Safety and immunogenicity of ChAd63-KH vaccine in post-kala-azar dermal leishmaniasis patients in Sudan

Brima M Younis, Mohamed Osman, Eltahir A G Khalil, Francesco Santoro, Simone Furini, Rebecca Wiggins, Ada Keding, Monica Carraro, Anas E A Musa, Mujahid A A Abdarahaman, Laura Mandefield, Martin Bland, Toni Aebischer, Rhian Gabe, Alison M Layton, Charles J N Lacey, Paul M Kaye, Ahmed M Musa, Brima M Younis, Mohamed Osman, Eltahir A G Khalil, Francesco Santoro, Simone Furini, Rebecca Wiggins, Ada Keding, Monica Carraro, Anas E A Musa, Mujahid A A Abdarahaman, Laura Mandefield, Martin Bland, Toni Aebischer, Rhian Gabe, Alison M Layton, Charles J N Lacey, Paul M Kaye, Ahmed M Musa

Abstract

Post-kala-azar dermal leishmaniasis (PKDL) is a chronic, stigmatizing skin condition occurring frequently after apparent clinical cure from visceral leishmaniasis. Given an urgent need for new treatments, we conducted a phase IIa safety and immunogenicity trial of ChAd63-KH vaccine in Sudanese patients with persistent PKDL. LEISH2a (ClinicalTrials.gov: NCT02894008) was an open-label three-phase clinical trial involving sixteen adult and eight adolescent patients with persistent PKDL (median duration, 30 months; range, 6-180 months). Patients received a single intramuscular vaccination of 1 × 1010 viral particles (v.p.; adults only) or 7.5 × 1010 v.p. (adults and adolescents), with primary (safety) and secondary (clinical response and immunogenicity) endpoints evaluated over 42-120 days follow-up. AmBisome was provided to patients with significant remaining disease at their last visit. ChAd63-KH vaccine showed minimal adverse reactions in PKDL patients and induced potent innate and cell-mediated immune responses measured by whole-blood transcriptomics and ELISpot. 7/23 patients (30.4%) monitored to study completion showed >90% clinical improvement, and 5/23 (21.7%) showed partial improvement. A logistic regression model applied to blood transcriptomic data identified immune modules predictive of patients with >90% clinical improvement. A randomized controlled trial to determine whether these clinical responses were vaccine-related and whether ChAd63-KH vaccine has clinical utility is underway.

Keywords: ChAd63-KH vaccine; PKDL; Sudan; clinical trial; immunogenicity; leishmaniasis; safety; transcriptomics.

Conflict of interest statement

Declaration of interests C.J.N.L., P.M.K., and T.A. are co-authors of a patent protecting the gene insert used in candidate vaccine ChAd63-KH (Europe 10719953.1; India 315101). The authors otherwise declare no competing interests.

Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
CONSORT diagram for the LEISH2a clinical trial The CONSORT diagram reports attendance at scheduled inpatient and outpatient visits. Clinical data were also collected for some individuals at additional unscheduled visits, as shown in Figure 3.
Figure 2
Figure 2
Summary of AEs reported in this study AEs that were possibly, probably, or definitely related to vaccination are shown by category as percentage of total across all three cohorts. (A) Local adverse events (n = 8). (B) Systemic adverse events (n = 12). Grade 1, mild, green bars. Grade 2, moderate, yellow bars.
Figure 3
Figure 3
Clinical outcome for LEISH2a Data are presented for each patient as percentage of initial PKDL disease over time post vaccination, normalized to the day of vaccination. (A) Low-dose adult cohort. (B) High-dose adult cohort. (C) High-dose adolescent cohort. Asterisks indicate patient received conventional treatment with AmBisome. LTFU, lost to follow-up. This patient was excluded from the assessment of overall cure rate but included here for completion, as by the time of LTFU the patient had shown a clinical response of 50%. Dotted line represents 90% clinical improvement. (D–F) Representative patient photographs taken pre-vaccination and at the last follow-up visit are provided for cohort 1 (patient 012; D), cohort 2 (patient 023; E), and cohort 3 (patient 036; F). Patient 012 and 036 had widespread small papular lesions pre-vaccination that became flattened in appearance and in the case of patient 012 also showed areas of re-/hyper-pigmentation. Patient 023 also had numerous small papular lesions as well as more pronounced nodular lesions (e.g., near the ear) pre-vaccination, with resolution post vaccination. White boxes are placed to hide patient-identifying stickers and retain anonymity.
Figure 4
Figure 4
Whole-blood transcriptomic analysis (WBTA) of patient responses to vaccination with ChAd63-KH WBTA was conducted using the Ion AmpliSeq Transcriptome Human Gene Expression Kit. Each column represents a different time point (days 1, 3, and 7) after vaccination in the three study groups (low-dose adults, high-dose adults, high-dose adolescents). Significantly enriched immune-related modules were identified applying the CERNO test on the adjusted p value-ranked lists of genes generated by DeSeq2 (see Table S2 for module gene lists). Modules are represented by bars in which the proportion of significantly upregulated and downregulated genes is shown in red and blue, respectively. The gray portion of the bar represents genes that are not significantly differentially regulated. The significance of module activation is proportional to the intensity of the bar, while the effect size is proportional to its width.
Figure 5
Figure 5
CD8+ T cell response to vaccination with ChAd63-KH PBMCs from patients collected from d7-d90 post vaccination were stimulated with peptide pools representing the entire KMP-11 sequence (P1) and the HASPB N terminus (P2). The number of IFNγ-producing cells/million PBMCs was determined by ELISpot. (A) Peak response by cohort to P1 after subtraction of unstimulated background and any pre-vaccination response. (B) Pre-vaccination and peak post vaccination response per patient to P1 for low-dose adult (green), high-dose adult (blue), and high-dose adolescents (orange). (C and D) Comparison between patients in this trial (LEISH2a) and healthy UK volunteer responses (LEISH1) for response to P1 (C) and P2 (D). Data for LEISH1 are taken from Osman et al. Box-and-whisker plots indicate median, 25th−75th quartiles, mix/max values, and individual patient data points.

