A Behavioral Lifestyle Intervention Enhanced With Multiple-Behavior Self-Monitoring Using Mobile and Connected Tools for Underserved Individuals With Type 2 Diabetes and Comorbid Overweight or Obesity: Pilot Comparative Effectiveness Trial

Jing Wang, Chunyan Cai, Nikhil Padhye, Philip Orlander, Mohammad Zare, Jing Wang, Chunyan Cai, Nikhil Padhye, Philip Orlander, Mohammad Zare

Abstract

Background: Self-monitoring is a cornerstone of behavioral lifestyle interventions for obesity and type 2 diabetes mellitus. Mobile technology has the potential to improve adherence to self-monitoring and patient outcomes. However, no study has tested the use of a smartphone to facilitate self-monitoring in overweight or obese adults with type 2 diabetes mellitus living in the underserved community.

Objective: The aim of this study was to examine the feasibility of and compare preliminary efficacy of a behavioral lifestyle intervention using smartphone- or paper-based self-monitoring of multiple behaviors on weight loss and glycemic control in a sample of overweight or obese adults with type 2 diabetes mellitus living in underserved communities.

Methods: We conducted a randomized controlled trial to examine the feasibility and preliminary efficacy of a behavioral lifestyle intervention. Overweight or obese patients with type 2 diabetes mellitus were recruited from an underserved minority community health center in Houston, Texas. They were randomly assigned to one of the three groups: (1) behavior intervention with smartphone-based self-monitoring, (2) behavior intervention with paper diary-based self-monitoring, and (3) usual care group. Both the mobile and paper groups received a total of 11 face-to-face group sessions in a 6-month intervention. The mobile group received an Android-based smartphone with 2 apps loaded to help them record their diet, physical activity, weight, and blood glucose, along with a connected glucometer, whereas the paper group used paper diaries for these recordings. Primary outcomes of the study included percentage weight loss and glycated hemoglobin (HbA1c) changes over 6 months.

Results: A total of 26 patients were enrolled: 11 in the mobile group, 9 in the paper group, and 6 in the control group. We had 92% (24/26) retention rate at 6 months. The sample is predominantly African Americans with an average age of 56.4 years and body mass index of 38.1. Participants lost an average of 2.73% (mobile group) and 0.13% (paper group) weight at 6 months, whereas the control group had an average 0.49% weight gain. Their HbA1c changed from 8% to 7 % in mobile group, 10% to 9% in paper group, and maintained at 9% for the control group. We found a significant difference on HbA1c at 6 months among the 3 groups (P=.01). We did not find statistical group significance on percentage weight loss (P=.20) and HbA1c changes (P=.44) overtime; however, we found a large effect size of 0.40 for weight loss and a medium effect size of 0.28 for glycemic control.

Conclusions: Delivering a simplified behavioral lifestyle intervention using mobile health-based self-monitoring in an underserved community is feasible and acceptable and shows higher preliminary efficacy, as compared with paper-based self-monitoring. A full-scale randomized controlled trial is needed to confirm the findings in this pilot study.

Trial registration: ClinicalTrials.gov NCT02858648; https://ichgcp.net/clinical-trials-registry/NCT02858648 (Archived by WebCite at http://www.webcitation.org/6ySidjmT7).

Keywords: behavior change; comparative effectiveness trial; connected health; diabetes; lifestyle; mobile health; obesity; patient engagement; patient-generated health data; self-monitoring.

Conflict of interest statement

Conflicts of Interest: None declared.

©Jing Wang, Chunyan Cai, Nikhil Padhye, Philip Orlander, Mohammad Zare. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 10.04.2018.

Figures

Figure 1
Figure 1
Study model modified from social learning theory and self-regulation theory.
Figure 2
Figure 2
Consolidated Standards of Reporting Trials (CONSORT) diagram. HbA1c: glycated hemoglobin.
Figure 3
Figure 3
Adherence to self-monitoring of multiple behaviors in the intervention groups.

