Advances in research on solid-state fermented feed and its utilization: The pioneer of private customization for intestinal microorganisms

Lijie Yang, Xiangfang Zeng, Shiyan Qiao, Lijie Yang, Xiangfang Zeng, Shiyan Qiao

Abstract

With sustainable development of biotechnology, increasing attention has been placed on utilization of solid-state fermented feed (SFF). Solid-state fermented feed has been a candidate strategy to alleviate the contradiction between supply and demand of feed resources, ensure food hygiene safety, promoting energy conservation, and emission reduction. In production of SFF, a variety of organic acids, enzymes, vitamins, peptides, and other unknown growth factors are produced, which could affect performance of animals. Solid-state fermented feed produced by different fermentation techniques has great instability on different physiological stages of different animals, which hinders the application and standardized production of SFF. Herein, we summarize the current advances in the role of the characteristics of SFF prepared by different manufacturing technique and its research progress in animal experiments on growth performance, gastrointestinal ecology, and immune system, so as to provide references for further acquiring a relatively perfect set of SFF production and evaluation systems.

Keywords: Gastrointestinal ecology; Growth performance; Immune system; Manufacturing technique; Solid-state fermented feed.

Conflict of interest statement

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the content of this paper.

© 2021 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

Figures

Fig. 1
Fig. 1
Interactions in fermented feed among micro-organisms present, fermentation parameters, and substrate quantity and quality that influence final end products.
Fig. 2
Fig. 2
The regulation mechanism of Lactobacillus in solid-state fermented feed (SFF) on gastrointestinal ecology.

References

    1. Adhyaru D.N., Bhatt N.S., Modi H.A., Divecha J. Insight on xylanase from Aspergillus tubingensis FDHN1: production, high yielding recovery optimization through statistical approach and application. Biocatalysis and Agricultural Biotechnology. 2016;6:51–57.
    1. Ahmed S.T., Mun H.S., Islam M.M., Ko S.Y., Yang C.J. Effects of dietary natural and fermented herb combination on growth performance, carcass traits and meat quality in grower-finisher pigs. Meat Sci. 2016;122:7–15.
    1. Akinola O.S., Onakomaiya A.O., Agunbiade J.A., Oso A.O. Growth performance, apparent nutrient digestibility, intestinal morphology and carcass traits of broiler chickens fed dry, wet and fermented-wet feed. Livest Sci. 2015;177:103–109.
    1. Ali S.R., Anwar Z., Irshad M., Mukhtar S., Warraich N.T. Bio-synthesis of citric acid from single and co-culturebased fermentation technology using agro-wastes. Journal of Radiation Research and Applied Sciences. 2016;9:57–62.
    1. Ali B., Yi Z., Fang Y., Chen L.C., Zhao H. Characterization of a fungal thermostable endoglucanase from Chinese Nong-flavor daqu by metatranscriptomic method. Int J Biol Macromol. 2018;121:183–190.
    1. Awati A., Williams B.A., Bosch M.W., Li Y.C., Verstegen M.W.A. Use of the in vitro cumulative gas production technique for pigs:an examination of alterations in fermentation products and substrate losses at various time points. J Anim Sci. 2006;84:1110–1118.
    1. Bai K., Qiang H., Zhang J., He J., Tian W. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poultry Sci. 2017;96:74–82.
    1. Bansal N., Tewari R., Soni R., Soni S.K. Production of cellulases from Aspergillus Niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag. 2012;32:1341–1346.
    1. Biz A., Finkler A.T.J., Pitol L.O., Medina B.S., Krieger N., Mitchell D.A. Production of pectinases by solid-state fermentation of a mixture of citrus waste and sugarcane bagasse in a pilot-scale packed-bed bioreactor. Biochem Eng J. 2016;111:54–62.
    1. Brooks P.H., Beal J., Niven S. Liquid feeding of pigs. Potential for improving pig health and food safety. Anim Sci Pap Rep. 2003;21:23–29.
    1. Burnett G.S., Hanna J. Effect of dietary calcium lactate and lactic acid on faecal Escherichia coli counts in pigs. Nature. 1963;197:815.
    1. Canibe N., Jensen B.B. Fermented and nonfermented liquid feed to growing pigs:effect on aspects of gastrointestinal ecology and growth performance. J Anim Sci. 2003;81:2019.
    1. Canibe N., Højberg O., Badsberg J.H., Jensen B.B. Effect of feeding fermented liquid feed and fermented grain on gastrointestinal ecology and growth performance in piglets. J Anim Sci. 2007;85:29–59.
    1. Canibe N., Jensen B.B., Ravindran V. Fermented liquid feed-microbial and nutritional aspects and impact on enteric diseases in pigs. Anim Feed Sci Technol. 2012;173:17–40.
    1. Cao Z.H., Dong Y.W., Miao J.Z. Study on the technological conditions of inulinase production by Aspergillus Niger. Chinese Journal of Bioengineering. 2009;29:97–101.
    1. Carrera E.A., Silvestroni A., Leblanc J.G., Piard J.C., Giori G.S.D., Sesma F. A thermostable α-galactosidase from Lactobacillus fermentum crl722:genetic characterization and main properties. Curr Microbiol. 2006;53:374–378.
    1. Castro R.J.S., Ohara A., Nishide T.G., Bagagli M.P., Dias F.F.G., Sato H.H. A versatile system based on substrate formulation using agroindustrial wastes for protease production by Aspergillus Niger under solid state fermentation. Biocatalysis and Agricultural Biotechnology. 2015;4:678–684.
    1. Cerda A., El-Bakry M., Gea T., Sánchez A. Long term enhanced solid-state fermentation: inoculation strategies for amylase production from soy and bread wastes by Thermomyces sp. in a sequential batch operation. Journal of Environmental Chemical Engineering. 2016;4:2394–2401.
    1. Certík M., Adamechová Z., Guothová L. Simultaneous enrichment of cereals with polyunsaturated fatty acids and pigments by fungal solid state fermentations. J Biotechnol. 2013;168:130–134.
