Cerebral Biochemical Effect of Pregabalin in Patients with Painful Diabetic Neuropathy: A Randomized Controlled Trial

Mats De Jaeger, Lisa Goudman, Peter Van Schuerbeek, Johan De Mey, Bart Keymeulen, Raf Brouns, Maarten Moens, Mats De Jaeger, Lisa Goudman, Peter Van Schuerbeek, Johan De Mey, Bart Keymeulen, Raf Brouns, Maarten Moens

Abstract

Introduction: With the development of new neuroimaging tools it has become possible to assess neurochemical alterations in patients experiencing chronic pain and to determine how these factors change during pharmacological treatment. The goal of this study was to examine the exact neurochemical mechanism underlying pregabalin treatment, utilizing magnetic resonance spectroscopy (1H-MRS), in a population of patients with painful diabetic polyneuropathy (PDN), with the overall aim to ultimately objectify the clinical effect of pregabalin.

Methods: A double blind, randomized, placebo-controlled study was conducted. A total of 27 patients with PDN were enrolled in the study, of whom 13 received placebo treatment (control group) and 14 received pregabalin (intervention group). Pregabalin treatment consisted of stepwise dose escalation over the study period from 75 mg daily ultimately to 600 mg daily. 1H-MRS was performed at 3T on four regions of interest in the brain: the rostral anterior cingulate cortex (rACC), left and right thalamus and prefrontal cortex. The absolute concentrations of N-acetyl aspartate, glutamate, glutamine, gamma-amino-butyric-acid (GABA), glucose (Glc) and myo-inositol (mINS) were determined using LCModel.

Results: The concentration of most neurometabolites in the placebo and pregabalin group did not significantly differ over time, with only a small significant difference in Glc level in the left thalamus (p = 0.049). Comparison of the effects of the different doses revealed significant differences for mINS in the rACC (baseline 2.42 ± 1.21 vs. 450 mg 1.58 ± 0.94; p = 0.022) and dorsolateral prefrontal cortex (75 mg 2.38 ± 0.89 vs. 450 mg 1.59 ± 0.85; p = 0.042) and also for GABA in the rACC (75 mg 0.53 ± 0.51 vs. 225 mg 0.28 ± 0.19; p = 0.014).

Conclusion: No differences were found in metabolite concentrations between the placebo (control) and intervention groups, but some differences, although small, were found between the different doses.

Trial registration: This study is registered at ClinicalTrials.gov (NCT01180608).

Funding: Lyrica Independent Investigator Research Award (LIIRA) 2010 (Pfizer) funded the study.

Keywords: Neuropathic pain; Painful diabetic polyneuropathy; Pregabalin; Proton magnetic resonance spectroscopy.

Figures

Fig. 1
Fig. 1
Titration chart for the pregabalin group
Fig. 2
Fig. 2
Titration chart for the placebo group