References

    1. Alvar J., Vélez I.D., Bern C., Herrero M., Desjeux P., Cano J., Jannin J., den Boer M., WHO Leishmaniasis Control Team Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7:e35671.
    1. World Health Organisation . 2019. Leishmaniasis.
    1. Davies C.R., Kaye P., Croft S.L., Sundar S. Leishmaniasis: new approaches to disease control. BMJ. 2003;326:377–382.
    1. Zijlstra E.E., Musa A.M., Khalil E.A., el-Hassan I.M., el-Hassan A.M. Post-kala-azar dermal leishmaniasis. Lancet Infect. Dis. 2003;3:87–98.
    1. Khalil E.A., Khidir S.A., Musa A.M., Musa B.Y., Elfaki M.E., Elkadaru A.M., Zijlstra E., El-Hassan A.M. Post-Kala-Azar Dermal Leishmaniasis: A Paradigm of Paradoxical Immune Reconstitution Syndrome in Non-HIV/AIDS Patients. J. Trop. Med. 2013;2013:275253.
    1. Mukhopadhyay D., Dalton J.E., Kaye P.M., Chatterjee M. Post kala-azar dermal leishmaniasis: an unresolved mystery. Trends Parasitol. 2014;30:65–74.
    1. Musa A.M., Khalil E.A., Younis B.M., Elfaki M.E., Elamin M.Y., Adam A.O., Mohamed H.A., Dafalla M.M., Abuzaid A.A., El-Hassan A.M. Treatment-based strategy for the management of post-kala-azar dermal leishmaniasis patients in the Sudan. J. Trop. Med. 2013;2013:708391.
    1. Zijlstra E.E., Alves F., Rijal S., Arana B., Alvar J. Post-kala-azar dermal leishmaniasis in the Indian subcontinent: A threat to the South-East Asia Region Kala-azar Elimination Programme. PLoS Negl. Trop. Dis. 2017;11:e0005877.
    1. Alves F., Bilbe G., Blesson S., Goyal V., Monnerat S., Mowbray C., Muthoni Ouattara G., Pécoul B., Rijal S., Rode J., et al. Recent Development of Visceral Leishmaniasis Treatments: Successes, Pitfalls, and Perspectives. Clin. Microbiol. Rev. 2018;31:e00048-18.
    1. Rao S.P.S., Barrett M.P., Dranoff G., Faraday C.J., Gimpelewicz C.R., Hailu A., Jones C.L., Kelly J.M., Lazdins-Helds J.K., Mäser P., et al. Drug Discovery for Kinetoplastid Diseases: Future Directions. ACS Infect. Dis. 2019;5:152–157.
    1. Alvar J., Croft S.L., Kaye P., Khamesipour A., Sundar S., Reed S.G. Case study for a vaccine against leishmaniasis. Vaccine. 2013;31(Suppl 2):B244–B249.
    1. Gillespie P.M., Beaumier C.M., Strych U., Hayward T., Hotez P.J., Bottazzi M.E. Status of vaccine research and development of vaccines for leishmaniasis. Vaccine. 2016;34:2992–2995.
    1. Reed S.G., Coler R.N., Mondal D., Kamhawi S., Valenzuela J.G. Leishmania vaccine development: exploiting the host-vector-parasite interface. Expert Rev. Vaccines. 2016;15:81–90.
    1. Noazin S., Khamesipour A., Moulton L.H., Tanner M., Nasseri K., Modabber F., Sharifi I., Khalil E.A., Bernal I.D., Antunes C.M., Smith P.G. Efficacy of killed whole-parasite vaccines in the prevention of leishmaniasis: a meta-analysis. Vaccine. 2009;27:4747–4753.
    1. Noazin S., Modabber F., Khamesipour A., Smith P.G., Moulton L.H., Nasseri K., Sharifi I., Khalil E.A., Bernal I.D., Antunes C.M., et al. First generation leishmaniasis vaccines: a review of field efficacy trials. Vaccine. 2008;26:6759–6767.
    1. Musa A.M., Khalil E.A., Mahgoub F.A., Elgawi S.H., Modabber F., Elkadaru A.E., Aboud M.H., Noazin S., Ghalib H.W., El-Hassan A.M., Leishmaniasis Research Group/Sudan Immunochemotherapy of persistent post-kala-azar dermal leishmaniasis: a novel approach to treatment. Trans. R. Soc. Trop. Med. Hyg. 2008;102:58–63.
    1. Machado-Pinto J., Pinto J., da Costa C.A., Genaro O., Marques M.J., Modabber F., Mayrink W. Immunochemotherapy for cutaneous leishmaniasis: a controlled trial using killed Leishmania (Leishmania) amazonensis vaccine plus antimonial. Int. J. Dermatol. 2002;41:73–78.
    1. Mayrink W., Magalhaes P.A., Michalick M.S., da Costa C.A., Lima Ade.O., Melo M.N., Toledo V.P., Nascimento E., Dias M., Genaro O., et al. Immunotherapy as a treatment of American cutaneous leishmaniasis: preliminary studies in Brazil. Parassitologia. 1992;34:159–165.
    1. Iborra S., Solana J.C., Requena J.M., Soto M. Vaccine candidates against leishmania under current research. Expert Rev. Vaccines. 2018;17:323–334.
