The EMBRACE II study: The outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies

Richard Pötter, Kari Tanderup, Christian Kirisits, Astrid de Leeuw, Kathrin Kirchheiner, Remi Nout, Li Tee Tan, Christine Haie-Meder, Umesh Mahantshetty, Barbara Segedin, Peter Hoskin, Kjersti Bruheim, Bhavana Rai, Fleur Huang, Erik Van Limbergen, Max Schmid, Nicole Nesvacil, Alina Sturdza, Lars Fokdal, Nina Boje Kibsgaard Jensen, Dietmar Georg, Marianne Assenholt, Yvette Seppenwoolde, Christel Nomden, Israel Fortin, Supriya Chopra, Uulke van der Heide, Tamara Rumpold, Jacob Christian Lindegaard, Ina Jürgenliemk-Schulz, EMBRACE Collaborative Group, Richard Pötter, Kari Tanderup, Christian Kirisits, Astrid de Leeuw, Kathrin Kirchheiner, Remi Nout, Li Tee Tan, Christine Haie-Meder, Umesh Mahantshetty, Barbara Segedin, Peter Hoskin, Kjersti Bruheim, Bhavana Rai, Fleur Huang, Erik Van Limbergen, Max Schmid, Nicole Nesvacil, Alina Sturdza, Lars Fokdal, Nina Boje Kibsgaard Jensen, Dietmar Georg, Marianne Assenholt, Yvette Seppenwoolde, Christel Nomden, Israel Fortin, Supriya Chopra, Uulke van der Heide, Tamara Rumpold, Jacob Christian Lindegaard, Ina Jürgenliemk-Schulz, EMBRACE Collaborative Group

Abstract

The publication of the GEC-ESTRO recommendations one decade ago was a significant step forward for reaching international consensus on adaptive target definition and dose reporting in image guided adaptive brachytherapy (IGABT) in locally advanced cervical cancer. Since then, IGABT has been spreading, particularly in Europe, North America and Asia, and the guidelines have proved their broad acceptance and applicability in clinical practice. However, a unified approach to volume contouring and reporting does not imply a unified administration of treatment, and currently both external beam radiotherapy (EBRT) and IGABT are delivered using a large variety of techniques and prescription/fractionation schedules. With IGABT, local control is excellent in limited and well-responding tumours. The major challenges are currently loco-regional control in advanced tumours, treatment-related morbidity, and distant metastatic disease. Emerging evidence from the RetroEMBRACE and EMBRACE I studies has demonstrated that clinical outcome is related to dose prescription and technique. The next logical step is to demonstrate excellent clinical outcome with the most advanced EBRT and brachytherapy techniques based on an evidence-based prospective dose and volume prescription protocol. The EMBRACE II study is an interventional and observational multicentre study which aims to benchmark a high level of local, nodal and systemic control while limiting morbidity, using state of the art treatment including an advanced target volume selection and contouring protocol for EBRT and brachytherapy, a multi-parametric brachytherapy dose prescription protocol (clinical validation of dose constraints), and use of advanced EBRT (IMRT and IGRT) and brachytherapy (IC/IS) techniques (clinical validation). The study also incorporates translational research including imaging and tissue biomarkers.

Keywords: Adaptive radiotherapy; Brachytherapy; Cervix cancer; Local control; MRI guided radiotherapy; Morbidity.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
The figure demonstrates the principles for dose de-escalation and dose escalation in EMBRACE II. The current distribution of CTVHR dose and volume in the EMBRACE study is shown (each point represents one patient). A number of 6 dose and volume groups are defined according to cut-points of 85 Gy and 95 Gy for the adaptive CTVHR D90 and of 30 cm3 for the CTVHR volume. For each dose-volume group the expected actuarial local control at 3 years is indicated, according to dose-effect data from the retroEMBRACE study .
Fig. 2
Fig. 2
Schematic diagram for EBRT and brachytherapy targets in cervical cancer, stage IIB bulky disease and good response after chemo-radiotherapy: coronal, transversal and sagittal view. For further details see figure 3.3 and 9.6 in the EMBRACE II protocol adapted from figure 5.10 from ICRU report 89 . Panel A: EBRT targets: large GTV-Tinit, initial CTV-THR, and initial CTV-TLR. Panel B: Brachytherapy targets: limited GTV-Tres (residual GTV), adaptive CTV-THR, and CTV-TIR (GTV-Tinit plus margins around the CTV-THR). Maximum width, thickness and height of the adaptive CTV-THR are indicated.