References

    1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–1053. doi: 10.2337/diacare.27.5.1047.
    1. Davies M, Brophy S, Williams R, Taylor A. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care. 2006;29(7):1518–1522. doi: 10.2337/dc05-2228.
    1. Ziegler D. Painful diabetic neuropathy: treatment and future aspects. Diabetes Metab Res Rev. 2008;24(Suppl 1):S52–S57. doi: 10.1002/dmrr.817.
    1. Nawroth PP, Bendszus M, Pham M, et al. The quest for more research on painful diabetic neuropathy. Neuroscience. 2017. doi: 10.1016/j.neuroscience.2017.09.023
    1. Vaeggemose M, Pham M, Ringgaard S, et al. Magnetic resonance neurography visualizes abnormalities in sciatic and tibial nerves in patients with type 1 diabetes and neuropathy. Diabetes. 2017;66(7):1779–1788. doi: 10.2337/db16-1049.
    1. Vaeggemose M, Pham M, Ringgaard S, et al. Diffusion tensor imaging MR neurography for the detection of polyneuropathy in type 1 diabetes. J Magn Reson Imaging. 2017;45(4):1125–1134. doi: 10.1002/jmri.25415.
    1. Vaeggemose M, Vaeth S, Pham M, et al. Magnetic resonance neurography and diffusion tensor imaging of the peripheral nerves in patients with Charcot-Marie-Tooth Type 1A. Muscle Nerve. 2017; 56(6):E78–E84
    1. Davis KD, Flor H, Greely HT, et al. Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nat Rev Neurol. 2017;13(10):624–638. doi: 10.1038/nrneurol.2017.122.
    1. Musen G, Jacobson AM, Bolo NR, et al. Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes. 2012;61(9):2375–2379. doi: 10.2337/db11-1669.
    1. Climie RE, Moran C, Callisaya M, et al. Abdominal obesity and brain atrophy in type 2 diabetes mellitus. PLoS One. 2015;10(11):e0142589. doi: 10.1371/journal.pone.0142589.
    1. Zhang Y, Lu S, Liu C, et al. Altered brain activation and functional connectivity in working memory related networks in patients with type 2 diabetes: An ICA-based analysis. Sci Rep. 2016;6:23767. doi: 10.1038/srep23767.
    1. Wu GY, Zhang Q, Wu JL, et al. Changes in cerebral metabolites in type 2 diabetes mellitus: A meta-analysis of proton magnetic resonance spectroscopy. J Clin Neurosci. 2017;45:9–13. doi: 10.1016/j.jocn.2017.07.017.
    1. Cabrera EA, Wiers CE, Lindgren E, Miller G, Volkow ND, Wang GJ. Neuroimaging the effectiveness of substance use disorder treatments. J Neuroimmune Pharmacol. 2016;11(3):408–433. doi: 10.1007/s11481-016-9680-y.
    1. Harris RE, Napadow V, Huggins JP, et al. Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology. 2013;119(6):1453–1464. doi: 10.1097/ALN.0000000000000017.
    1. Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162–173. doi: 10.1016/S1474-4422(14)70251-0.
    1. Stahl SM, Porreca F, Taylor CP, Cheung R, Thorpe AJ, Clair A. The diverse therapeutic actions of pregabalin: is a single mechanism responsible for several pharmacological activities? Trends Pharmacol Sci. 2013;34(6):332–339. doi: 10.1016/j.tips.2013.04.001.
    1. Gussew A, Rzanny R, Gullmar D, Scholle HC, Reichenbach JR. 1H-MR spectroscopic detection of metabolic changes in pain processing brain regions in the presence of non-specific chronic low back pain. Neuroimage. 2011;54(2):1315–1323. doi: 10.1016/j.neuroimage.2010.09.039.
    1. Henderson LA, Peck CC, Petersen ET, et al. Chronic pain: lost inhibition? J Neurosci. 2013;33(17):7574–7582. doi: 10.1523/JNEUROSCI.0174-13.2013.
    1. Alshelh Z, Di Pietro F, Youssef AM, et al. Chronic neuropathic pain: it’s about the rhythm. J Neurosci. 2016;36(3):1008–1018. doi: 10.1523/JNEUROSCI.2768-15.2016.
    1. Snyder MJ, Gibbs LM, Lindsay TJ. Treating painful diabetic peripheral neuropathy: an update. Am Fam Physician. 2016;94(3):227–234.
    1. Spallone V, Lacerenza M, Rossi A, Sicuteri R, Marchettini P. Painful diabetic polyneuropathy: approach to diagnosis and management. Clin J Pain. 2012;28(8):726–743. doi: 10.1097/AJP.0b013e318243075c.
    1. Bril V, England J, Franklin GM, et al. Evidence-based guideline: treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology. 2011;76(20):1758–1765. doi: 10.1212/WNL.0b013e3182166ebe.
    1. Ziegler D, Fonseca V. From guideline to patient: a review of recent recommendations for pharmacotherapy of painful diabetic neuropathy. J Diabetes Compl. 2015;29(1):146–156. doi: 10.1016/j.jdiacomp.2014.08.008.
    1. Goodman CW, Brett AS. Gabapentin and pregabalin for pain—is increased prescribing a cause for concern? N Engl J Med. 2017;377(5):411–414. doi: 10.1056/NEJMp1704633.
    1. Tolle T, Freynhagen R, Versavel M, Trostmann U, Young JP., Jr Pregabalin for relief of neuropathic pain associated with diabetic neuropathy: a randomized, double-blind study. Eur J Pain. 2008;12(2):203–213. doi: 10.1016/j.ejpain.2007.05.003.