    1. Chanwicha N., Katekaew S., Aimi T., Boonlue S. Purification and characterization of alkaline xylanase from Thermoascus aurantiacus var. levisporus KKU-PN-I2-1 cultivated by solid-state fermentation. Mycoscience. 2015;56:309–318.
    1. Chen R. Nanjing University of Science and technology; 2014. Production of Glucanases by salecan-degrading bacteria.
    1. Chen C.C., Shih Y.C., Chiou P.W.S., Yu B. Evaluating nutritional quality of single stage- and two stage-fermented soybean meal:(online) Asian-Australas J Anim Sci. 2010;23:598–606.
    1. Chen Z.P., Zhou A.G., Wang Z.S., Liu D.C., Peng D.Y. Evaluation of nutritional quality of soybean meals fermented by Aspergillus oryzae. Chinese Journal of Animal Science. 2011;9:40–44.
    1. Chen W., Zhu X.Z., Wang J.P., Wang Z.X., Huang Y.Q. Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae fermented liquid feed on growth performance, relative organ weight, intestinal microflora, and organ antioxidant status in Landes geese. J Anim Sci. 2013;91:978–985.
    1. Chen B., Wu Q., Xu Y. Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor. Int J Food Microbiol. 2014;179:80–84.
    1. Chen J., Cheng M., Wang L., Zhang L., Zhan C. A vagal-NTS neural pathway that stimulates feeding. Curr Biol. 2020;7:1–13.
    1. Chi Z.S., Zhang H.J., Guo A.H., Li X.W., Geng X., Wu Y.P. Application of fermented feed in chicken production. Guangdong Feed. 2019;234:17–20.
    1. Chiang G., Lu W.Q., Piao X.S., Hu J.K., Thacker P.A. Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian-Australas J Anim Sci. 2010;23:263–271.
    1. Cho J.H., Min B.J., Chen Y.J., Chen J.S., Wang Y.Q., Kim J.D. Evaluation of FSP (fermented soy protein) to replace soybean meal in weaned pigs:growth performance, blood urea nitrogen and total protein concentrations in serum and nutrient digestibility. Asian-Australas J Anim Sci. 2007;20:1874–1879.
    1. Choct M. Feed non-starch polysaccharides for monogastric animals:classification and function. Anim Prod Sci. 2015;55:1360–1366.
    1. Chung T.H., Choi I.H. Growth performance and fatty acid profiles of broilers given diets supplemented with fermented red ginseng marc powder combined with red koji. Rev.bras.cienc.avic. 2016;18:733–738.
    1. Cleveland J., Montville T.J., Nes I.F. Bacteriocins:safe, natural antimicrobials for food preservation. Int J Food Microbiol. 2001;71:1–20.
    1. Cui Y.H., Wang S.C., Huang Y. Evaluation of NSP enzymatic hydrolysis. Feed Industry. 2005;2:46–48.
    1. Cui Y.Y., Tian Z.M., Lu H.J., Deng D., Ma X.Y., Chen W.D. Nutritional value of bran and application of fermented feed in animal production. Chinese animal husbandry and veterinary. 2019;10:2902–2915.
    1. Das R.K., Brar S.K., Verma M. A fermentative approach towards optimizing directed biosynthesis of fumaric acid by Rhizopus oryzae 1526 utilizing apple industry waste biomass. Fungal Biology. 2015;119:1279–1290.
    1. David R.C., Patricia R.M., Abelardo M., Miguel G., Clara R.G., Nuria S. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185.
    1. Dawson K.A. Current and future role of yeast culture in animal production. Proceedings of Alltech’s Ninth Annual Symposium. 1987:269–292.
    1. De J.R., De L.V. Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol. 2018;49:115.
    1. Debing J., Peijun L., Stagnitti F., Xiong X.Z., Li L. Pectinase production by solid fermentation from Aspergillus Niger by a new prescription experiment. Ecotoxicol Environ Saf. 2006;64:244–250.
    1. Dhillon G.S., Brar S.K., Kaur S., Metahni S., M’hamdi N. Lactoserum as a moistening medium and crude inducer for fungal cellulase and hemicellulase induction through solidstate fermentation of apple pomace. Biomass Bioenergy. 2012;41:165–174.
    1. Dhillon G.S., Kaur S., Brar S.K., Verma M. Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind Crop Prod. 2012;38:6–13.
    1. Dhillon G.S., Kaur S., Sarma S.J., Brar S.K. Integrated process or fungal citric acid fermentation using apple processing wastes and sequential extraction of chitosan from waste stream. Ind Crop Prod. 2013;50:346–351.
    1. Dong J.J., Han R.Z., Xu G.C., Gong L., Xing W.R. Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864. Bioresour Technol. 2018;259:40–45.
    1. Dong Z.Q., Zhang X.S., Dong Q., Guo H.F., Gong J.S., Shi J.S. Breeding, identification and characterization of trehalase producing strain. J Microbiol. 2020;40:51–57.
    1. Duan S., Feng X., Cheng L. Bio-degumming technology of jute bast by Pectobacterium sp. DCE-01. Amb Express. 2016;6
    1. Dujardin M., Elain A., Lendormi T., Le F.M., Le T.Y., Sire O. Keeping under control a liquid feed fermentation process for pigs:A reality scale pilot based study. Anim Feed Sci Technol. 2014;194:81–88.
    1. El-Batal A.I., ElKenawy N.M., Yassin A.S., Amin M.A. Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnology Reports. 2015;5:31–39.
    1. Engberg R.M., Hammershøj M., Johansen N.F., Abousekken M.S., Steenfeldt S., Jensen B.B. Fermented feed for laying hens:effects on egg production, egg quality, plumage condition and composition and activity of the intestinal microflora. Br Poultry Sci. 2009;50:228–239.
    1. Ezekiel C.N., Ayeni K.I., Ezeokoli O.T., Sulyok M., Deidre A.B.W., Oluwawapelumi A.O., Oluwatosin M.A., Ihuoma E.C.O., Rasheed A.A., Cyril C.N., Jana H., Christopher T.E., Rudolf K. High-throughput sequence analyses of bacterial communities and multi-mycotoxin profiling during processing of different formulations of kunu, a traditional fermented beverage. Front Microbiol. 2019;9:32–82.