Fig. 3
Fig. 3
Schematic Diagram for lymph node elective CTVs based on risk of lymphatic spread, “Small Pelvis”, “Large Pelvis”, “Large Pelvis + para-aortic”. The risk groups are defined in .

References

    1. Haie-Meder C., Pötter R., Van Limbergen E., Briot E., De Brabandere M., Dimopoulos J. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group☆ (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235–245.
    1. Pötter R., Haie-Meder C., Van Limbergen E., Barillot I., De Brabandere M., Dimopoulos J. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67–77.
    1. Hellebust T.P., Kirisits C., Berger D., Pérez-Calatayud J., De Brabandere M., De Leeuw A. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother Oncol. 2010;96:153–160.
    1. Dimopoulos J.C.A., Petrow P., Tanderup K., Petric P., Berger D., Kirisits C. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012;103:113–122.
    1. Tan L.T. Implementation of Image-guided Brachytherapy for Cervix Cancer in the UK: progress Update. Clin Oncol. 2011;23:681–684.
    1. Grover S., Harkenrider M.M., Cho L.P., Erickson B., Small C., Small W. Image Guided Cervical Brachytherapy: 2014 Survey of the American Brachytherapy Society. Int J Radiat Oncol. 2016;94:598–604.
    1. Mahantshetty U., Swamidas J., Khanna N., Engineer R., Merchant N.H., Deshpande D.D. Reporting and Validation of Gynaecological Groupe Euopeen de Curietherapie European Society for Therapeutic Radiology and Oncology (ESTRO) Brachytherapy Recommendations for MR Image-Based Dose Volume Parameters and Clinical Outcome With High Dose-Rate Brachytherapy in Cervical Cancers. Int J Gynecol Cancer. 2011;21:1110–1116.
    1. Tharavichitkul E., Chakrabandhu S., Wanwilairat S., Tippanya D., Nobnop W., Pukanhaphan N. Intermediate-term results of image-guided brachytherapy and high-technology external beam radiotherapy in cervical cancer: Chiang Mai University experience. Gynecol Oncol. 2013;130:81–85.
    1. International Commission on Radiation Units and Measurements. Prescribing, Recording, and Reporting Brachytherapy for Cancer of the Cervix (ICRU report 89). Bethesda: 2013.
    1. EMBRACE .
    1. retroEMBRACE .
    1. Pötter R., Georg P., Dimopoulos J.C.A., Grimm M., Berger D., Nesvacil N. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100:116–123.
    1. Lindegaard J.C., Fokdal L.U., Nielsen S.K., Juul-Christensen J., Tanderup K. MRI-guided adaptive radiotherapy in locally advanced cervical cancer from a Nordic perspective. Acta Oncol. 2013;52:1510–1519.
    1. Ribeiro I., Janssen H., De Brabandere M., Nulens A., De Bal D., Vergote I. Long term experience with 3D image guided brachytherapy and clinical outcome in cervical cancer patients. Radiother Oncol, 2016;120:447–454.
    1. Nomden C.N., de Leeuw A.A.C., Roesink J.M., Tersteeg R.J.H.A., Moerland M.A., Witteveen P.O. Clinical outcome and dosimetric parameters of chemo-radiation including MRI guided adaptive brachytherapy with tandem-ovoid applicators for cervical cancer patients: a single institution experience. Radiother Oncol. 2013;107:69–74.
    1. Gill B.S., Kim H., Houser C.J., Kelley J.L., Sukumvanich P., Edwards R.P. MRI-guided high-dose-rate intracavitary brachytherapy for treatment of cervical cancer: the University of Pittsburgh experience. Int J Radiat Oncol Biol Phys. 2015;91:540–547.
    1. Rijkmans E.C., Nout R.A., Rutten I.H.H.M., Ketelaars M., Neelis K.J., Laman M.S. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional brachytherapy. Gynecol Oncol. 2014;135:231–238.