References

    1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. J Am Med Assoc. 2014 Feb 26;311(8):806–14. doi: 10.1001/jama.2014.732.
    1. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of obesity among adults and youth: United States, 2011-2014. NCHS Data Brief. 2015;(219):1–8.
    1. Nguyen NT, Nguyen XT, Lane J, Wang P. Relationship between obesity and diabetes in a US adult population: findings from the National Health and Nutrition Examination Survey, 1999-2006. Obes Surg. 2011 Mar;21(3):351–5. doi: 10.1007/s11695-010-0335-4.
    1. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. J Am Med Assoc. 2003 Jan 1;289(1):76–9.
    1. American Diabetes Association Standards of medical care in diabetes--2011. Diabetes Care. 2011 Jan;34 Suppl 1:S11–61. doi: 10.2337/dc11-S011.
    1. Look AHEAD Research Group. Wing RR. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD trial. Arch Intern Med. 2010 Sep 27;170(17):1566–75. doi: 10.1001/archinternmed.2010.334.
    1. Look AHEAD Research Group. Pi-Sunyer X, Blackburn G, Brancati FL, Bray GA, Bright R, Clark JM, Curtis JM, Espeland MA, Foreyt JP, Graves K, Haffner SM, Harrison B, Hill JO, Horton ES, Jakicic J, Jeffery RW, Johnson KC, Kahn S, Kelley DE, Kitabchi AE, Knowler WC, Lewis CE, Maschak-Carey BJ, Montgomery B, Nathan DM, Patricio J, Peters A, Redmon JB, Reeves RS, Ryan DH, Safford M, Van Dorsten B, Wadden TA, Wagenknecht L, Wesche-Thobaben J, Wing RR, Yanovski SZ. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007 Jun;30(6):1374–83. doi: 10.2337/dc07-0048.
    1. Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet. 2015 Sep;115(9):1447–63. doi: 10.1016/j.jand.2015.02.031.
    1. Walker R, Smalls BL, Bonilha HS, Campbell JA, Egede LE. Behavioral interventions to improve glycemic control in African Americans with type 2 diabetes: a systematic review. Ethn Dis. 2013;23(4):401–8.
    1. Health Resources and Services Administration, Medically Underserved Areas/Populations. 2016. Guidelines for MUA and MUP Designation .
    1. Brown SA, García AA, Orlander PR, Hanis CL. A randomized clinical trial of diabetes self-management for Mexican Americans: are there serendipitous health benefits for supporters of study participants? SAGE Open Med. 2017 Jan 7;5:2050312116682125. doi: 10.1177/2050312116682125.
    1. Brown SA, Kouzekanani K, García AA, Orlander PR, Hanis CL. Diabetes self-management and leptin in Mexican Americans with type 2 diabetes: the Starr County border health initiative. Diabetes Educ. 2013;39(6):820–7. doi: 10.1177/0145721713505153.
    1. Trief P, Izquierdo R, Eimicke JP, Teresi JA, Goland R, Palmas W, Shea S, Weinstock RS. Adherence to diabetes self care for white, African-American and Hispanic American telemedicine participants: 5 year results from the IDEATel project. Ethn Health. 2013;18(1):83–96. doi: 10.1080/13557858.2012.700915.
    1. Bray GA, Bourchard C, editors. Handbook of obesity—clinical applications. New York: Marcel Dekker; 2004. Behavioral approaches to the treatment of obesity.
    1. Ryan DH, Espeland MA, Foster GD, Haffner SM, Hubbard VS, Johnson KC, Kahn SE, Knowler WC, Yanovski SZ, Look AHEAD Research Group Look AHEAD (Action for Health in Diabetes): design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Control Clin Trials. 2003 Oct;24(5):610–28.
    1. Zheng Y, Klem ML, Sereika SM, Danford CA, Ewing LJ, Burke LE. Self-weighing in weight management: a systematic literature review. Obesity (Silver Spring) 2015 Feb;23(2):256–65. doi: 10.1002/oby.20946. doi: 10.1002/oby.20946.
    1. Clar C, Barnard K, Cummins E, Royle P, Waugh N, Aberdeen Health Technology Assessment Group Self-monitoring of blood glucose in type 2 diabetes: systematic review. Health Technol Assess. 2010 Mar;14(12):1–140. doi: 10.3310/hta14120. doi: 10.3310/hta14120.
    1. Burke L, Styn MA, Glanz K, Ewing LJ, Elci OU, Conroy MB, Sereika SM, Acharya S D, Music E, Keating AL, Sevick MA. SMART trial: a randomized clinical trial of self-monitoring in behavioral weight management-design and baseline findings. Contemp Clin Trials. 2009 Nov;30(6):540–51. doi: 10.1016/j.cct.2009.07.003.
    1. Sevick M, Zickmund S, Korytkowski M, Piraino B, Sereika S, Mihalko S, Snetselaar L, Stumbo P, Hausmann L, Ren D, Marsh R, Sakraida T, Gibson J, Safaien M, Starrett TJ, Burke LE. Design, feasibility, and acceptability of an intervention using personal digital assistant-based self-monitoring in managing type 2 diabetes. Contemp Clin Trials. 2008 May;29(3):396–409. doi: 10.1016/j.cct.2007.09.004.