    1. Moafi M., Rezvan H., Sherkat R., Taleban R. Leishmania Vaccines Entered in Clinical Trials: A Review of Literature. Int. J. Prev. Med. 2019;10:95.
    1. Barman H., Walch M., Latinovic-Golic S., Dumrese C., Dolder M., Groscurth P., Ziegler U. Cholesterol in negatively charged lipid bilayers modulates the effect of the antimicrobial protein granulysin. J. Membr. Biol. 2006;212:29–39.
    1. Basu R., Roy S., Walden P. HLA class I-restricted T cell epitopes of the kinetoplastid membrane protein-11 presented by Leishmania donovani-infected human macrophages. J. Infect. Dis. 2007;195:1373–1380.
    1. Das S., Freier A., Boussoffara T., Das S., Oswald D., Losch F.O., Selka M., Sacerdoti-Sierra N., Schönian G., Wiesmüller K.H., et al. Modular multiantigen T cell epitope-enriched DNA vaccine against human leishmaniasis. Sci. Transl. Med. 2014;6:234ra56.
    1. Stäger S., Alexander J., Kirby A.C., Botto M., Rooijen N.V., Smith D.F., Brombacher F., Kaye P.M. Natural antibodies and complement are endogenous adjuvants for vaccine-induced CD8+ T-cell responses. Nat. Med. 2003;9:1287–1292.
    1. Stäger S., Rafati S. CD8(+) T cells in leishmania infections: friends or foes? Front. Immunol. 2012;3:5.
    1. O’Hara G.A., Duncan C.J., Ewer K.J., Collins K.A., Elias S.C., Halstead F.D., Goodman A.L., Edwards N.J., Reyes-Sandoval A., Bird P., et al. Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vector. J. Infect. Dis. 2012;205:772–781.
    1. Moreno J., Nieto J., Masina S., Cañavate C., Cruz I., Chicharro C., Carrillo E., Napp S., Reymond C., Kaye P.M., et al. Immunization with H1, HASPB1 and MML Leishmania proteins in a vaccine trial against experimental canine leishmaniasis. Vaccine. 2007;25:5290–5300.
    1. Maclean L.M., O’Toole P.J., Stark M., Marrison J., Seelenmeyer C., Nickel W., Smith D.F. Trafficking and release of Leishmania metacyclic HASPB on macrophage invasion. Cell. Microbiol. 2012;14:740–761.
    1. Zackay A., Nasereddin A., Takele Y., Tadesse D., Hailu W., Hurissa Z., Yifru S., Weldegebreal T., Diro E., Kassahun A., et al. Polymorphism in the HASPB repeat region of East African Leishmania donovani strains. PLoS Negl. Trop. Dis. 2013;7:e2031.
    1. Maroof A., Brown N., Smith B., Hodgkinson M.R., Maxwell A., Losch F.O., Fritz U., Walden P., Lacey C.N., Smith D.F., et al. Therapeutic vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral leishmaniasis. J. Infect. Dis. 2012;205:853–863.
    1. Osman M., Mistry A., Keding A., Gabe R., Cook E., Forrester S., Wiggins R., Di Marco S., Colloca S., Siani L., et al. A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH. PLoS Negl. Trop. Dis. 2017;11:e0005527.
    1. Ghalib H., Modabber F. Consultation meeting on the development of therapeutic vaccines for post kala azar dermal leishmaniasis. Kinetoplastid Biol. Dis. 2007;6:7.
    1. Moretti S., Cafaro A., Tripiciano A., Picconi O., Buttò S., Ensoli F., Sgadari C., Monini P., Ensoli B. HIV therapeutic vaccines aimed at intensifying combination antiretroviral therapy. Expert Rev. Vaccines. 2020;19:71–84.
    1. Garbuglia A.R., Lapa D., Sias C., Capobianchi M.R., Del Porto P. The Use of Both Therapeutic and Prophylactic Vaccines in the Therapy of Papillomavirus Disease. Front. Immunol. 2020;11:188.
    1. Mougel A., Terme M., Tanchot C. Therapeutic Cancer Vaccine and Combinations With Antiangiogenic Therapies and Immune Checkpoint Blockade. Front. Immunol. 2019;10:467.
    1. Swadling L., Halliday J., Kelly C., Brown A., Capone S., Ansari M.A., Bonsall D., Richardson R., Hartnell F., Collier J., et al. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection. Vaccines (Basel) 2016;4:E27.
    1. Borducchi E.N., Cabral C., Stephenson K.E., Liu J., Abbink P., Ng’ang’a D., Nkolola J.P., Brinkman A.L., Peter L., Lee B.C., et al. Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature. 2016;540:284–287.
    1. Joshi T., Rodriguez S., Perovic V., Cockburn I.A., Stäger S. B7-H1 blockade increases survival of dysfunctional CD8(+) T cells and confers protection against Leishmania donovani infections. PLoS Pathog. 2009;5:e1000431.