    1. Charra-Brunaud C., Harter V., Delannes M., Haie-Meder C., Quetin P., Kerr C. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the French STIC prospective study. Radiother Oncol. 2012;103:305–313.
    1. Tinkle C.L., Weinberg V., Chen L.-M., Littell R., Cunha J.A.M., Sethi R.A. Inverse Planned High-Dose-Rate Brachytherapy for Locoregionally Advanced Cervical Cancer: 4-Year Outcomes. Int J Radiat Oncol Biol Phys. 2015;92:1093–1100.
    1. Castelnau-Marchand P., Chargari C., Maroun P., Dumas I., Del Campo E.R., Cao K. Clinical outcomes of definitive chemoradiation followed by intracavitary pulsed-dose rate image-guided adaptive brachytherapy in locally advanced cervical cancer. Gynecol Oncol. 2015;139:288–294.
    1. Mahantshetty U., Krishnatry R., Hande V., Jamema S., Ghadi Y., Engineer R. Magnetic resonance image guided adaptive brachytherapy in locally advanced cervical cancer: an experience from a tertiary cancer centre in a low-middle income country setting. Int J Radiat Oncol. 2017;99:608–617.
    1. Sturdza A., Pötter R., Fokdal L.U., Haie-Meder C., Tan L.T., Mazeron R. Image guided brachytherapy in locally advanced cervical cancer: improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother Oncol. 2016;120:428–433.
    1. Jensen N.B.K., Kirchheiner K., Fokdal L.U., Lindegaard J.C., Kirisits C., Mazeron R. Bowel morbidity in cervix cancer after RCHT+IGABT; physician and patient reported outcome - EMBRACE. Radiother Oncol. 2017;123:S26–7.
    1. Fokdal L.U., Kirchheiner K., Kibsgaard Jensen N., Lindegaard J.C., Kirisits K., Chagari C. Physician assessed and patient reported bladder morbidity after RCHT and IGABT for cervical cancer. Radiother Oncol. 2017;123:S23–4.
    1. Kang H.-C., Shin K.H., Park S.-Y., Kim J.-Y. 3D CT-based high-dose-rate brachytherapy for cervical cancer: clinical impact on late rectal bleeding and local control. Radiother Oncol. 2010;97:507–513.
    1. Smet S., Najjari-Jamal D., Bk Jensen N., Fokdal L., Lindegaard J.C., Kirisits C. Fatigue, insomnia, hot flashes (CTCAE) after definitive RCHT+IGABT for cervical cancer (EMBRACE) Radiother Oncol. 2017;123:S22–3.
    1. Nesvacil N., Schmid M.P., Pötter R., Kronreif G., Kirisits C. Combining transrectal ultrasound and CT for image-guided adaptive brachytherapy of cervical cancer: Proof of concept. Brachytherapy. 2016;15(6):839–844.
    1. Kirchheiner K., Pötter R., Tanderup K., Lindegaard J.C., Haie-Meder C., Petrič P. Health-related quality of life in locally advanced cervical cancer patients after definitive chemoradiation therapy including image guided adaptive brachytherapy: an analysis from the EMBRACE study. Int J Radiat Oncol Biol Phys. 2016;94:1088–1098.
    1. Petrič P., Hudej R., Rogelj P., Blas M., Tanderup K., Fidarova E. Uncertainties of target volume delineation in MRI guided adaptive brachytherapy of cervix cancer: a multi-institutional study. Radiother Oncol. 2013;107:6–12.
    1. Hellebust T.P., Tanderup K., Lervåg C., Fidarova E., Berger D., Malinen E. Dosimetric impact of interobserver variability in MRI-based delineation for cervical cancer brachytherapy. Radiother Oncol. 2013;107:13–19.
    1. Tanderup K., Lindegaard J.C., Kirisits C., Haie-Meder C., Kirchheiner K., de Leeuw A. Image Guided Adaptive Brachytherapy in cervix cancer: a new paradigm changing clinical practice and outcome. Radiother Oncol. 2016;120:365–369.
    1. Schmid M., Haie-Meder C., Mahanshetty U., Jürgenliemk-Schulz I.M., Segedin B., Hoskin P. Local failures after radiochemotherapy and MR-image-guided brachytherapy in cervical cancer patients. Radiother Oncol. 2017;123:S26.