    1. Feng J., Liu X., Xu Z.R., Lu Y.P., Liu Y.Y. Effect of fermented soybean meal on intestinal morphology and digestive enzyme activities in weaned piglets. Dig Dis Sci. 2007;52:1845–1850.
    1. Feng J., Liu X., Xu Z.R. The effect of Aspergillus oryzae, fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Anim Feed Sci Technol. 2007;134:295–303.
    1. Feng J., Hamed I., Hamouda N.A. β-glucan degrading hydrolases from Caldicellulosiruptor sp. F32 and influence of glycosylation on F32EG5 thermostability. Acta Microbiol Sin. 2019;59:2144–2154.
    1. Ferrarezi A.L., Ohe T.H.K., Borges J.P., Brito R.R., Siqueira M.R., Vendramini P.H. Production and characterization of lipases and immobilization of whole cell of the thermophilic Thermomucor indicae seudaticae N31 for transesterification reaction. J Mol Catal B Enzym. 2014;107:106–113.
    1. Fransen N.G., Urlings B.A., Bijker P.G., Van B.G.M. Utilization of fermented flocculated poultry sludge as a feed constituent for pigs. Poultry Sci. 1995;74:1948–1960.
    1. Gao J., Zhang H.J., Wu S.G., Yu S.H., Yoon I., Moore D. Effect of Saccharomyces cerevisiae fermentation product on immune functions of broilers challenged with Eimeriatenella. Poultry Sci. 2009;88:2141–2151.
    1. Ghoneum M. Enhancement of human natural killer cell activity by modified arabinoxylan from rice bran (MGN-3) Int J Immunother. 1998;14:89–99.
    1. Godoy M.G., Amorim G.M., Barreto M.S., Freire D.M.G. Chapter 12-agricultural residues as animal feed :protein enrichment and detoxification using solid-state fermentation. Current Developments in Biotechnology & Bioengineering. 2018;10:235–256.
    1. Gong R., Xu S., Hermundstad A., Yu Y., Sternson S.M. Hindbrain double-negative feedback mediates palatability-guided food and water consumption. Cell. 2020;182:1589–1605.
    1. Gu B. Jiangsu University; 2010. Research on production of bio-feedstuff with rich peptide from rapeseed meal by mixed solid-state fermentation.
    1. Guanghui Z., Yujie C., Qing K., Ma Y.X., Yang L. Detoxification of aflatoxin B1 by zygosaccharomyces rouxii with solid state fermentation in peanut meal. Toxins. 2017;9:42.
    1. Gungor E., Erener G. Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on growth performance,carcass traits, and meat quality in broiler chickens. Poultry Sci. 2020;99:301–309.
    1. Gupta A., Osadchiy V., Mayer E.A. Brain-gut-microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol. 2020;5:8–27.
    1. Hamidi E.Z., Shojaosadati S.A., Rinzema A. Modelling of simultaneous effect of moisture and temperature on A. Niger, growth in solid-state fermentation. Biochem Eng J. 2004;21:265–272.
    1. Haque M.A., Kachrimanidou V., Koutinas A., Lin C.S.K. Valorization of bakery waste for biocolorant and enzyme production by Monascus purpureus. J Biotechnol. 2016;231:55–64.
    1. Hassaan M.S., Soltan M.A., Abdelmoez A.M. Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia. Oreochromis niloticus. Animal Feed Science & Technology. 2015;201:89–98.
    1. Heres L., Engel B.V., Knapen F., Jong D., Wagenaar J.A., Urlings H.A. Fermented liquid feed reduces susceptibility of broilers for Salmonella enteritidis. Poultry Sci. 2003;82:603.
    1. Hirabayashi M., Matsui T., Yano H., Nakajima T. Fermentation of soybean meal with Aspergillus usamii reduces phosphorus excretion in chicks. Poultry Sci. 1998;77:552–556.
    1. Hong K. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J Med Food. 2004;7:430–435.
    1. Hu J.K., Lu W.Q., Wang C.L., Zhu R.H., Qiao J.Y. Characteristics of solid-state fermented feed and its effects on performance and nutrient digestibility in growing-finishing pigs. Asian-australasian journal of animal sciences. 2008;21:1635–1641.
    1. Hu R., Chen Y., Wang Z.S. Optimization of process parameters of probiotics-fermented soybean meal and effects of coordination action between compound probiotics and enzyme on fermentation quality. Animal Nutrition. 2013;25:1896–1903.
    1. Huang J., Liu Y.L., Chen J., Wang S., Zang S.B. 2019. An environmentally friendly and emission reducing bio fermented feed for pigs:CN110050895a.
    1. Irfan M., Nadeem M., Syed Q. One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. Journal of Radiation Research and Applied Sciences. 2014;7:317–326.
    1. Jais A., Paeger L., Sotelo-Hitschfeld T., Wunderlich F.T., Peter K., Jens C.B. PNOCARC neurons promote hyperphagia and obesity upon high-fat-diet feeding. Neuron. 2020;106:1009–1025.
    1. Jakobsen G.V., Jensen B.B., Knudsen K.B., Canibe N. Impact of fermentation and addition of non-starch polysaccharide-degrading enzymes on microbial population and on digestibility of dried distillers grains with solubles in pigs. Livest Sci. 2015;178:216–227.
    1. Jakobsen G.V., Jensen B.B., Knudsen K.E.B., Canibe N. Improving the nutritional value of rapeseed cake and wheat dried distillers grains with solubles by addition of enzymes during liquid fermentation. Anim Feed Sci Technol. 2015;208:198–213.
    1. Jiang H.J., Sun H., Jiang F.C. Application of fermented soybean meal in the production of weaned piglets in Suhuai pigs. China Swine Industry. 2014;12:58–60.
    1. Jiang H.L., Cai W.B., Mokgawa D.L. Impact of fermented corn straw on growth performance, digestibility and cecal micro flora of grower pigs. Asian J Anim Vet Adv. 2016;11:461–468.
    1. Joris A.M., Missotten J.M., Anneke O. Fermented liquid feed for pigs. Arch Anim Nutr. 2010;64:437–466.
    1. Kabir S.M. The role of probiotics in the poultry industry. Int J Mol Sci. 2009;10:3531–3546.
    1. Karp S.G., Faraco V., Amore A., Birolo L., Giangrande C., Soccol V.T. Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresour Technol. 2012;114:735–739.