    1. Pellegrini CA, Duncan JM, Moller AC, Buscemi J, Sularz A, DeMott A, Pictor A, Pagoto S, Siddique J, Spring B. A smartphone-supported weight loss program: design of the ENGAGED randomized controlled trial. BMC Public Health. 2012 Nov 30;12:1041. doi: 10.1186/1471-2458-12-1041.
    1. Spring B, Duncan JM, Janke EA, Kozak AT, McFadden HG, DeMott A, Pictor A, Epstein LH, Siddique J, Pellegrini CA, Buscemi J, Hedeker D. Integrating technology into standard weight loss treatment: a randomized controlled trial. JAMA Intern Med. 2013 Jan 28;173(2):105–11. doi: 10.1001/jamainternmed.2013.1221.
    1. Burke L, Conroy MB, Sereika SM, Elci OU, Styn MA, Acharya SD, Sevick MA, Ewing LJ, Glanz K. The effect of electronic self-monitoring on weight loss and dietary intake: a randomized behavioral weight loss trial. Obesity (Silver Spring) 2011 Feb;19(2):338–44. doi: 10.1038/oby.2010.208. doi: 10.1038/oby.2010.208.
    1. Wayne N, Perez SF, Kaplan DM, Ritvo P. Health coaching reduces HbA1c in type 2 diabetic patients from a lower-socioeconomic status community: a randomized controlled trial. J Med Internet Res. 2015 Oct 5;17(10):e224. doi: 10.2196/jmir.4871.
    1. Holmen H, Torbjørnsen A, Wahl AK, Jenum AK, Småstuen MC, Arsand E, Ribu L. A mobile health intervention for self-management and lifestyle change for persons with type 2 diabetes, part 2: one-year results from the Norwegian randomized controlled trial RENEWING HEALTH. JMIR Mhealth Uhealth. 2014 Dec 11;2(4):e57. doi: 10.2196/mhealth.3882.
    1. Eysenbach G, CONSORT-EHEALTH Group CONSORT-EHEALTH: improving and standardizing evaluation reports of Web-based and mobile health interventions. J Med Internet Res. 2011 Dec 31;13(4):e126. doi: 10.2196/jmir.1923.
    1. Burke LE, Elci OU, Wang J, Ewing LJ, Conroy MB, Acharya SD, Sereika SM. Self-monitoring in behavioral weight loss treatment: SMART trial short-term results. Obesity. 2009;17(Suppl 2):S273.
    1. Godino JG, Merchant G, Norman GJ, Donohue MC, Marshall SJ, Fowler JH, Calfas KJ, Huang JS, Rock CL, Griswold WG, Gupta A, Raab F, Fogg BJ, Robinson TN, Patrick K. Using social and mobile tools for weight loss in overweight and obese young adults (Project SMART): a 2 year, parallel-group, randomised, controlled trial. Lancet Diabetes Endocrinol. 2016 Sep;4(9):747–55. doi: 10.1016/S2213-8587(16)30105-X.
    1. Mayer-Davis EJ, D'Antonio AM, Smith S M, Kirkner G, Levin MS, Parra-Medina D, Schultz R. Pounds off with empowerment (POWER): a clinical trial of weight management strategies for black and white adults with diabetes who live in medically underserved rural communities. Am J Public Health. 2004 Oct;94(10):1736–42.
    1. Wang J, Sereika SM, Chasens ER, Ewing LJ, Matthews JT, Burke LE. Effect of adherence to self-monitoring of diet and physical activity on weight loss in a technology-supported behavioral intervention. Patient Prefer Adherence. 2012;6:221–6. doi: 10.2147/PPA.S28889. doi: 10.2147/PPA.S28889.
    1. Turk MW, Elci OU, Wang J, Sereika SM, Ewing LJ, Acharya SD, Glanz K, Burke LE. Self-monitoring as a mediator of weight loss in the SMART randomized clinical trial. Int J Behav Med. 2013 Dec;20(4):556–61. doi: 10.1007/s12529-012-9259-9.
    1. Thies K, Anderson D, Cramer B. Lack of adoption of a mobile app to support patient self-management of diabetes and hypertension in a federally qualified health center: interview analysis of staff and patients in a failed randomized trial. JMIR Hum Factors. 2017 Oct 3;4(4):e24. doi: 10.2196/humanfactors.7709.
    1. Acharya SD, Elci OU, Sereika SM, Styn MA, Burke LE. Using a personal digital assistant for self-monitoring influences diet quality in comparison to a standard paper record among overweight/obese adults. J Am Diet Assoc. 2011 Apr;111(4):583–8. doi: 10.1016/j.jada.2011.01.009.
    1. Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet. 2015 Sep;115(9):1447–63. doi: 10.1016/j.jand.2015.02.031.
    1. Downing J, Bollyky J, Schneider J. Use of a connected glucose meter and certified diabetes educator coaching to decrease the likelihood of abnormal blood glucose excursions: the Livongo for Diabetes Program. J Med Internet Res. 2017 Jul 11;19(7):e234. doi: 10.2196/jmir.6659.
    1. Quinn CC, Shardell MD, Terrin ML, Barr EA, Ballew SH, Gruber-Baldini AL. Cluster-randomized trial of a mobile phone personalized behavioral intervention for blood glucose control. Diabetes Care. 2011 Sep;34(9):1934–42. doi: 10.2337/dc11-0366.
    1. Conroy MB, Yang K, Elci OU, Gabriel KP, Styn MA, Wang J, Kriska AM, Sereika SM, Burke LE. Physical activity self-monitoring and weight loss: 6-month results of the SMART trial. Med Sci Sports Exerc. 2011 Aug;43(8):1568–74. doi: 10.1249/MSS.0b013e31820b9395.

Source: PubMed

Подписаться