    1. Tanderup K., Fokdal L.U., Sturdza A., Haie-Meder C., Mazeron R., van Limbergen E. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer. Radiother Oncol. 2016;120:441–446.
    1. Fokdal L., Sturdza A., Mazeron R., Haie-Meder C., Tan L.T., Gillham C. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: analysis from the retroEMBRACE study. Radiother Oncol. 2016;120:434–440.
    1. Fortin I., Tanderup K., Haie-Meder C., Lindegaard J.C., Mahantshetty U., Segedin B. Image guided brachytherapy in cervical cancer: a comparison between intracavitary and combined intracavitary/interstitial brachytherapy in regard to doses to HR CTV, OARs and late morbidity – early results from the embrace study in 999 patients. Brachytherapy. 2016;15:S21.
    1. Kirchheiner K., Nout R.A., Tanderup K., Lindegaard J.C., Westerveld H., Haie-Meder C. Manifestation pattern of early-late vaginal morbidity after definitive radiation (chemo)therapy and image-guided adaptive brachytherapy for locally advanced cervical cancer: an analysis from the EMBRACE study. Int J Radiat Oncol. 2014;89:88–95.
    1. Kirchheiner K., Nout R.A., Lindegaard J.C., Haie-Meder C., Mahantshetty U., Segedin B. Dose-effect relationship and risk factors for vaginal stenosis after definitive radio(chemo)therapy with image-guided brachytherapy for locally advanced cervical cancer in the EMBRACE study. Radiother Oncol. 2016;118:160–166.
    1. Mohamed S., Lindegaard J.C., de Leeuw A.A.C., Jürgenliemk-Schulz I., Kirchheiner K., Kirisits C. Vaginal dose de-escalation in image guided adaptive brachytherapy for locally advanced cervical cancer. Radiother Oncol. 2016;120:480–485.
    1. Westerveld H., Pötter R., Berger D., Dankulchai P., Dörr W., Sora M.-C. Vaginal dose point reporting in cervical cancer patients treated with combined 2D/3D external beam radiotherapy and 2D/3D brachytherapy. Radiother Oncol. 2013;107:99–105.
    1. Westerveld H., de Leeuw A., Kirchheiner K., Dankulchai P., Oosterveld B., Oinam A. Multicentre evaluation of a novel vaginal dose reporting method in 153 cervical cancer patients. Radiother Oncol. 2016;120:420–427.
    1. Mazeron R., Fokdal L.U., Kirchheiner K., Georg P., Jastaniyah N., Šegedin B. Dose-volume effect relationships for late rectal morbidity in patients treated with chemoradiation and MRI-guided adaptive brachytherapy for locally advanced cervical cancer: results from the prospective multicenter EMBRACE study. Radiother Oncol. 2016;120:412–419.
    1. Georg P., Pötter R., Georg D., Lang S., Dimopoulos J.C.A., Sturdza A.E. Dose Effect Relationship for Late Side Effects of the Rectum and Urinary Bladder in Magnetic Resonance Image-Guided Adaptive Cervix Cancer Brachytherapy. Int J Radiat Oncol. 2012;82:653–657.
    1. Koom W.S., Sohn D.K., Kim J.-Y., Kim J.W., Shin K.H., Yoon S.M. Computed tomography-based high-dose-rate intracavitary brachytherapy for uterine cervical cancer: preliminary demonstration of correlation between dose-volume parameters and rectal mucosal changes observed by flexible sigmoidoscopy. Int J Radiat Oncol. 2007;68:1446–1454.
    1. Mazeron R., Maroun P., Castelnau-Marchand P., Dumas I., del Campo E.R., Cao K. Pulsed-dose rate image-guided adaptive brachytherapy in cervical cancer: dose-volume effect relationships for the rectum and bladder. Radiother Oncol. 2015;116:226–232.
    1. Chopra S., Dora T., Engineer R., Mechanery S., Agarwal P., Kannan S. Late rectal toxicity after image-based high-dose-rate interstitial brachytherapy for postoperative recurrent and/or residual cervical cancers: EQD2 predictors for Grade ≥II toxicity. Brachytherapy. 2015;14:881–888.