    1. Kaur S., Dhillon G.S., Brar S.K., Chauhan V.B. Carbohydrate degrading enzyme production by plant pathogenic mycelia and microsclerotia isolates of Macrophomina phaseolina through koji fermentation. Ind Crop Prod. 2012;36:140–148.
    1. Kaushik P., Mishra A., Malik A. Dual application of agricultural residues for xylanase production and dye removal through solid state fermentation. Int Biodeterior Biodegrad. 2014;96:1–8.
    1. Kershaw G.F., Luscombe J.R., Cole D.J.A. Lactic acid and sodium acrylate:effect on growth rate and bacterial flora in the intestines of weaned pigs. Vet Rec. 1966;79
    1. Kil D.Y., Piao L.G., Long H.F., LiM J.S., Kim Y.Y. Effects of organic or inorganic acid supplementation on growth performance, nutrient digestibility and white blood cell counts in weanling pigs. Asian-Australas J Anim Sci. 2006;19:252–261.
    1. Kim S.W., Van H.E., Ji F., Lee C.H., Mateo R.D. Fermented soybean meal as a vegetable protein source for nursery pigs:I. Effects on growth performance of nursery pigs. J Anim Sci. 2010;88:214–224.
    1. Kimura I., Ozawa K., Inoue D., Imamura T., Kumi K., Takeshi M. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829–1841.
    1. Koo B., Kim J.W., Nyachoti C.M. Nutrient and energy digestibility, and microbial metabolites in weaned pigs fed diets containing Lactobacillus-fermented wheat. Animal Feed ence & Technology. 2018;11:27–37.
    1. Kumar M., Joshi A., Kashyap R., Khanna S. Production of xylanase by Promicromonospora sp MARS with rice straw under non sterile conditions. Process Biochem. 2011;46:1614–1618.
    1. Le M.H.A., Galle S., Yang Y., Landero J.L., Beltranena E., Ganzle M.G., Zijlstra R.T. Effects of feeding fermented wheat with on gut morphology, intestinal fermentation, nutrient digestibility, and growth performance in weaned pigs. J Anim Sci. 2016;94:4677–4687.
    1. Lei X.J., Yun H.M., Kim I.H. Effects of dietary supplementation of natural and fermented herbs on growth performance, nutrient digestibility, blood parameters, meat quality and fatty acid composition in growing-finishing pigs. Ital J Anim Sci. 2018;17:1–10.
    1. Li T.J. Advances in antibacterial mechanisms of lactic acid bacteria. Microbiology China. 2002;29:81–85.
    1. Li Z.T. Hebei University of Engineering; 2016. Optimization study on production of fermented feed of fungus chaff of pleurotus nebrodensis with growth performance in rabbit.
    1. Li N., Li N. Inhibitory effects of Lactobacillus metabolites on Escherichia coli and Staphylococcus aureus. China Brew. 2009;5:49–52.
    1. Li L., Chen X.L., Xu J.X. Research on process parameters and quality of the complex probiotics fermented feed. J Shanghai Jiaot Univ. 2010
    1. Li L., Chou X.X., Yang H.J. Optimization of fermentation conditions for broiler feed and its application effect. Feed Res. 2019;491:19–22.
    1. Lian J.H. South China Agricultural University; 2016. Effect of Polysaccharide on the growth of probiotics in vitro and the effect of fermented feed on the quality of Xuefeng black bone chicken.
    1. Liang R., Zhen L.I., Gang X.U., Yang Y. Effects of fermentation feed on layer chicks growth performance and physiological indexes. Feed Review. 2012;4:5–8.
    1. Liao X.Y., Dai Q., Yu H.Z. Study on the production of protein feed by mixed fermentation of multi strains. China Feed. 2009;16:8–10.
    1. Liao H.P., Li S.X., Zheng H.P., Zhong W., Xu Y.C. A new acidophilic thermostable endo-1,4-β-mannanase from Penicillium oxalicum GZ-2:cloning, characterization and functional expression in Pichia pastoris. BMC Biotechnol. 2014;14:90.
    1. Lin B.S., Lu J., Li Y.M., Yang X.Y. Optimization of key factors influencing microbial fermented feed production and analysis of composition variation during fermentation process. Chinese Agricultural Science Bulletin. 2015;31:1–6.
    1. Liu L. Zhejiang University; 2015. Antibacterial effect of xylitol on common pathogenic bacteria of animal origin.
    1. Liu B., Cao Y.Q. Lsolation, ldentification and lnulinase production of a basidiomycete strain. J Microbiol. 1996;16:14–19.
    1. Liu B.L., Tzeng Y.M. Water content and water activity for the production of cyclodepsipeptides in solid-state fermentation by Metarhizium anisopliae. Biotechnol Lett. 1999;21:657–661.
    1. Liu C., Sheng J.P., Zou J.H., Wang H.L., Ding Q., Lin S. Effects of microbial changes on physical and chemical characteristics of agaricus bisporus compost during fermentation. Food Sci (N Y) 2010;7:270–271.
    1. Liu T.M., Jun M.S., Si S.Q. Effects of temperature changes on the production processing of soybean peptides by solid state fermentation of soybean meal. China Brew. 2010;29:111–112.
    1. Liu H., Zhang J., Zhang S. Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J Agric Food Chem. 2014;62:860–866.
    1. Liu Y., Li C., Meng X., Yan Y. Biodiesel synthesis directly catalyzed by the fermented solid of Burkholderia cenocepacia via solid state fermentation. Fuel Process Technol. 2016;106:303–309.
    1. Liu Y., Ren H.H., Ma X.M., Xu Y.F., Zhang J., Yao J. Normal NW. Isolation, identification & ferment condition optimization of an inulinase-producing strain. J Microbiol. 2018;38:70–75.
    1. Long Z.D., Chen H.R., Liu H., Zou K.X., Sun J.S., Li J.G. Application of pectin-degrading fungus Aspergillus tubingensis GYC 501 in improvement of tobacco cut-stem quality and optimization of its fermentation conditions. Acta Agriculturae Jiangxi. 2017;29:95–98.