    1. Ismail A., Khalil E.A., Musa A.M., El Hassan I.M., Ibrahim M.E., Theander T.G., El Hassan A.M. The pathogenesis of post kala-azar dermal leishmaniasis from the field to the molecule: does ultraviolet light (UVB) radiation play a role? Med. Hypotheses. 2006;66:993–999.
    1. Musa A.M., Khalil E.A., Raheem M.A., Zijlstra E.E., Ibrahim M.E., Elhassan I.M., Mukhtar M.M., El Hassan A.M. The natural history of Sudanese post-kala-azar dermal leishmaniasis: clinical, immunological and prognostic features. Ann. Trop. Med. Parasitol. 2002;96:765–772.
    1. Musa A.M., Khalil E.A., Mahgoub F.A., Hamad S., Elkadaru A.M., El Hassan A.M. Efficacy of liposomal amphotericin B (AmBisome) in the treatment of persistent post-kala-azar dermal leishmaniasis (PKDL) Ann. Trop. Med. Parasitol. 2005;99:563–569.
    1. Younis B.M., Mohammed H.A.A., Dafalla M.M.M., Adam A.O.A., Elamin M.Y., Musa A.M., et al. Cure of post kala-azar dermal leishmaniasis with paromomycin/sodium stibogluconate combination: a proof of concept International. J. Res. Med. Sci. 2015;3:16–21.
    1. Le Rutte E.A., Zijlstra E.E., de Vlas S.J. Post-Kala-Azar Dermal Leishmaniasis as a Reservoir for Visceral Leishmaniasis Transmission. Trends Parasitol. 2019;35:590–592.
    1. Mondal D., Bern C., Ghosh D., Rashid M., Molina R., Chowdhury R., Nath R., Ghosh P., Chapman L.A.C., Alim A., et al. Quantifying the Infectiousness of Post-Kala-Azar Dermal Leishmaniasis Toward Sand Flies. Clin. Infect. Dis. 2019;69:251–258.
    1. Sengupta R., Chaudhuri S.J., Moulik S., Ghosh M.K., Saha B., Das N.K., Chatterjee M. Active surveillance identified a neglected burden of macular cases of Post Kala-azar Dermal Leishmaniasis in West Bengal. PLoS Negl. Trop. Dis. 2019;13:e0007249.
    1. Block S.L., Nolan T., Sattler C., Barr E., Giacoletti K.E., Marchant C.D., Castellsagué X., Rusche S.A., Lukac S., Bryan J.T., et al. Protocol 016 Study Group Comparison of the immunogenicity and reactogenicity of a prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in male and female adolescents and young adult women. Pediatrics. 2006;118:2135–2145.
    1. Dobson S.R., McNeil S., Dionne M., Dawar M., Ogilvie G., Krajden M., Sauvageau C., Scheifele D.W., Kollmann T.R., Halperin S.A., et al. Immunogenicity of 2 doses of HPV vaccine in younger adolescents vs 3 doses in young women: a randomized clinical trial. JAMA. 2013;309:1793–1802.
    1. Jakoš T., Pišlar A., Jewett A., Kos J. Cysteine Cathepsins in Tumor-Associated Immune Cells. Front. Immunol. 2019;10:2037.
    1. Braliou G.G., Kontou P.I., Boleti H., Bagos P.G. Susceptibility to leishmaniasis is affected by host SLC11A1 gene polymorphisms: a systematic review and meta-analysis. Parasitol. Res. 2019;118:2329–2342.
    1. Kaye P.M., Patel N.K., Blackwell J.M. Acquisition of cell-mediated immunity to Leishmania. II. LSH gene regulation of accessory cell function. Immunology. 1988;65:17–22.
    1. Zijlstra E.E. The immunology of post-kala-azar dermal leishmaniasis (PKDL) Parasit. Vectors. 2016;9:464.
    1. Zijlstra E.E. Biomarkers in Post-kala-azar Dermal Leishmaniasis. Front. Cell. Infect. Microbiol. 2019;9:228.
    1. Zijlstra E.E., el-Hassan A.M. Leishmaniasis in Sudan. Visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 2001;95(Suppl 1):S27–S58.
    1. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    1. Weiner J., 3rd, Domaszewska T. tmod: an R package for general and multivariate enrichment analysis. PeerJ Preprints. 2016;4:e2420v1.
    1. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning. 2011;12:2825–2830.
    1. Kuleshov M.V., Jones M.R., Rouillard A.D., Fernandez N.F., Duan Q., Wang Z., Koplev S., Jenkins S.L., Jagodnik K.M., Lachmann A., et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–W97.
    1. Krämer A., Green J., Pollard J., Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30:523–530.
    1. StataCorp . StataCorp; 2019. Stata Statistical Software: Release 16.
    1. R Development Core Team . R Foundation for Statistical Computing; 2011. R: A Language and Environment for Statistical Computing.

Source: PubMed

Подписаться