    1. Ujaimi R., Milosevic M., Fyles A., Beiki-Ardakani A., Carlone M., Jiang H. Intermediate dose–volume parameters and the development of late rectal toxicity after MRI-guided brachytherapy for locally advanced cervix cancer. Brachytherapy. 2017;16:968–975.
    1. Stanic S., Mayadev J.S. Tolerance of the Small Bowel to Therapeutic Irradiation. Int J Gynecol Cancer. 2013;23:592–597.
    1. Søndergaard J, Holmberg M, Jakobsen AR, Agerbæk M, Muren LP, Høyer M. A comparison of morbidity following conformal versus intensity-modulated radiotherapy for urinary bladder cancer. Acta Oncol (Madr) 2014;53:1321–8.
    1. Letschert J.G., Lebesque J.V., Aleman B.M., Bosset J.F., Horiot J.C., Bartelink H. The volume effect in radiation-related late small bowel complications: results of a clinical study of the EORTC Radiotherapy Cooperative Group in patients treated for rectal carcinoma. Radiother Oncol. 1994;32:116–123.
    1. Naik A., Gurjar O.P., Gupta K.L., Singh K., Nag P., Bhandari V. Comparison of dosimetric parameters and acute toxicity of intensity-modulated and three-dimensional radiotherapy in patients with cervix carcinoma: a randomized prospective study. Cancer Radiothérapie J La Société Fr Radiothérapie Oncol. 2016;20:370–376.
    1. Gandhi A.K., Sharma D.N., Rath G.K., Julka P.K., Subramani V., Sharma S. Early clinical outcomes and toxicity of intensity modulated versus conventional pelvic radiation therapy for locally advanced cervix carcinoma: a prospective randomized study. Int J Radiat Oncol Biol Phys. 2013;87:542–548.
    1. Mundt A.J., Mell L.K., Roeske J.C. Preliminary analysis of chronic gastrointestinal toxicity in gynecology patients treated with intensity-modulated whole pelvic radiation therapy. Int J Radiat Oncol Biol Phys. 2003;56:1354–1360.
    1. Chopra S., Engineer R., Mahantshetty U.M., Dora T., Kannan S., Phurailatpam R. Phase III RCT of Postoperative Adjuvant Conventional Radiation (3DCRT) Versus IGIMRT for Reducing Late Bowel Toxicity in Cervical Cancer (PARCER) (NCT01279135/CTRI2012/120349): results of Interim Analyses. Int J Radiat Oncol Biol Phys. 2015;93:S4.
    1. Klopp A.H., Yeung A.R., Deshmukh S., Gil K.M., Wenzel L., Westin S.N. A Phase III Randomized Trial Comparing Patient-Reported Toxicity and Quality of Life (QOL) During Pelvic Intensity Modulated Radiation Therapy as Compared to Conventional Radiation Therapy. Int J Radiat Oncol. 2016;96:S3.
    1. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: individual patient data meta-analysis. Cochrane Database Syst Rev 2010:CD008285.
    1. Green JA, Kirwan JJ, Tierney J, Vale CL, Symonds PR, Fresco LL, et al. Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix. In: Green JA, editor. Cochrane Database Syst. Rev., Chichester, UK: John Wiley & Sons, Ltd; 2005, p. CD002225.
    1. Schmid M.P., Franckena M., Kirchheiner K., Sturdza A., Georg P., Dörr W. Distant metastasis in patients with cervical cancer after primary radiotherapy with or without chemotherapy and image guided adaptive brachytherapy. Gynecol Oncol. 2014;133:256–262.
    1. Fortin I., Jürgenliemk-Schulz I., Mahantshetty U.M., Haie-Meder C., Hoskin P., Segedin B. Distant metastases in locally advanced cervical cancer pattern of relapse and prognostic factors: early results from the EMBRACE study. Int J Radiat Oncol. 2015;93:S8–9.
    1. Nomden C., de Leeuw A.A.C., Tanderup K., Lindegaard J.C., Kirisits C., Haie-Meder C. Nodal failure after chemoradiation and magnetic resonance imaging guided adaptive BT in cervical cancer: a subanalysis within embrace. Int J Radiat Oncol Biol Phys. 2016;96:S12.
    1. Beadle B.M., Jhingran A., Yom S.S., Ramirez P.T., Eifel P.J. Patterns of regional recurrence after definitive radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2010;76:1396–1403.