    1. Lyberg K., Lundh T., Pedersen C., Lindberg J.E. Influence of soaking, fermentation and phytase supplementation on nutrient digestibility in pigs offered a grower diet based on wheat and barley. Anim Sci. 2006;82:853–858.
    1. Madrera R.R., Bedrinana R.P., Valles B.S. Production and characterization of aroma compounds from apple pomace by solid-state fermentation with selected yeasts. LWT-Food Science and Technology. 2015;64:1342–1353.
    1. Mai H.T.N., Lee K.M., Choi S.S. Enhanced oxalic acid production from corncob by a methanol-resistant strain of Aspergillus Niger using semi solid-sate fermentation. Process Biochem. 2016;51:9–15.
    1. Mao Y., Chen Z., Lu L., Jin B., Chen T. Efficient solid-state fermentation for the production of 5-aminolevulinic acid enriched feed using recombinant Saccharomyces cerevisiae. J Biotechnol. 2020;322:29–32.
    1. Marco M.L., Heeney D., Binda S., Cifelli C.J., Cotter P.D., Foligne B. Health benefits of fermented foods:microbiota and beyond. Curr Opin Biotechnol. 2017;44:94–102.
    1. Mathew A.G., Chattin S.E., Robbins C.M., Golden D.A. Effects of a direct-fed yeast culture on enteric microbial populations, fermentation acids, and performance of weanling pigs. J Anim Sci. 1998;76:2138–2145.
    1. Mathur G., Mathur A., Sharma B.M., Chauhan R.S. Enhanced production of laccase from Coriolus sp. using Plackett Burman design. J Pharm Res. 2013;6:151–154.
    1. Mcquestin O.J., Shadbolt C.T., Ross T. Quantification of the relative effects of temperature, pH, and water activity on inactivation of Escherichia coli in fermented meat by meta-analysis. Applenvironmicrobiol. 2009;75:6963–6972.
    1. Melikoglu M., Lin C.S.K., Webb C. Kinetic studies on the multi-enzyme solution produced via solid-state fermentation of waste bread by Aspergillus awamori. Biochem Eng J. 2013;80:76–82.
    1. Miao Y.U., Yan J.X., Peng Z.L. Effects of microbial fermented feed on immune function parameter of beef cattle. China Animal Husbandry & Veterinary Medicine. 2013;40:114–117.
    1. Mikkelsen L.L., Jensen B.B. vol. 88. 1997. (Effect of fermented liquid feed (FLF) on growth performance and microbial activity in the gastrointestinal tract of weaned piglets).
    1. Missotten J.A.M., Goris J., Michiels J., Coillie E.V., Herman L., Smet S.D. Screening of isolated lactic acid bacteria as potential beneficial strains for fermented liquid pig feed production. Anim Feed Sci Technol. 2009;150:122–138.
    1. Missotten J.A., Michiels J., Degroote J., Stefaan D.S. Fermented liquid feed for pigs:an ancient technique for the future. J Anim Sci Biotechnol. 2016;6:4–12.
    1. Moran C.A., Scholten R.H., Tricarico J.M., Brook P.H., Verstegen M.W.A. Fermentation of wheat:effects of backslopping different proportions of pre-fermented wheat on the microbial and chemical composition. Arch Anim Nutr. 2006;60:158–169.
    1. Morishita Y., Ogata M. Studies on the alimentary flora of pig. 5. Influence of starvation on the microbial flora. Nihon Juigaku Zasshi the Japanese Journal of Veterinary Science. 1970;32:19–24.
    1. Mukhopadhyay A., Dutta N., Chattopadhyay D., Chakrabarti K. Degumming of ramie fiber and the production of reducing sugars from waste peels using nanoparticle supplemented pectate lyase. Bioresour Technol. 2013;137:202–208.
    1. Mulder R.W.A.W., Havenaar R.J.H.J., Veld Huis I. vol. 94. Springer; Dordrecht: 1997. Intervention strategies:the use of probiotics and competitive exclusion microfloras against contamination with pathogens in pigs and poultry; pp. 187–207. (Probiotics 2).
    1. Mussatto S.I., Ballesteros L.F., Martins S., Teixeira J.A. InTech; 2012. Use of agro-industrial wastes in solid-state fermentation processes.
    1. Na J., Zhang L., Ge Q.P. Induction of pectinolytic enzyme from Bacillus cereus HDYM-02 and application of flax degumming. J Nat Sci Heilongjiang Univ. 2018;35:467–472.
    1. Nagel F.J., Tramper J., Bakker M.S. Model for on-line moisture-content control during solid-state fermentation. Biotechnol Bioeng. 2015;72:231–243.
    1. Nathan C. Microbiology. An antibiotic mimics immunity. Science. 2008;322:1337–1338.
    1. Niba A.T., Beal J.D., Kudi A.C., Brooks P.H. Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry. Afr J Biotechnol. 2009;8:1758–1767.
    1. Niven S.J., Beala J.D., Brooksa P.H. The effect of controlled fermentation on the fate of synthetic lysine in liquid diets for pigs. Anim Feed Sci Technol. 2006;129:304–315.
    1. Nout M.J.R. Fermented foods and food safety. Food Res Int. 1994;27:291–298.
    1. Pandey A. Solid-state fermentation. Biochem Eng J. 2003;13:81–84.
    1. Pandey A.K., Edgard G., Negi S. Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in Sorghum Stover based bioethanol production. Renew Energy. 2016;98:51–56.
    1. Panwar D., Srivastava P.K., Kapoor M. Production, extraction and characterization of alkaline xylanase from Bacillus sp. PKD-9 with potential for poultry feed. Biocatalysis and Agricultural Biotechnology. 2014;3:118–125.
    1. Park S.E., Seo S.H., Kim E.J., Na C.S., Son H.S. Effects of different fermentation temperatures on metabolites of Kimchi. Food Bioscience. 2018;23:100–106.
    1. Patterson J.A., Burkholder K.M. Application of prebiotics and probiotics in poultry production. Poultry Sci. 2003;82:627–631.
