavandula angustifolia) essential oil as a drinking water supplement on the production performance, blood biochemical parameters, and ileal microflora in broiler chickens. Poult. Sci. 2018;98:358–365. doi: 10.3382/ps/pey385.
    1. Altop A., Erener G., Duru M.E., Isik K. Effects of essential oils from Liquidambar orientalis Mill. leaves on growth performance, carcass and some organ traits, some blood metabolites and intestinal microbiota in broilers. Br. Poult. Sci. 2018;59:121–127. doi: 10.1080/00071668.2017.1400657.
    1. Cetin E., Yibar A., Yesilbag D., Cetin I., Cengiz S.S. The effect of volatile oil mixtures on the performance and ilio-caecal microflora of broiler chickens. Br. Poult. Sci. 2016;57:780–787. doi: 10.1080/00071668.2016.1214682.
    1. Cairo P.L.G., Gois F.D., Sbardella M., Silveira H., de Oliveira R.M., Allaman I.B., Cantarelli V.S., Costa L.B. Effects of dietary supplementation of red pepper (Schinus terebinthifolius Raddi) essential oil on performance, small intestinal morphology and microbial counts of weanling pigs. J. Sci. Food Agric. 2018;98:541–548. doi: 10.1002/jsfa.8494.
    1. Li Y., Fu X., Ma X., Geng S., Jiang X., Huang Q., Hu C., Han X. Intestinal Microbiome-Metabolome Responses to Essential Oils in Piglets. Front. Microbiol. 2018;9:1988. doi: 10.3389/fmicb.2018.01988.
    1. Silva L.D.L., Baldisserotto B., Sutili F., Gressler L., Battisti E., Heinzmann B., De Vargas A.C. Plant essential oils against Aeromonas hydrophila: In vitro activity and their use in experimentally infected fish. J. Appl. Microbiol. 2015;119:47–54. doi: 10.1111/jam.12812.
    1. Sell C.S. The Chemistry of Fragrances: From Perfumer to Consumer. Volume 38 Royal Society of Chemistry; London, UK: 2006.
    1. Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005.
    1. Coughlan L.M., Cotter P.D., Hill C., Alvarez-Ordóñez A. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Front. Microbiol. 2016;7:1641. doi: 10.3389/fmicb.2016.01641.
    1. Winkelstroter L.K., Teixeira F.B., Silva E.P., Alves V.F., De Martinis E.C. Unraveling microbial biofilms of importance for food microbiology. Microb. Ecol. 2014;68:35–46. doi: 10.1007/s00248-013-0347-4.
    1. Li Y.-H., Tian X. Quorum Sensing and Bacterial Social Interactions in Biofilms. Sensors. 2012;12:2519–2538. doi: 10.3390/s120302519.
    1. Finkel T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 2003;15:247–254. doi: 10.1016/S0955-0674(03)00002-4.
    1. Hadi S., Bhat S., Azmi A., Hanif S., Shamim U., Ullah M. Oxidative breakage of cellular DNA by plant polyphenols: A putative mechanism for anticancer properties. Semin. Cancer Biol. 2007;17:370–376. doi: 10.1016/j.semcancer.2007.04.002.
    1. Lanciotti R., Gianotti A., Patrignani F., Belletti N., Guerzoni M., Gardini F. Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends Food Sci. Technol. 2004;15:201–208. doi: 10.1016/j.tifs.2003.10.004.
    1. Tenore G.C., Ciampaglia R., Arnold N.A., Piozzi F., Napolitano F., Rigano D., Senatore F. Antimicrobial and antioxidant properties of the essential oil of Salvia lanigera from Cyprus. Food Chem. Toxicol. 2011;49:238–243. doi: 10.1016/j.fct.2010.10.022.
    1. de Lavor É.M., Fernandes A.W.C., de Andrade Teles R.B., Leal A.E.B.P., de Oliveira Júnior R.G., Gama e Silva M., de Oliveira A.P., Silva J.C., de Moura Fontes Araújo M.T., Coutinho H.D.M., et al. Essential Oils and Their Major Compounds in the Treatment of Chronic Inflammation: A Review of Antioxidant Potential in Preclinical Studies and Molecular Mechanisms. Oxidative Med. Cell. Longev. 2018;2018:6468593. doi: 10.1155/2018/6468593.
    1. Thapa D., Louis P., Losa R., Zweifel B., Wallace R.J. Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures. Microbiology. 2015;161:441–449. doi: 10.1099/mic.0.000009.

Source: PubMed

Подписаться