    1. Dimopoulos J.C.A., Kirisits C., Petric P., Georg P., Lang S., Berger D. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: clinical feasibility and preliminary results. Int J Radiat Oncol. 2006;66:83–90.
    1. Kirisits C., Lang S., Dimopoulos J., Berger D., Georg D., Pötter R. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys. 2006;65:624–630.
    1. Fokdal L., Tanderup K., Hokland S.B., Røhl L., Pedersen E.M., Nielsen S.K. Clinical feasibility of combined intracavitary/interstitial brachytherapy in locally advanced cervical cancer employing MRI with a tandem/ring applicator in situ and virtual preplanning of the interstitial component. Radiother Oncol. 2013;107:63–68.
    1. Nkiwane K.S., Pötter R., Tanderup K., Federico M., Lindegaard J.C., Kirisits C. Single line source with and without vaginal loading and the impact on target coverage and organ at risk doses for cervix cancer Stages IB, II, and IIIB: treatment planning simulation in patients treated with MRI-guided adaptive brachytherapy in a multicen. Brachytherapy. 2013;12:317–323.
    1. Kirisits C., Federico M., Nkiwane K., Fidarova E., Jürgenliemk-Schulz I., de Leeuw A. Quality assurance in MR image guided adaptive brachytherapy for cervical cancer: final results of the EMBRACE study dummy run. Radiother Oncol. 2015;117:548–554.
    1. Laursen L.V., Elstrøm U.V., Vestergaard A., Muren L.P., Petersen J.B., Lindegaard J.C. Residual rotational set-up errors after daily cone-beam CT image guided radiotherapy of locally advanced cervical cancer. Radiother Oncol. 2012;105:220–225.
    1. Berger T., Assenholt M., Seppenwoolde Y., Mahantshetty U.M., Jürgenliemk-Schulz I.M., Hoskin P. Importance of technique, dose prescription, and contouring in cervix external beam radiation therapy: current and future practice in a large multicenter study (EMBRACE) Int J Radiat Oncol Biol Phys. 2016;96:E292.
    1. Lindegaard J.C., Assenholt M.S., Ramlov A., Fokdal L.U., Alber M., Tanderup K. Early clinical outcome of coverage probability based treatment planning in locally advanced cervical cancer for simultaneous integrated boost of nodes. Acta Oncol. 2017;56:1479–1486.
    1. Ramlov A., Kroon P.S., Jürgenliemk-Schulz I.M., De Leeuw A.A.C., Gormsen L.C., Fokdal L.U. Impact of radiation dose and standardized uptake value of (18)FDG PET on nodal control in locally advanced cervical cancer. Acta Oncol. 2015;54:1567–1573.
    1. Kidd E.A., Siegel B.A., Dehdashti F., Grigsby P.W. Pelvic lymph node F-18 fluorodeoxyglucose uptake as a prognostic biomarker in newly diagnosed patients with locally advanced cervical cancer. Cancer. 2010;116:1469–1475.
    1. Kim D.H., Kim W.T., Bae J.S., Ki Y.K., Park D., Suh D.S. Maximum Standardized Uptake Value of Pelvic Lymph Nodes in [18F]-Fluorodeoxyglucose Positron Emission Tomography Is a Prognostic Factor for Para-Aortic Lymph Node Recurrence in Pelvic Node-Positive Cervical Cancer Treated With Definitive Chemoradiotherapy. Int J Gynecol Cancer. 2016;26:1274–1280.
    1. Song S., Kim J.-Y., Kim Y.-J., Yoo H.J., Kim S.H., Kim S.-K. The size of the metastatic lymph node is an independent prognostic factor for the patients with cervical cancer treated by definitive radiotherapy. Radiother Oncol. 2013;108:168–173.
    1. Vargo J.A., Kim H., Choi S., Sukumvanich P., Olawaiye A.B., Kelley J.L. Extended field intensity modulated radiation therapy with concomitant boost for lymph node-positive cervical cancer: analysis of regional control and recurrence patterns in the positron emission tomography/computed tomography era. Int J Radiat Oncol Biol Phys. 2014;90:1091–1098.