    1. Pedersen A. vol. 510. Danish Bacon and Meat Council; Copenhagen, Denmark: 2001. (Fermented liquid feed to piglets).
    1. Pedersen C., Stein H.H. Effects of liquid and fermented liquid feeding on energy, dry matter, protein and phosphorus digestibility by growing pigs. Livest Sci. 2010;134:59–61.
    1. Pirota R.D.P.B., Tonelotto M., Delabona P.S., Fonseca R.F., Paixão D.A.A., Baleeiro F.C.F. Enhancing xylanases production by a new Amazon Forest strain of Aspergillus oryzae using solid-state fermentation under controlled operation conditions. Ind Crop Prod. 2013;45:465–471.
    1. Plahar W.A., Leung H.K. Effect of moisture content on the development of carboxylic acids in traditional maize dough fermentation. J Sci Food Agric. 2010;33:555–558.
    1. Pojanagaroon S. Proceedings of the 45th kasetsart university annual conference, bangkok, Thailand, 30 january-2 february 2007. Subject:Plants. 2007. Effects of pH of fermented water, fermentation and aging time on Krachai-Dam (Kaempferia parviflora) honey wines qualities; pp. 311–318.
    1. Połec B., Baryga A., Szyman´Ski T., Wolynska W., Tobola A. Biogas generation capabilities from beet pulp methane fermentation process. Part II. Semi-continuous beet pulp fermentation. Gazeta Cukrownicza. 2010;118:120–125.
    1. Puwen X.U. Fermented liquid feed:effects on weaner piglet intestinal health. Chinese Journal of Animal Nutrition. 2011;23:2105–2108.
    1. Qiao J.Y., Hongye Y., Jiang Z.Q., Liu S.Q. A novel thermostable β-1,3-1,4-glucanase from Thermoascus aurantiacus and its application in oligosaccharide production from oat bran. Carbohydr Res. 2018;11:31–37.
    1. Qin Q., Kun H., Hong X., Jiang M., Sheng D.M. Low-field nuclear magnetic resonance for online determination of water content during sausage fermentation. J Food Eng. 2017;11:291–297.
    1. Quan C.S., HongTao X.U., Jun-Hua W., Liu C.J., Fan S.D. Lactobacteriocin-safety and natural food preservative. J Microbiol. 2006;26:86–89.
    1. Qureshi A.S., Khushk I., Ali C.H., Chisti Y., Ahmad A., Majeed H. Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass. Biocatalysis and Agricultural Biotechnology. 2016;8:146–151.
    1. Ranjitkar S., Karlsson A.H., Petersen M.A., Bredie W.L.P., Engberg R.M. The influence of feeding crimped kernel maize silage on broiler production, nutrient digestibility and meat quality. Br Poultry Sci. 2016;57:12–23.
    1. Rastogi S., Soni R., Kaur J., Soni S.K. Unravelling the capability of Pyrenophora phaeocomes S-1 for the produc tion of ligno-hemicellulolytic enzyme cocktail and simultaneous bio-delignification of rice straw for enhanced enzymatic saccharification. Bioresour Technol. 2016;222:458–469.
    1. Refstie S., Svihus B., Shearer K.D., Trond S. Nutrient digestibility in Atlantic salmon and broiler chickens related to viscosity and non-starch polysaccharide content in different soyabean products. Anim Feed Sci Technol. 1999;79:331–345.
    1. René L.V.W., Urlings B.A.P., Lipman L.J.A. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl Environ Microbiol. 2001;67:3071–3076.
    1. Rodríguez-Fernández D.E., Rodríguez-León J.A., Carvalho J.C., Sturm W., Soccol C.R. The behavior of kinetic parameters in production of pectinase and xylanase by solid-state fermentation. Bioresour Technol. 2011;102:10657–10662.
    1. Rombenso A., Crouse C., Trushenski J. Comparison of traditional and fermented soybean meals as alternatives to fish meal in hybrid striped bass feeds. N Am J Aquacult. 2013;75:197–204.
    1. Roselli M., Finamore A., Britti M.S., Konstantinov S.R., Smidt H., Willem M. The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage. J Nutr. 2007;137:2709–2716.
    1. Roubosvan D.H.P.J., Nout M.J.R., Beumer R.R., Meulen J.V.D., Zwietering M.H. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells. J Appl Microbiol. 2010;106:1013–1021.
    1. Russell J.B., Diezgonzalez F. The effects of fermentation acids on bacterial growth. Adv Microb Physiol. 1998;39:205–234.
    1. Şanlier N., Gökcen B.B., Sezgin A.C. Health benefits of fermented foods. Crit Rev Food Sci Nutr. 2017;9:1–22.
    1. Savvidou S.E., Beal J.D., Brooks P.H. Liquid feed fermented with Lactobacillus salivarius reduces susceptibility of broiler chickens to Salmonella enterica typhimurium Sal 1344 nalr. British Poultry Abstracts. Taylor & Francis. 2009;5:43–44.
    1. Scholten R.H., Peet-Schwering C.M., Hartog L.A., Balk M., Schrama J.W., Verstegen M.W. Fermented wheat in liquid diets:effects on gastrointestinal characteristics in weanling piglets. J Anim Sci. 2002;80:1179–1186.
    1. Scholten R.H., Rijnen M.M., Schrama J.W., Boer H., Vesseur P.C., Hartog L.A.D. Fermentation of liquid coproducts and liquid compound diets:Part 1. Effects on chemical composition during a 6-d storage period. J Anim Physiol Anim Nutr. 2010;85:111–123.
    1. Shaw J.N., Muth O.H. The use of acidophilus milk in the treatment of dysentery of young animals. J Am Vet Med Assoc. 1937;90:171–175.
    1. Shen H.S., Chen J.C., Tang B.S. 2012. A method for biodegradation of arabinoxylan from wheat bran.
    1. Shen D.C., Yinglin L.U., Zhou W.L., Chen D.W., Ao J.H., Wang Q. Analysis of vinasse with biological fermentation and hydroponics experiment. Sugarcane & Canesugar. 2018;1:12–16.
    1. Shi C., Zhang Y., Yin Y., Wang C., Wang Y. Amino acid and phosphorus digestibility of fermented corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium fed to pigs. J Anim Sci. 2017;95:3996–4004.