    1. Rosenstock J, Tuchman M, LaMoreaux L, Sharma U. Pregabalin for the treatment of painful diabetic peripheral neuropathy: a double-blind, placebo-controlled trial. Pain. 2004;110(3):628–638. doi: 10.1016/j.pain.2004.05.001.
    1. Mathieson S, Maher CG, McLachlan AJ, et al. Trial of pregabalin for acute and chronic sciatica. N Engl J Med. 2017;376(12):1111–1120. doi: 10.1056/NEJMoa1614292.
    1. Moens M, Marien P, Brouns R, et al. Spinal cord stimulation modulates cerebral neurobiology: a proton magnetic resonance spectroscopy study. Neuroradiology. 2013;55(8):1039–1047. doi: 10.1007/s00234-013-1200-7.
    1. Grachev ID, Thomas PS, Ramachandran TS. Decreased levels of N-acetylaspartate in dorsolateral prefrontal cortex in a case of intractable severe sympathetically mediated chronic pain (complex regional pain syndrome, type I) Brain Cogn. 2002;49(1):102–113. doi: 10.1006/brcg.2001.1489.
    1. Grachev ID, Fredrickson BE, Apkarian AV. Brain chemistry reflects dual states of pain and anxiety in chronic low back pain. J Neural Transm (Vienna). 2002;109(10):1309–1334. doi: 10.1007/s00702-002-0722-7.
    1. Zhao X, Xu M, Jorgenson K, Kong J. Neurochemical changes in patients with chronic low back pain detected by proton magnetic resonance spectroscopy: a systematic review. Neuroimage Clin. 2017;13:33–38. doi: 10.1016/j.nicl.2016.11.006.
    1. Tesfaye S, Selvarajah D, Gandhi R, et al. Diabetic peripheral neuropathy may not be as its name suggests: evidence from magnetic resonance imaging. Pain. 2016;157(Suppl 1):S72–S80. doi: 10.1097/j.pain.0000000000000465.
    1. Greig M, Tesfaye S, Selvarajah D, Wilkinson ID. Insights into the pathogenesis and treatment of painful diabetic neuropathy. Handb Clin Neurol. 2014;126:559–578. doi: 10.1016/B978-0-444-53480-4.00037-0.
    1. Ciurleo R, Bonanno L, Di Lorenzo G, Bramanti P, Marino S. Metabolic changes in de novo Parkinson’s disease after dopaminergic therapy: a proton magnetic resonance spectroscopy study. Neurosci Lett. 2015;599:55–60. doi: 10.1016/j.neulet.2015.05.044.
    1. Shirayama Y, Takahashi M, Osone F, Hara A, Okubo T. Myo-inositol, glutamate, and glutamine in the prefrontal cortex, hippocampus, and amygdala in major depression, biological psychiatry. Cogn Neurosci Neuroimaging. 2017;2(2):196–204.
    1. Bertholdo D, Watcharakorn A, Castillo M. Brain proton magnetic resonance spectroscopy: introduction and overview. Neuroimaging Clin N Am. 2013;23(3):359–380. doi: 10.1016/j.nic.2012.10.002.
    1. Mazuel L, Chassain C, Jean B, et al. Proton MR spectroscopy for diagnosis and evaluation of treatment efficacy in parkinson disease. Radiology. 2016;278(2):505–513. doi: 10.1148/radiol.2015142764.
    1. Sharma NK, McCarson K, Van Dillen L, Lentz A, Khan T, Cirstea CM. Primary somatosensory cortex in chronic low back pain—a H-MRS study. J Pain Res. 2011;4:143–150.
    1. Sharma NK, Brooks WM, Popescu AE, et al. Neurochemical analysis of primary motor cortex in chronic low back pain. Brain Sci. 2012;2(3):319–331. doi: 10.3390/brainsci2030319.
    1. Mao N, Fang J, Xie H, et al. Correlation between neurochemical metabolism and memory function in adolescent patients with depression: a multi-voxel (1)H magnetic resonance spectroscopy study. Psychiatry Clin Neurosci. 2016;70(4):167–174. doi: 10.1111/pcn.12372.
    1. McGuire SA, Wijtenburg SA, Sherman PM, et al. Reproducibility of quantitative structural and physiological MRI measurements. Brain Behav. 2017;7(9):e00759. doi: 10.1002/brb3.759.
    1. Harris RE, Clauw DJ. Imaging central neurochemical alterations in chronic pain with proton magnetic resonance spectroscopy. Neurosci Lett. 2012;520(2):192–196. doi: 10.1016/j.neulet.2012.03.042.
    1. Cleve M, Gussew A, Reichenbach JR. In vivo detection of acute pain-induced changes of GABA + and Glx in the human brain by using functional 1H MEGA-PRESS MR spectroscopy. Neuroimage. 2015;105:67–75. doi: 10.1016/j.neuroimage.2014.10.042.
    1. Mullins PG, McGonigle DJ, O’Gorman RL, et al. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage. 2014;86:43–52. doi: 10.1016/j.neuroimage.2012.12.004.
    1. Fukui S, Matsuno M, Inubushi T, Nosaka S. N-Acetylaspartate concentrations in the thalami of neuropathic pain patients and healthy comparison subjects measured with (1)H-MRS. Magn Reson Imaging. 2006;24(1):75–79. doi: 10.1016/j.mri.2005.10.021.
    1. Pattany PM, Yezierski RP, Widerstrom-Noga EG, et al. Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. AJNR. 2002;23(6):901–905.
    1. Kupers R, Danielsen ER, Kehlet H, Christensen R, Thomsen C. Painful tonic heat stimulation induces GABA accumulation in the prefrontal cortex in man. Pain. 2009;142(1–2):89–93. doi: 10.1016/j.pain.2008.12.008.

Source: PubMed

Подписаться