    1. Ramlov A., Assenholt M.S., Jensen M.F., Grønborg C., Nout R., Alber M. Clinical implementation of coverage probability planning for nodal boosting in locally advanced cervical cancer. Radiother Oncol. 2017;123:158–163.
    1. Halle C., Andersen E., Lando M., Aarnes E.-K., Hasvold G., Holden M. Hypoxia-Induced Gene Expression in Chemoradioresistant Cervical Cancer Revealed by Dynamic Contrast-Enhanced MRI. Cancer Res. 2012;72:5285–5295.
    1. Samuels S., Balint B., von der Leyen H., Hupé P., de Koning L., Kamoun C. Precision medicine in cancer: challenges and recommendations from an EU-funded cervical cancer biobanking study. Br J Cancer. 2016;115:1575–1583.
    1. Ngo C., Samuels S., Bagrintseva K., Slocker A., Hupé P., Kenter G. From prospective biobanking to precision medicine: BIO-RAIDs – an EU study protocol in cervical cancer. BMC Cancer. 2015;15:842.
    1. Chakraborty S., Mahantshetty U., Chopra S., Lewis S., Hande V., Gudi S. Income generated by women treated with magnetic resonance imaging-based brachytherapy: a simulation study evaluating the macroeconomic benefits of implementing a high-end technology in a public sector healthcare setting. Brachytherapy. 2017
    1. Kerkmeijer L.G.W., Fuller C.D., Verkooijen H.M., Verheij M., Choudhury A., Harrington K.J. The MRI-linear accelerator consortium: evidence-based clinical introduction of an innovation in radiation oncology connecting researchers, methodology, data collection, quality assurance, and technical development. Front Oncol. 2016;6:215.
    1. van de Schoot A.J.A.J., de Boer P., Crama K.F., Visser J., Stalpers L.J.A., Rasch C.R.N. Dosimetric advantages of proton therapy compared with photon therapy using an adaptive strategy in cervical cancer. Acta Oncol (Madr) 2016;55:892–899.
    1. Wakatsuki M., Kato S., Ohno T., Karasawa K., Kiyohara H., Tamaki T. Clinical outcomes of carbon ion radiotherapy for locally advanced adenocarcinoma of the uterine cervix in phase 1/2 clinical trial (protocol 9704) Cancer. 2014;120:1663–1669.
    1. Wakatsuki M., Kato S., Ohno T., Karasawa K., Ando K., Kiyohara H. Dose–escalation study of carbon ion radiotherapy for locally advanced squamous cell carcinoma of the uterine cervix (9902) Gynecol Oncol. 2014;132:87–92.
    1. Langendijk J.A., Lambin P., De Ruysscher D., Widder J., Bos M., Verheij M. Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach. Radiother Oncol. 2013;107:267–273.
    1. Widder J., van der Schaaf A., Lambin P., Marijnen C.A.M., Pignol J.-P., Rasch C.R. The quest for evidence for proton therapy: model-based approach and precision medicine. Int J Radiat Oncol. 2016;95:30–36.
    1. Eminowicz G., McCormack M. Variability of clinical target volume delineation for definitive radiotherapy in cervix cancer. Radiother Oncol. 2015;117:542–547.
    1. Eminowicz G., Rompokos V., Stacey C., McCormack M. The dosimetric impact of target volume delineation variation for cervical cancer radiotherapy. Radiother Oncol. 2016;120:493–499.
    1. Turner S., Eriksen J.G., Trotter T., Verfaillie C., Benstead K., Giuliani M. Establishing a Global Radiation Oncology Collaboration in Education (GRaCE): objectives and priorities. Radiother Oncol. 2015;117:188–192.
    1. Eriksen J.G., Leech M., Benstead K., Verfaillie C. Perspectives on medical education in radiation oncology and the role of the ESTRO School. Clin Transl Radiat Oncol. 2016;1:15–18.
    1. Nout R., de Leeuw A.A.C., van Leuwen R., Mans A., Verhoef C., Jürgenliemk-Schulz I.M. Implementatie en “quality assurance” van “state-of-the-art” radiotherapie voor gevorderd cervixcarcinoom in Nederland: een kwaliteitsbevorderingsproject. Int J Radiat Oncol Biol Phys. 2017;14:117–121.

Source: PubMed

Подписаться