    1. Shiliang Y., Donghe L., Yuhang B., Xuena L., Zheng T., Chen Z. Experimental report of feeding fattening cattle with fermented feed. Modern Journal of Animal Husbandry & Veterinary Medicine. 2015;7:31–34.
    1. Shimelis E.A., Rakshit S.K. Influence of natural and controlled fermentations on α-galactosides, antinutrients and protein digestibility of beans (Phaseolus vulgaris L. Int J Food Sci Technol. 2010;43:658–665.
    1. Shiyan Q., Chengli H., Xiangfang Z. Regulation and mechanism of lactic acid bacteria on porcine intestinal barrier function. Chinese Journal of Animal Nutrition. 2014;26:3052–3063.
    1. Sin Y.C., Farah D.A.B., Nor M.M. A thermotolerant Endo-1,4-β-mannanase from Trichoderma virens UKM1:Cloning, recombinant expression and characterization. J Mol Catal B Enzym. 2016
    1. Skrede G., Herstad O., Sahlstr M.S., Holck A., Slinde E., Skrede A. Effects of lactic acid fermentation on wheat and barley carbohydrate composition and production performance in the chicken. Anim Feed Sci Technol. 2003;105 0-148.
    1. Soccol C.R., Costa E.S.F.D., Letti L.A.J. Recent developments and innovations in solid state fermentation. Biotechnology Research & Innovation. 2017;1:52–71.
    1. Steenfeldt S., Marianne H., Anette M. Enzyme supplementation of wheat-based diets for broilers:2. Effect on apparent metabolisable energy content and nutrient digestibility. Anim Feed Sci Technol. 1998;75:45–64.
    1. Sugiharto S., Ranjitkar S. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses:A review. Animal Nutrition. 2018;11:1.
    1. Suhermiyati S., Iriyanti N. The effect of natuzyme in the diets containing non-starch polysaccharides on meat quality of native chicken. Journal of Animal Production. 2011;13:76–82.
    1. Sun L. Anhui Agricultural University; 2008. Studies on solid-state fermentation of rapeseed meal with microorganism.
    1. Sun H., Tang J.W., Fang C.L., Yao X.H., Wu Y.F., Wang X. Molecular analysis of intestinal bacterial microbiota of broiler chickens fed diets containing fermented cottonseed meal. Poultry Sci. 2013;92:392–401.
    1. Sungsam K., Germanbueno G., Minhanh P., Jang J.W., Lee K.J. Effects of dietary supplementation of a Meju, fermented soybean meal, and Aspergillus oryzae for juvenile parrot fish (Oplegnathus fasciatus. Asian-Australas J Anim Sci. 2009;22:849–856.
    1. Svihus B., Herstad O., Newman C.W. Effect of high-moisture storage of barley, oats, and wheat on chemical content and nutritional value for broiler chickens. Acta Agric Scand Sect A Anim Sci. 1997;47:39–47.
    1. Tang J.P., Xiao J.F., Yang W.C., Zhou T., Wu Y.L. 2020. A kind of bio fermentation feed for pig and its preparation method which can replace antibiotics:CN111011632A[P]
    1. Turner D.L., Lamosa P., Rodríguez A., Martinez B. Structure and properties of the metastable bacteriocin Lcn972 from Lactococcus lactis. J Mol Struct. 2013;1031:207–210.
    1. A new strain of larnia aquatica with pectin degradation function Gj-4:CN202010030253. 2020;9:5–8.
    1. Urlings H.A., Mul A.J., Klooster A.T.V.'. Microbial and nutritional aspects of feeding fermented feed (poultry by-products) to pigs. Vet Q. 1993;15:146–151.
    1. Velmurugan P., Hur H., Balachandar V., Kamala-Kannan S., Lee K.J., Lee S.M. Monascus pigment production by solid-state fermentation with corn cob substrate. J Biosci Bioeng. 2011;112:590–594.
    1. ang H., W Study on a-galactosidases and b-galactosidase from bispora sp. MEY-1. Chinese Academy of Agricultural Sciences. 2010
    1. ng H.M., Wa Gene cloning and characterization of α-galactosidases from thermophilic microorganisms. Chinese Academy of Agricultural Sciences. 2010
    1. Wang Y. China Agricultural University; 2014. Study on solid-state fermentation conditions of soybean meal and its application on weaned pigs.
    1. Wang T.Y., Wu Y.H., Jiang C.Y. Solid state fermented potato pulp can be used as poultry feed. Br Poultry Sci. 2010;51:229–234.
    1. Wang J.J., Wang S.X., Lu W.Q. Effects of antibiotic-free microbial fermented feed on immune and antioxidant function of piglets. China Feed. 2011;16:25–27.
    1. Wang J.P., Liu N., Song M.Y., Qin C.L., Ma C.S. Effect of enzymolytic soybean meal on growth performance, nutrient digestibility and immune function of growing broilers. Anim Feed Sci Technol. 2011;169:224–229.
    1. Wang H., Shi P., Luo H., Huang H., Yang P.L., Yao B. A thermophilic α-galactosidase from Neosartorya fischeri P1 with high specific activity, broad substrate specificity and significant hydrolysis ability of soymilk. Bioresour Technol. 2014;153:361–364.
    1. Wang Y., Liu X.T., Wang H.L., Li D.F., Piao X.S., Lu W.Q. Optimization of processing conditions for solid-state fermented soybean meal and its effects on growth performance and nutrient digestibility of weanling pigs. Livest Sci. 2014;170:91–99.
    1. Wang M., Jiang M., Li H., Lu Z.M., Luo C.Q., Xu Z.H. Investigation on the regular patterns of mannan oligosaccharides degradation and utilization by lactic acid bacteria. Food Ferment Ind. 2016;42:20–24.
    1. Wardynski F.A., Rust S.R., Yokoyama M.T. Effect of microbial inoculation of high-moisture corn on fermentation characteristics, aerobic stability, and cattle performance. J Anim Sci. 1993;71:2246–2252.
    1. Wei L.K., Zheng B., Wang H.H. Application of liquid fermented feed in pig breeding. Feed Res. 2019;42:122–125.
    1. Winsen R.L.V., Urlings B.A.P., Lipman L.J.A. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl Environ Microbiol. 2001;67:3071–3076.
    1. Xiang S., Ye K., Li M., Ying J., Zhu X. Xylitol enhances synthesis of propionate in the colon via cross-feeding of gut microbiota. Microbiome. 2021;9:3–18.
    1. Xianzhang Z., Lulu L., Zhixiang W. Effects of fermented feed on growth Performance,Fatty liver Performance,Intestinal mucosa structure and organ tissue ATPase activity of landaise geese. Chinese Journal of Animal Nutrition. 2013;25:2668–2674.
    1. Xie Z., Hu L., Li Y., Geng S.J., Cheng S.S., Fu X.F. Changes of gut microbiota structure and morphology in weaned piglets treated with fresh fermented soybean meal. World J Microbiol Biotechnol. 2017;33:213–224.
    1. Xijie Z., Hua L., Jianliang L., Xie D.X., Xu J., Huo C.M. A study on the benefit of feeding Hy-line white egg with fermented feed. Southwest China J Agric Sci. 2007;20:529–533.
    1. Xinxu H., Yinghua Z., Huizhi L., Wang S.P., Gao S.F., Zhou X.L. Effects of fermented feed without antibiotic on growth Performance, Intestinal Flora, Blood biochemical parameters and immune function of weaner piglets. Chinese Journal of Animal Nutrition. 2013;25:2989–2997.
    1. XiuLin Z., XiaoBing W., ChangBo O., Wang Q.X., Liu M.C., Chen Q. Research progress of probiotics fermented feed effects on growth performance and immune function in piglets. China Animal Husbandry & Veterinary Medicine. 2017;44:476–481.
    1. Yang L.J., Yang Z., Yang W., Li H.R., Zhang C.Y., Jiang S.Z. Conventional solid fermentation alters mycotoxin contents and microbial diversity analyzed by high-throughput sequencing of a Fusarium mycotoxin-contaminated diet. Can J Anim Sci. 2018;98:354–361.
    1. Yang L.J., Xue X.S., Song Q.L., Wei L.J., Zeng X.F., Qiao S.Y. Effects of vinegar Lees by solid state fermentation on growth performance, nutrient apparent digestibility, serum indexes and volatile fatty acid content in feces of finishing pigs. Animal Nutrition. 2020;32:119–128.
    1. Yang H., Wang B., Zhang Q., Cheng H., Yu H. Improvement of fermentation quality in the fermented total mixed. Ration with Oat Silage. 2021;9:420.
    1. Ying W., Zhu R., Lu W., Gong L. A new strategy to apply Bacillus subtilis, MA139 for the production of solid-state fermentation feed. Lett Appl Microbiol. 2010;49:229–234.
    1. Yu Z., Dong B., Lu W. Dynamics of bacterial community in solid-state fermented feed revealed by 16S rRNA. Lett Appl Microbiol. 2010;49:166–172.
    1. Yu J., Wang W.H., Menghe B.L.G. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia. J Dairy Sci. 2011;94:3229–3241.
    1. Yu B., Lan X.Y., He Z.J., Ji Y.X., Han L.S., Chen G.H. Research progress of microbial fermented feed in China. Modern Animal Husbandry Science & Technology. 2019;10:6–8.
    1. Yuan L., Chang J., Yin Q., Lu M., Di Y.R., Wang P. Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Animal Nutrition. 2017;3:19–24.
    1. Zeng Y.Y., Fang Q., Huang Z.Y., Huang D.W. Study on acid production of different kinds of hogwash waste oil by anaerobic fermentation. Appl Chem Ind. 2020;336:72–76.
    1. Zhang L.F. Discusstion on bacteriostatic mechanism of lactic acid bacteria metabolites in vitro. Feed Review. 2006;12:4–6.
    1. Zhang J., Ou S.Y., Zhang N. Processing study on ferulic acid and oligosaccharides prepared from enzymatin hydrolysis of destorched wheat bran. Food Sci (N Y) 2003;24:63–68.
    1. hang H.B., Z, Feng-Lei L.I., Ying L.U., Ming Y.E. Condition optimization and result analysis of swill fermentation by mixed fermentation. J Hefei Univ Technol (Nat Sci) 2012
    1. Zhang H.Y., Yi J.Q., Piao X.S., Li P.F., Zeng Z.K., Wang D. The metabolizable energy value, standardized ileal digestibility of amino acids in soybean meal, soy protein concentrate and fermented soybean meal, and the application of these products in early-weaned piglets. Asian-australasian Journal of Animal Sciences. 2013;26:691–699.
    1. Zhang P., Yang G.H., Wei L.J. Study on solid-state fermentation of rice husk powder to produce protein feed. China Feed. 2015;8:25–27.
    1. Zhang J., Zhang X., Lijun L.I., Xiao Q., Weng H.F., Ni H. Solid-fermentation process of soybean meal with different probiotics. J Jimei Univ. 2018
    1. Zhang P.F., Li X.L., Wang Z.Q., Yuan X.H., Li J.J., Du Y.G. Overexpression and characterization of endo-β-1, 4-mannanase from Aspergillus nidulans in Pichia pastoris. Acta Microbiol Sin. 2018;58:391–400.
    1. Zhao H., Wang X.T., Tang J.Y., Tang X.P., Gang J., Liu G.M., Wang K.N. Nutritional improvement of sweet potato residue by solid-state fermentation with mixed microbe strains. Animal Nutrition. 2015;27:1191–1198.
    1. Zhongli P., Chunhua G., Xue B., Zhu W.L., Fu X.S., Wang Y.L. Effects of fermented feed on production performance, digestibility of dietary nutrients, blood biochemical indices in goat. J Agric Sci Technol. 2013;15:106–113.
    1. Zhou M.J., Li T., Zeng Y. Effect of moisture content on fermented feed quality. China Feed. 2013;7:12–14.
    1. Zhu H., Wu W.R., He L.M., Lei X., Zhou J.P., Huang Z.X. Biochemical characterization of mannanase produced by Cladosporium velox in culture medium of plam kernal meal. Guangdong Journal of Animal and Veterinary Science. 2018;43:43–47.

Source: PubMed

Подписаться